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Preface to the Fourth Edition

As I was writing this Fourth Edition of my book Nonlinear Optics, I found the opportunity
to recall the history of my intrigue with the study of nonlinear optics. I first learned about
nonlinear optics during my senior year at MIT. I was taking a course in laser physics taught
by Dr. Abraham Szöke. A special topic covered in the course was nonlinear optics, and Prof.
Bloembergen’s short book on the topic (Nonlinear Optics, Benjamin, 1965) was assigned as
supplemental reading. I believe that it was at that point in my life that I fell in love with nonlin-
ear optics. I am attracted to nonlinear optics for the following reasons. This topic is founded on
fundamental physics including quantum mechanics and electromagnetic theory. The laboratory
study of nonlinear optics involves sophisticated experimental methods. Moreover, nonlinear
optics spans the disciplines of pure physics, applied physics, and engineering.

In preparing this Fourth Edition, I have corrected some typos that made their way into the
Third Edition. I also tightened up and clarified the wording in many spots in the text. In ad-
dition, I added new material as follows. I added a new chapter, Chapter 14, dealing with the
nonlinear optics of plasmonic systems. In Chapter 2 I added a new section on advanced phase
matching concepts. These concepts include noncollinear phase matching, critical and noncrit-
ical phase matching, phase matching aspects of spontaneous parametric downconversion, the
tilted pulse-front method for THz generation, and Cherenkov phase matching. The first three
sections of Chapter 13 as well as Section 13.8 have been substantially rewritten to improve the
pedagogical structure. A new section (Section 13.7) has been added that deals with Keldysh
theory and tunneling ionization. Section 4.6 now includes a simple derivation of the Debye–
Hückel screening equation. Finally, at the level of detail, I have included the following new
figures: Fig. 2.3.4, Fig. 2.10.2, Fig. 5.6.2, Fig. 7.5.2, and Fig. 7.5.4.

I give my great thanks to the many students and colleagues who have made suggestions
regarding the presentations given in the book and who have spotted typos and inaccuracies in
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Preface to the Fourth Edition

the Third Edition. My thanks go to Zahirul Alam, Aku Antikainen, Erik Bélanger, Nick Black,
Frédéric Bouchard, Thomas Brabec, Steve Byrnes, Enrique Cortés-Herrera, Israel De Leon,
Justin Droba, Patrick Dupre, James Emery, Marty Fejer, Alexander Gaeta, Enno Giese, Mojtaba
Hajialamdari, Henry Kapteyn, Stefan Katletz, Kyung Seung Kim, Samuel Lemieux, Yanhua Lu,
Svetlana Lukishova, Giulia Marcucci, Adrian Melissinos, Jean-Michel Ménard, Mohammad
Mirhosseini, Margaret Murnane, Geoffrey New, Rui Qi, Markus Raschke, Razif Razali, Orad
Reshef, Matthew Runyon, Akbar Safari, Mansoor Sheik-Bahae, John Sipe, Arlee Smith, Phillip
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many classroom students not mentioned above for their thought-provoking questions and for
their overall intellectual curiosity.

Robert W. Boyd
Ottawa, ON, Canada

Rochester, NY, United States
January 2, 2020
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Preface to the Third Edition

It has been a great pleasure for me to have prepared the latest edition of my book on nonlinear
optics. My intrigue in the subject matter of this book is as strong as it was when the first edition
was published in 1992.

The principal changes present in the third edition are as follows: (1) The book has been
entirely rewritten using the SI system of units. I personally prefer the elegance of the gaussian
system of units, which was used in the first two editions, but I realize that most readers would
prefer the SI system, and the change was made for this reason. (2) In addition, a large number
of minor changes have been made throughout the text to clarify the intended meaning and to
make the arguments easier to follow. I am indebted to the countless comments received from
students and colleagues both in Rochester and from around the world that have allowed me
to improve the writing in this manner. (3) Moreover, several sections that treat entirely new
material have been added. Applications of harmonic generation, including applications within
the fields of microscopy and biophotonics, are treated in Subsection 2.7.1. Electromagnetically
induced transparency is treated in Section 3.8. Some brief but crucial comments regarding
limitations to the maximum size of the intensity-induced refractive-index change are made
in Section 4.7. The use of nonlinear optical methods for inducing unusual values of the group
velocity of light are discussed briefly in Section 3.8 and in Subsection 6.6.2. Spectroscopy based
on coherent anti-Stokes Raman scattering (CARS) is discussed in Section 10.5. In addition, the
appendix has been expanded to include brief descriptions of both the SI and gaussian systems
of units and procedures for conversion between them.

The book in its present form contains far too much material to be covered within a conven-
tional one-semester course. For this reason, I am often asked for advice on how to structure a
course based on the content of my textbook. Some of my thoughts along these lines are as fol-
lows: (1) I have endeavored as much as possible to make each part of the book self-contained.
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Thus, the sophisticated reader can read the book in any desired order and can read only sections
of personal interest. (2) Nonetheless, when using the book as a course text, I suggest starting
with Chapters 1 and 2, which present the basic formalism of the subject material. At that point,
topics of interest can be taught in nearly any order. (3) Special mention should be made re-
garding Chapters 3 and 6, which deal with quantum mechanical treatments of nonlinear optical
phenomena. These chapters are among the most challenging of any within the book. These
chapters can be skipped entirely if one is comfortable with establishing only a phenomeno-
logical description of nonlinear optical phenomena. Alternatively, these chapters can form the
basis of a formal treatment of how the laws of quantum mechanics can be applied to provide
detailed descriptions of a variety of optical phenomena. (4) From a different perspective, I am
sometimes asked for my advice on extracting the essential material from the book—that is, in
determining which are topics that everyone should know. This question often arises in the con-
text of determining what material students should study when preparing for qualifying exams.
My best response to questions of this sort is that the essential material is as follows: Chapter 1
in its entirety; Sections 2.1–2.3, 2.4, and 2.10 of Chapter 2; Subsection 3.5.1 of Chapter 3;
Sections 4.1, 4.6, and 4.7 of Chapter 4; Chapter 7 in its entirety; Section 8.1 of Chapter 8; and
Section 9.1 of Chapter 9. (5) Finally, I often tell my classroom students that my course is in
some ways as much a course on optical physics as it is a course on nonlinear optics. I sim-
ply use the concept of nonlinear optics as a unifying theme for presenting conceptual issues
and practical applications of optical physics. Recognizing that this is part of my perspective in
writing, this book could be useful to its readers.

I want to express my thanks once again to the many students and colleagues who have given
me useful advice and comments regarding this book over the past fifteen years. I am especially
indebted to my own graduate students for the assistance and encouragement they have given to
me.

Robert Boyd
Rochester, New York

October, 2007
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Preface to the Second Edition

In the ten years since the publication of the first edition of this book, the field of nonlinear
optics has continued to achieve new advances both in fundamental physics and in practical
applications. Moreover, the author’s fascination with this subject has held firm over this time
interval. The present work extends the treatment of the first edition by including a considerable
body of additional material and by making numerous small improvements in the presentation
of the material included in the first edition.

The primary differences between the first and second editions are as follows.
Two additional sections have been added to Chapter 1, which deals with the nonlinear opti-

cal susceptibility. Section 1.6 deals with time-domain descriptions of optical nonlinearities, and
Section 1.7 deals with Kramers–Kronig relations in nonlinear optics. In addition, a description
of the symmetry properties of gallium arsenide has been added to Section 1.5.

Three sections have been added to Chapter 2, which treats wave-equation descriptions of
nonlinear optical interactions. Section 2.8 treats optical parametric oscillators, Section 2.9 treats
quasi-phase-matching, and Section 2.11 treats nonlinear optical surface interactions.

Two sections have been added to Chapter 4, which deals with the intensity-dependent re-
fractive index. Section 4.5 treats thermal nonlinearities, and Section 4.6 treats semiconductor
nonlinearities.

Chapter 5 is an entirely new chapter dealing with the molecular origin of the nonlinear op-
tical response. (Consequently the chapter numbers of all the following chapters are one greater
than those of the first edition.) This chapter treats electronic nonlinearities in the static ap-
proximation, semiempirical models of the nonlinear susceptibility, the nonlinear response of
conjugated polymers, the bond charge model of optical nonlinearities, nonlinear optics of chi-
ral materials, and nonlinear optics of liquid crystals.
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In Chapter 7 on processes resulting from the intensity-dependent refractive index, the sec-
tion on self-action effects (now Section 7.1) has been significantly expanded. In addition,
a description of optical switching has been included in Section 7.3, now entitled optical bista-
bility and optical switching.

In Chapter 9, which deals with stimulated Brillouin scattering, a discussion of transient
effects has been included.

Chapter 12 is an entirely new chapter dealing with optical damage and multiphoton absorp-
tion. Chapter 13 is an entirely new chapter dealing with ultrafast and intense-field nonlinear
optics.

The Appendices have been expanded to include a treatment of the gaussian system of units.
In addition, many additional homework problems and literature references have been added.

I would like to take this opportunity to thank my many colleagues who have given me advice
and suggestions regarding the writing of this book. In addition to the individuals mentioned in
the preface to the first edition, I would like to thank G. S. Agarwal, P. Agostini, G. P. Agrawal,
M. D. Feit, A. L. Gaeta, D. J. Gauthier, L. V. Hau, F. Kajzar, M. Kauranen, S. G. Luki-
shova, A. C. Melissinos, Q-H. Park, M. Saffman, B. W. Shore, D. D. Smith, I. A. Walmsley,
G. W. Wicks, and Z. Zyss. I especially wish to thank M. Kauranen and A. L. Gaeta for suggest-
ing additional homework problems and to thank A. L. Gaeta for advice on the preparation of
Section 13.2.
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Preface to the First Edition

Nonlinear optics is the study of the interaction of intense laser light with matter. This book is
a textbook on nonlinear optics at the level of a beginning graduate student. The intent of the
book is to provide an introduction to the field of nonlinear optics that stresses fundamental con-
cepts and that enables the student to go on to perform independent research in this field. The
author has successfully used a preliminary version of this book in his course at the University
of Rochester, which is typically attended by students ranging from seniors to advanced PhD
students from disciplines that include optics, physics, chemistry, electrical engineering, me-
chanical engineering, and chemical engineering. This book could be used in graduate courses
in the areas of nonlinear optics, quantum optics, quantum electronics, laser physics, electroop-
tics, and modern optics. By deleting some of the more difficult sections, this book would also
be suitable for use by advanced undergraduates. On the other hand, some of the material in
the book is rather advanced and would be suitable for senior graduate students and research
scientists.

The field of nonlinear optics is now thirty years old, if we take its beginnings to be the
observation of second-harmonic generation by Franken and coworkers in 1961. Interest in this
field has grown continuously since its beginnings, and the field of nonlinear optics now ranges
from fundamental studies of the interaction of light with matter to applications such as laser
frequency conversion and optical switching. In fact, the field of nonlinear optics has grown
so enormously that it is not possible for one book to cover all of the topics of current inter-
est. In addition, since I want this book to be accessible to beginning graduate students, I have
attempted to treat the topics that are covered in a reasonably self-contained manner. This con-
sideration also restricts the number of topics that can be treated. My strategy in deciding what
topics to include has been to stress the fundamental aspects of nonlinear optics, and to in-
clude applications and experimental results only as necessary to illustrate these fundamental
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issues. Many of the specific topics that I have chosen to include are those of particular histori-
cal value.

Nonlinear optics is notationally very complicated, and unfortunately much of the notational
complication is unavoidable. Because the notational aspects of nonlinear optics have histor-
ically been very confusing, considerable effort is made, especially in the early chapters, to
explain the notational conventions. The book uses primarily the gaussian system of units, both
to establish a connection with the historical papers of nonlinear optics, most of which were
written using the gaussian system, and also because the author believes that the laws of elec-
tromagnetism are more physically transparent when written in this system. At several places in
the text (see especially the appendices at the end of the book), tables are provided to facilitate
conversion to other systems of units.

The book is organized as follows: Chapter 1 presents an introduction to the field of nonlin-
ear optics from the perspective of the nonlinear susceptibility. The nonlinear susceptibility is
a quantity that is used to determine the nonlinear polarization of a material medium in terms
of the strength of an applied optical-frequency electric field. It thus provides a framework for
describing nonlinear optical phenomena. Chapter 2 continues the description of nonlinear op-
tics by describing the propagation of light waves through nonlinear optical media by means of
the optical wave equation. This chapter introduces the important concept of phase matching
and presents detailed descriptions of the important nonlinear optical phenomena of second-
harmonic generation and sum- and difference-frequency generation. Chapter 3 concludes the
introductory portion of the book by presenting a description of the quantum mechanical theory
of the nonlinear optical susceptibility. Simplified expressions for the nonlinear susceptibility
are first derived through use of the Schrödinger equation, and then more accurate expressions
are derived through use of the density matrix equations of motion. The density matrix formal-
ism is itself developed in considerable detail in this chapter in order to render this important
discussion accessible to the beginning student.

Chapters 4 through 6 deal with properties and applications of the nonlinear refractive index.
Chapter 4 introduces the topic of the nonlinear refractive index. Properties, including tensor
properties, of the nonlinear refractive index are discussed in detail, and physical processes that
lead to the nonlinear refractive index, such as nonresonant electronic polarization and molecular
orientation, are described. Chapter 5 is devoted to a description of nonlinearities in the refrac-
tive index resulting from the response of two-level atoms. Related topics that are discussed in
this chapter include saturation, power broadening, optical Stark shifts, Rabi oscillations, and
dressed atomic states. Chapter 6 deals with applications of the nonlinear refractive index. Top-
ics that are included are optical phase conjugation, self focusing, optical bistability, two-beam
coupling, pulse propagation, and the formation of optical solitons.

Chapters 7 through 9 deal with spontaneous and stimulated light scattering and the related
topic of acoustooptics. Chapter 7 introduces this area by presenting a description of theories of
spontaneous light scattering and by describing the important practical topic of acoustooptics.
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Chapter 8 presents a description of stimulated Brillouin and stimulated Rayleigh scattering.
These topics are related in that they both entail the scattering of light from material disturbances
that can be described in terms of the standard thermodynamic variables of pressure and entropy.
Also included in this chapter is a description of phase conjugation by stimulated Brillouin
scattering and a theoretical description of stimulated Brillouin scattering in gases. Chapter 9
presents a description of stimulated Raman and stimulated Rayleigh-wing scattering. These
processes are related in that they entail the scattering of light from disturbances associated with
the positions of atoms within a molecule.

The book concludes with Chapter 10, which treats the electrooptic and photorefractive ef-
fects. The chapter begins with a description of the electrooptic effect and describes how this
effect can be used to fabricate light modulators. The chapter then presents a description of the
photorefractive effect, which is a nonlinear optical interaction that results from the electrooptic
effect. The use of the photorefractive effect in two-beam coupling and in four-wave mixing is
also described.

The author wishes to acknowledge his deep appreciation for discussions of the material in
this book with his graduate students at the University of Rochester. He is sure that he has learned
as much from them as they have from him. He also gratefully acknowledges discussions with
numerous other professional colleagues, including N. Bloembergen, D. Chemla, R. Y. Chiao,
J. H. Eberly, C. Flytzanis, J. Goldhar, G. Grynberg, J. H. Haus, R. W. Hellwarth, K. R. Mac-
Donald, S. Mukamel, P. Narum, M. G. Raymer, J. E. Sipe, C. R. Stroud, Jr., C. H. Townes,
H. Winful, and B. Ya. Zel’dovich. In addition, the assistance of J. J. Maki and A. Gamliel in the
preparation of the figures is gratefully acknowledged.
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Chapter 1

The Nonlinear Optical Susceptibility

1.1 Introduction to Nonlinear Optics

Nonlinear optics is the study of phenomena that occur as a consequence of the modification of
the optical properties of a material system by the presence of light. Typically, only laser light
is sufficiently intense to modify the optical properties of a material system in this manner. The
beginning of the field of nonlinear optics is often taken to be the discovery of second-harmonic
generation by Franken et al. (1961), shortly after the demonstration of the first working laser
by Maiman in 1960.∗ Nonlinear optical phenomena are “nonlinear” in the sense that they occur
when the response of a material system to an applied optical field depends in a nonlinear manner
on the strength of the applied optical field. For example, second-harmonic generation occurs
as a result of the part of the atomic response that scales quadratically with the strength of the
applied optical field. Consequently, the intensity of the light generated at the second-harmonic
frequency tends to increase as the square of the intensity of the applied laser light.

In order to describe more precisely what we mean by an optical nonlinearity, let us consider
how the dipole moment per unit volume, or polarization P̃ (t), of a material system depends on
the strength Ẽ(t) of an applied optical field.† In the case of conventional (i.e., linear) optics, the
induced polarization depends linearly on the electric field strength in a manner that can often
be described by the relationship

P̃ (t) = ε0χ
(1)Ẽ(t), (1.1.1)

∗ It should be noted, however, that some nonlinear effects were discovered prior to the advent of the laser. The
earliest example known to the author is the observation of saturation effects in the luminescence of dye molecules
reported by G. N. Lewis et al. (1941).

† Throughout the text, we use the tilde (~) to denote a quantity that varies rapidly in time. Constant quantities,
slowly varying quantities, and Fourier amplitudes are written without the tilde. See, for example, Eq. (1.2.1).

Nonlinear Optics. https://doi.org/10.1016/B978-0-12-811002-7.00010-2
Copyright © 2020 Elsevier Inc. All rights reserved. 1



2 Chapter 1

where the constant of proportionality χ(1) is known as the linear susceptibility and ε0 is the
permittivity of free space.∗ In nonlinear optics, the optical response can often be described as a
generalization of Eq. (1.1.1) by expressing the polarization P̃ (t) as a power series in the field
strength Ẽ(t) as

P̃ (t) = ε0
[
χ(1)Ẽ(t) + χ(2)Ẽ2(t) + χ(3)Ẽ3(t) + · · · ]

≡ P̃ (1)(t) + P̃ (2)(t) + P̃ (3)(t) + · · · . (1.1.2)

The quantities χ(2) and χ(3) are known as the second- and third-order nonlinear optical sus-
ceptibilities, respectively. For simplicity, we have taken the fields P̃ (t) and Ẽ(t) to be scalar
quantities in writing Eqs. (1.1.1) and (1.1.2). In Section 1.3 we show how to treat the vector na-
ture of the fields; in such a case χ(1) becomes a second-rank tensor, χ(2) becomes a third-rank
tensor, and so on. In writing Eqs. (1.1.1) and (1.1.2) in the forms shown, we have also assumed
that the polarization at time t depends only on the instantaneous value of the electric field
strength. The assumption that the medium responds instantaneously also implies (through the
Kramers–Kronig relations†) that the medium must be lossless and dispersionless. We shall see
in Section 1.3 how to generalize these equations for the case of a medium with dispersion and
loss. In general, the nonlinear susceptibilities depend on the frequencies of the applied fields,
but under our present assumption of instantaneous response we take them to be constants.

We shall refer to P̃ (2)(t) = ε0χ
(2)Ẽ2(t) as the second-order nonlinear polarization and to

P̃ (3)(t) = ε0χ
(3)Ẽ3(t) as the third-order nonlinear polarization, and so on for higher-order

terms. We shall see later in this section that physical processes that occur as a result of the
second-order polarization P̃ (2) are distinct from those that occur as a result of the third-order
polarization P̃ (3). In addition, we shall show in Section 1.5 that second-order nonlinear op-
tical interactions can occur only in noncentrosymmetric crystals—that is, in crystals that do
not display inversion symmetry. Since liquids, gases, amorphous solids (such as glass), and
even many crystals display inversion symmetry, χ(2) vanishes identically for such materials,
and consequently such materials cannot produce second-order nonlinear optical interactions.
On the other hand, third-order nonlinear optical interactions (i.e., those described by a χ(3)

susceptibility) can occur for both centrosymmetric and noncentrosymmetric media.
We shall see in later sections of this book how to calculate the values of the nonlinear sus-

ceptibilities for various physical mechanisms that lead to optical nonlinearities. For the present,
we make a simple order-of-magnitude estimate of the size of these quantities for the common
case in which the nonlinearity is electronic in origin (see, for instance, Armstrong et al., 1962).
One might expect that the lowest-order correction term P̃ (2) would be comparable to the linear

∗ Except where otherwise noted, we use the SI (MKS) system of units throughout this book. The appendix to this
book presents a prescription for converting among systems of units.

† See, for example, Landau and Lifshitz (1960) Section 62 or the discussion in Section 1.7 of this book for a
discussion of the Kramers–Kronig relations.



The Nonlinear Optical Susceptibility 3

response P̃ (1) when the amplitude of the applied field Ẽ is of the order of the characteristic
atomic electric field strength Eat = e/(4πε0a

2
0), where −e is the charge of the electron and

a0 = 4πε0�
2/me2 is the Bohr radius of the hydrogen atom (here � is Planck’s constant divided

by 2π , and m is the mass of the electron). Numerically, we find that Eat = 5.14 × 1011 V/m.
We thus expect that under conditions of nonresonant excitation the second-order susceptibility
χ(2) will be of the order of χ(1)/Eat. For condensed matter χ(1) is of the order of unity, and we
hence expect that χ(2) will be of the order of 1/Eat, or that

χ(2) � 1.94 × 10−12 m/V. (1.1.3)

Similarly, we expect χ(3) to be of the order of χ(1)/E2
at, which for condensed matter is of the

order of

χ(3) � 3.78 × 10−24 m2/V2. (1.1.4)

These predictions are in fact quite accurate, as one can see by comparing these values with
actual measured values of χ(2) (see, for instance, Table 1.5.3) and χ(3) (see, for instance, Ta-
ble 4.3.1).

For certain purposes, it is useful to express the second- and third-order susceptibilities in
terms of fundamental physical constants. As just noted, for condensed matter χ(1) is of the
order of unity. This result can be justified either as an empirical fact or can be justified more
rigorously by noting that χ(1) is the product of atomic number density and atomic polarizability.
The number density N of condensed matter is of the order of (a0)

−3, and the nonresonant
polarizability is of the order of (a0)

3. We thus deduce that χ(1) is of the order of unity. Using
the expression for E quoted above, we similarly find that χ(2) � (4πε0)

3
�

4/m2e5 and χ(3) �
(4πε0)

6
�

8/m4e10. See Boyd (1999) for further details.
The most usual procedure for describing nonlinear optical phenomena is based on express-

ing the polarization P̃ (t) in terms of the applied electric field strength Ẽ(t), as we have done
in Eq. (1.1.2). The reason why the polarization plays a key role in the description of nonlinear
optical phenomena is that a time-varying polarization can act as the source of new components
of the electromagnetic field. For example, we shall see in Section 2.1 that the wave equation in
nonlinear optical media often has the form

∇2Ẽ − n2

c2

∂2Ẽ

∂t2
= 1

ε0c2

∂2P̃ NL

∂t2
, (1.1.5)

where n is the usual linear refractive index and c is the speed of light in vacuum. We can
interpret this expression as an inhomogeneous wave equation in which the polarization P̃ NL

associated with the nonlinear response acts as a source term for the electric field Ẽ. Since
∂2P̃ NL/∂t2 is a measure of the acceleration of the charges that constitute the medium, this
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equation is consistent with Larmor’s theorem of electromagnetism, which states that acceler-
ated charges generate electromagnetic radiation.

It should be noted that the power-series expansion expressed by Eq. (1.1.2) need not nec-
essarily converge. In such circumstances the relationship between the material response and
the applied electric field amplitude must be expressed using different procedures. One such
circumstance is that of strong resonant excitation of an atomic system, in which case an appre-
ciable fraction of the atoms can be removed from the ground state. Saturation effects of this
sort can be described by procedures developed in Chapter 6. Even under nonresonant condi-
tions, Eq. (1.1.2) loses its validity if the applied laser field strength becomes comparable to the
characteristic atomic field strength Eat, because of strong photoionization that can occur under
these conditions. For future reference, we note that the laser intensity associated with a peak
field strength of Eat is given by

Iat = 1

2
ε0cE

2
at = 3.5 × 1020 W/m2 = 3.5 × 1016 W/cm2. (1.1.6)

We shall see later in this book (see especially Chapter 13) how nonlinear optical processes
display qualitatively distinct features when excited by such super-intense fields.

1.2 Descriptions of Nonlinear Optical Processes

In the present section, we present brief qualitative descriptions of a number of nonlinear optical
processes. In addition, for those processes that can occur in a lossless medium, we indicate
how they can be described in terms of the nonlinear contributions to the polarization described
by Eq. (1.1.2).∗ Our motivation is to provide an indication of the variety of nonlinear optical
phenomena that can occur. These interactions are described in greater detail in later sections of
this book. In this section we also introduce some notational conventions and some of the basic
concepts of nonlinear optics.

1.2.1 Second-Harmonic Generation

As an example of a nonlinear optical interaction, let us consider the process of second-harmonic
generation, which is illustrated schematically in Fig. 1.2.1. Here a laser beam whose electric
field strength is represented as

Ẽ(t) = Ee−iωt + c.c. (1.2.1)

∗ Recall that Eq. (1.1.2) is valid only for a medium that is lossless and dispersionless.
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FIGURE 1.2.1: (a) Geometry of second-harmonic generation. (b) Energy-level diagram describing
second-harmonic generation.

is incident upon a crystal for which the second-order susceptibility χ(2) is nonzero. The non-
linear polarization created in such a crystal is given according to Eq. (1.1.2) by P̃ (2)(t) =
ε0χ

(2)Ẽ(t)2 or explicitly by

P̃ (2)(t) = 2ε0χ
(2)EE∗ + (

ε0χ
(2)E2e−i2ωt + c.c.

)
. (1.2.2)

We see that the second-order polarization consists of a contribution at zero frequency (the first
term) and a contribution at frequency 2ω (the second term). According to the driven wave
equation (1.1.5), this latter contribution can lead to the generation of radiation at the second-
harmonic frequency. Note that the first contribution in Eq. (1.2.2) does not lead to the generation
of electromagnetic radiation (because its second time derivative vanishes); it leads to a process
known as optical rectification, in which a static electric field is created across the nonlinear
crystal.

Under proper experimental conditions, the process of second-harmonic generation can be so
efficient that nearly all of the power in the incident beam at frequency ω is converted into radi-
ation at the second-harmonic frequency 2ω. One common use of second-harmonic generation
is to convert the output of a fixed-frequency laser to a different spectral region. For example,
the Nd:YAG laser operates in the near infrared at a wavelength of 1.06 µm. Second-harmonic
generation is routinely used to convert the wavelength of the radiation to 0.53 µm, in the middle
of the visible spectrum.

Second-harmonic generation can be visualized by considering the interaction in terms of
the exchange of photons between the various frequency components of the field. Accord-
ing to this picture, which is illustrated in part (b) of Fig. 1.2.1, two photons of frequency ω

are destroyed, and a photon of frequency 2ω is simultaneously created in a single quantum-
mechanical process. The solid line in the figure represents the atomic ground state, and the
dashed lines represent what are known as virtual levels. These levels are not energy eigenlevels
of the free atom but rather represent the combined energy of one of the energy eigenstates of
the atom and of one or more photons of the radiation field.

The theory of second-harmonic generation is developed more fully in Section 2.6.
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1.2.2 Sum- and Difference-Frequency Generation

Let us next consider the situation in which the optical field incident upon a second-order non-
linear optical medium consists of two distinct frequency components, which we represent in
the form

Ẽ(t) = E1e
−iω1t + E2e

−iω2t + c.c. (1.2.3)

Then, assuming as in Eq. (1.1.2) that the second-order contribution to the nonlinear polarization
is of the form

P̃ (2)(t) = ε0χ
(2)Ẽ(t)2, (1.2.4)

we find that the nonlinear polarization is given by

P̃ (2)(t) = ε0χ
(2)

[
E2

1e−2iω1t + E2
2e−2iω2t + 2E1E2e

−i(ω1+ω2)t

+2E1E
∗
2e−i(ω1−ω2)t + c.c.

] + 2ε0χ
(2)

[
E1E

∗
1 + E2E

∗
2

]
. (1.2.5)

It is convenient to express this result using the notation

P̃ (2)(t) =
∑
n

P (ωn)e
−iωnt , (1.2.6)

where the summation extends over positive and negative frequencies ωn. The complex ampli-
tudes of the various frequency components of the nonlinear polarization are hence given by

P(2ω1) = ε0χ
(2)E2

1 (SHG),

P (2ω2) = ε0χ
(2)E2

2 (SHG),

P (ω1 + ω2) = 2ε0χ
(2)E1E2 (SFG), (1.2.7)

P(ω1 − ω2) = 2ε0χ
(2)E1E

∗
2 (DFG),

P (0) = 2ε0χ
(2)(E1E

∗
1 + E2E

∗
2) (OR).

Here we have labeled each expression by the name of the physical process that it describes, such
as second-harmonic generation (SHG), sum-frequency generation (SFG), difference-frequency
generation (DFG), and optical rectification (OR). Note that, in accordance with our complex
notation, there is also a response at the negative of each of the nonzero frequencies just given:

P(−2ω1) = ε0χ
(2)E∗

1
2, P (−2ω2) = ε0χ

(2)E∗
2

2,

P (−ω1 − ω2) = 2ε0χ
(2)E∗

1E∗
2 , P (ω2 − ω1) = 2ε0χ

(2)E2E
∗
1 .

(1.2.8)
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However, since each of these quantities is simply the complex conjugate of one of the quantities
given in Eq. (1.2.7), it is not necessary to take explicit account of both the positive and negative
frequency components.∗

We see from Eq. (1.2.7) that four different nonzero frequency components are present in the
nonlinear polarization. However, typically no more than one of these frequency components
will be present with any appreciable intensity in the radiation generated by the nonlinear op-
tical interaction. The reason for this behavior is that the nonlinear polarization can efficiently
produce an output signal only if a certain phase-matching condition (which is discussed in de-
tail in Section 2.7) is satisfied, and usually this condition cannot be satisfied for more than one
frequency component of the nonlinear polarization. Operationally, one often chooses which fre-
quency component will be radiated by properly selecting the polarization of the input radiation
and the orientation of the nonlinear crystal.

1.2.3 Sum-Frequency Generation

Let us now consider the process of sum-frequency generation, which is illustrated in Fig. 1.2.2.
According to Eq. (1.2.7), the complex amplitude of the nonlinear polarization describing this
process is given by the expression

P(ω1 + ω2) = 2ε0χ
(2)E1E2. (1.2.12)

In many ways the process of sum-frequency generation is analogous to that of second-harmonic
generation, except that in sum-frequency generation the two input waves are at different fre-
quencies. One application of sum-frequency generation is to produce tunable radiation in the

∗ Not all workers in nonlinear optics use our convention that the fields and polarizations are given by Eqs. (1.2.3)
and (1.2.6). Another common convention is to define the field amplitudes according to

Ẽ(t) = 1

2

(
E′

1e−iω1t + E′
2e−iω2t + c.c.

)
,

P̃ (t) = 1

2

∑
n

P ′(ωn)eiωnt ,

where in the second expression the summation extends over all positive and negative frequencies. Using this
convention, one finds that

P ′(2ω1) = 1

2
ε0χ(2)E′2

1 , P ′(2ω2) = 1

2
ε0χ(2)E′2

2 , (1.2.9)

P ′(ω1 + ω2) = ε0χ(2)E′
1E′

2, P ′(ω1 − ω2) = ε0χ(2)E′
1E′∗

2 , (1.2.10)

P ′(0) = ε0χ(2)
(
E′

1E′∗
1 + E′

2E′∗
2

)
. (1.2.11)

Note that these expressions differ from Eqs. (1.2.7) by factors of 1
2 .
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FIGURE 1.2.2: Sum-frequency generation. (a) Geometry of the interaction. (b) Energy-level description.

ultraviolet spectral region by choosing one of the input waves to be the output of a fixed-
frequency visible laser and the other to be the output of a frequency-tunable visible laser. The
theory of sum-frequency generation is developed more fully in Sections 2.2 and 2.4.

1.2.4 Difference-Frequency Generation

The process of difference-frequency generation is described by a nonlinear polarization of the
form

P(ω1 − ω2) = 2ε0χ
(2)E1E

∗
2 (1.2.13)

and is illustrated in Fig. 1.2.3. Here the frequency of the generated wave is the difference of
those of the applied fields. Difference-frequency generation can be used to produce tunable
infrared radiation by mixing the output of a frequency-tunable visible laser with that of a fixed-
frequency visible laser.

Superficially, difference-frequency generation and sum-frequency generation appear to be
very similar processes. However, an important difference between the two processes can be

FIGURE 1.2.3: Difference-frequency generation. (a) Geometry of the interaction. (b) Energy-level de-
scription.
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deduced from the description of difference-frequency generation in terms of a photon energy-
level diagram (part (b) of Fig. 1.2.3). We see that conservation of energy requires that for
every photon that is created at the difference frequency ω3 = ω1 − ω2, a photon at the
higher input frequency (ω1) must be destroyed and a photon at the lower input frequency
(ω2) must be created. Thus, the lower-frequency input field is amplified by the process of
difference-frequency generation. For this reason, the process of difference-frequency gener-
ation is also known as optical parametric amplification. According to the photon energy-
level description of difference-frequency generation, the atom first absorbs a photon of fre-
quency ω1 and jumps to the highest virtual level. This level decays by a two-photon emis-
sion process that is stimulated by the presence of the ω2 field, which is already present.
Two-photon emission can occur even if the ω2 field is not applied. The generated fields in
such a case are very much weaker, since they are created by spontaneous two-photon emis-
sion from a virtual level. This process is known as parametric fluorescence or as sponta-
neous parametric downconversion and has been observed experimentally (Harris et al., 1967;
Byer and Harris, 1968). The theory of difference-frequency generation is developed more fully
in Section 2.5.

1.2.5 Optical Parametric Oscillation

We have just seen that in the process of difference-frequency generation the presence of radia-
tion at frequency ω2 or ω3 can stimulate the emission of additional photons at these frequencies.
If the nonlinear crystal used in this process is placed inside an optical resonator, as shown in
Fig. 1.2.4, the ω2 and/or ω3 fields can build up to large values. Such a device is known as
an optical parametric oscillator. Optical parametric oscillators are extremely useful sources of
tunable radiation because of their extremely broad tuning ranges. Such a device is broadly tun-
able because any frequency ω2 that is smaller than ω1 can satisfy the condition ω2 + ω3 = ω1

for some frequency ω3. In practice, one controls the output frequency of an optical parametric
oscillator by adjusting the phase-matching condition, as discussed in Section 2.7. The applied
field frequency ω1 is often called the pump frequency, the desired output frequency is called
the signal frequency, and the other, unwanted, output frequency is called the idler frequency.

FIGURE 1.2.4: The optical parametric oscillator. The cavity end mirrors have high reflectivities at fre-
quencies ω2 and/or ω3. The output frequencies can be tuned by means of the orientation of the crystal.
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1.2.6 Third-Order Nonlinear Optical Processes

We next consider the third-order contribution to the nonlinear polarization

P̃ (3)(t) = ε0χ
(3)Ẽ(t)3. (1.2.14)

For the general case in which the field Ẽ(t) is made up of several different frequency com-
ponents, the expression for P̃ (3)(t) is very complicated. For this reason, we first consider the
simple case in which the applied field is monochromatic and is given by∗

Ẽ(t) = E cosωt. (1.2.15)

Then, through use of the identity cos3 ωt = 1
4 cos 3ωt + 3

4 cosωt , we can express the nonlinear
polarization as

P̃ (3)(t) = 1

4
ε0χ

(3)E3 cos 3ωt + 3

4
ε0χ

(3)E3 cosωt. (1.2.16)

The significance of each of the two terms in this expression is described briefly below.

1.2.7 Third-Harmonic Generation

The first term in Eq. (1.2.16) describes a response at frequency 3ω that is created by an applied
field at frequency ω. This term leads to the process of third-harmonic generation, which is
illustrated in Fig. 1.2.5. According to the photon description of this process, shown in part (b)
of the figure, three photons of frequency ω are destroyed and one photon of frequency 3ω is
created in this process.

FIGURE 1.2.5: Third-harmonic generation. (a) Geometry of the interaction. (b) Energy-level description.

∗ Here we are describing the field in terms of purely real quantities for the pedagogical value of introducing such a
notation.
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FIGURE 1.2.6: Self-focusing of light.

1.2.8 Intensity-Dependent Refractive Index

The second term in Eq. (1.2.16) describes a nonlinear contribution to the polarization at the
same frequency as that of the incident field; this term hence leads to a nonlinear contribution to
the refractive index experienced by a wave at frequency ω. We shall see in Section 4.1 that the
refractive index in the presence of this type of nonlinearity can be represented as

n = n0 + n2I, (1.2.17a)

where n0 is the usual (i.e., linear or low-intensity) refractive index, where

n2 = 3

4n2
0ε0c

χ(3) (1.2.17b)

is an optical constant that characterizes the strength of the optical nonlinearity, and where I =
1
2n0ε0cE2 is the intensity of the incident wave.

Self-Focusing

One of the processes that can occur as a result of the intensity-dependent refractive index is
self-focusing, which is illustrated in Fig. 1.2.6. This process can occur when a beam of light
having a nonuniform transverse intensity distribution propagates through a material for which
n2 is positive. Under these conditions, the material effectively acts as a positive lens, which
causes the rays to curve toward each other. This process is of great practical importance because
the intensity at the focal spot of the self-focused beam is usually sufficiently large to lead to
optical damage of the material. The process of self-focusing is described in greater detail in
Section 7.1.

1.2.9 Third-Order Interactions (General Case)

Let us next examine the form of the nonlinear polarization

P̃ (3)(t) = ε0χ
(3)Ẽ(t)3 (1.2.18a)
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induced by an applied field that consists of three frequency components:

Ẽ(t) = E1e
−iω1t + E2e

−iω2t + E3e
−iω3t + c.c. (1.2.18b)

When we calculate Ẽ(t)3, we find that the resulting expression contains 44 different frequency
components, if we consider positive and negative frequencies to be distinct. Explicitly, these
frequencies are

ω1,ω2,ω3,3ω1,3ω2,3ω3, (ω1 + ω2 + ω3), (ω1 + ω2 − ω3), (1.2.19)

(ω1 + ω3 − ω2), (ω2 + ω3 − ω1), (2ω1 ± ω2), (2ω1 ± ω3), (2ω2 ± ω1), (1.2.20)

(2ω2 ± ω3), (2ω3 ± ω1), (2ω3 ± ω2), (1.2.21)

and the negative of each. Again representing the nonlinear polarization as

P̃ (3)(t) =
∑
n

P (ωn)e
−iωnt , (1.2.22)

we can write the complex amplitudes of the nonlinear polarization for each of the positive
frequencies as

P(ω1) = ε0χ
(3)

(
3E1E

∗
1 + 6E2E

∗
2 + 6E3E

∗
3

)
E1, (1.2.23)

P(ω2) = ε0χ
(3)

(
6E1E

∗
1 + 3E2E

∗
2 + 6E3E

∗
3

)
E2, (1.2.24)

P(ω3) = ε0χ
(3)

(
6E1E

∗
1 + 6E2E

∗
2 + 3E3E

∗
3

)
E3, (1.2.25)

P(3ω1) = ε0χ
(3)E3

1, P (3ω2) = ε0χ
(3)E3

2, P (3ω3) = ε0χ
(3)E3

3,

P (ω1 + ω2 + ω3) = 6ε0χ
(3)E1E2E3,

P (ω1 + ω2 − ω3) = 6ε0χ
(3)E1E2E

∗
3 ,

P (ω1 + ω3 − ω2) = 6ε0χ
(3)E1E3E

∗
2 ,

P (ω2 + ω3 − ω1) = 6ε0χ
(3)E2E3E

∗
1 ,

P (2ω1 + ω2) = 3ε0χ
(3)E2

1E2, P (2ω1 + ω3) = 3ε0χ
(3)E2

1E3,

P (2ω2 + ω1) = 3ε0χ
(3)E2

2E1, P (2ω2 + ω3) = 3ε0χ
(3)E2

2E3,

P (2ω3 + ω1) = 3ε0χ
(3)E2

3E1, P (2ω3 + ω2) = 3ε0χ
(3)E2

3E2,

P (2ω1 − ω2) = 3ε0χ
(3)E2

1E∗
2 , P (2ω1 − ω3) = 3ε0χ

(3)E2
1E∗

3 ,

P (2ω2 − ω1) = 3ε0χ
(3)E2

2E∗
1 , P (2ω2 − ω3) = 3ε0χ

(3)E2
2E∗

3 ,

P (2ω3 − ω1) = 3ε0χ
(3)E2

3E∗
1 , P (2ω3 − ω2) = 3ε0χ

(3)E2
3E∗

2

(1.2.26)

We have displayed these expressions in complete detail because it is very instructive to study
their functional form. In each case the frequency argument of P is equal to the sum of the
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frequencies associated with the field amplitudes appearing on the right-hand side of the equa-
tion, where we adopt the convention that a negative frequency is to be associated with a field
amplitude that appears as a complex conjugate. Also, the numerical factor (1, 3, or 6) that ap-
pears in each term on the right-hand side of each equation is equal to the number of distinct
permutations of the field frequencies that contribute to that term.

Some of the nonlinear optical mixing processes described by Eq. (1.2.26) are illustrated in
Fig. 1.2.7.

FIGURE 1.2.7: Two of the possible mixing processes described by Eq. (1.2.26) that can occur when
three input waves interact in a medium characterized by a χ(3) susceptibility.

1.2.10 Parametric versus Nonparametric Processes

All of the processes described thus far in this chapter are examples of what are known as
parametric processes. The origin of this terminology is obscure, but the word parametric has
come to denote a process in which the initial and final quantum-mechanical states of the system
are identical. Consequently, in a parametric process population can be removed from the ground
state only for those brief intervals of time when it resides in a virtual level. According to the
uncertainty principle, population can reside in a virtual level for a time interval of the order of
�/δE, where δE is the energy difference between the virtual level and the nearest real level.
Conversely, processes that do involve the transfer of population from one real level to another
are known as nonparametric processes. The processes that we describe next are examples of
nonparametric processes.
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One difference between parametric and nonparametric processes is that parametric pro-
cesses can always be described by a real susceptibility; conversely, nonparametric processes
are described by a complex susceptibility by means of a procedure described in the following
section. Another difference is that photon energy is always conserved in a parametric process;
photon energy need not be conserved in a nonparametric process, because energy can be trans-
ferred to or from the material medium. For this reason, photon energy level diagrams of the sort
shown in Figs. 1.2.1, 1.2.2, 1.2.3, 1.2.5, and 1.2.7 to describe parametric processes play a less
definitive role in describing nonparametric processes.

As a simple example of the distinction between parametric and nonparametric processes,
we consider the case of the usual (linear) index of refraction. The real part of the refractive
index describes a response that occurs as a consequence of parametric processes, whereas the
imaginary part occurs as a consequence of nonparametric processes. This conclusion holds
because the imaginary part of the refractive index describes the absorption of radiation, which
results from the transfer of population from the atomic ground state to an excited state.

1.2.11 Saturable Absorption

One example of a nonparametric nonlinear optical process is saturable absorption. Many mate-
rial systems have the property that their absorption coefficient decreases when measured using
high laser intensity. Often the dependence of the measured absorption coefficient α on the in-
tensity I of the incident laser radiation is given by the expression

α = α0

1 + I/Is

, (1.2.27)

where α0 is the low-intensity absorption coefficient, and Is is a parameter known as the satura-
tion intensity. Here the absorption coefficient is defined by α = −(1/I)(dI/dz)), which leads
to the result that I (z) = I (0) exp(−αz).

Optical Bistability

One consequence of saturable absorption is optical bistability. One way of constructing a
bistable optical device is to place a saturable absorber inside a Fabry–Perot resonator, as illus-
trated in Fig. 1.2.8. As the input intensity is increased, the field inside the cavity also increases,
lowering the absorption that the field experiences and thus increasing the field intensity still fur-
ther. If the intensity of the incident field is subsequently lowered, the field inside the cavity tends
to remain large because the absorption of the material system has already been reduced. A plot
of the input-versus-output characteristics thus looks qualitatively like that shown in Fig. 1.2.9.
Note that over some range of input intensities more than one output intensity is possible. The
process of optical bistability is described in greater detail in Section 7.3.
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FIGURE 1.2.8: Bistable optical device.

FIGURE 1.2.9: Typical input-versus-output characteristics of a bistable optical device.

FIGURE 1.2.10: Two-photon absorption.

1.2.12 Two-Photon Absorption

In the process of two-photon absorption, which is illustrated in Fig. 1.2.10, an atom makes a
transition from its ground state to an excited state by the simultaneous absorption of two laser
photons. The absorption cross section σ describing this process increases linearly with laser
intensity according to the relation

σ = σ (2)I, (1.2.28)

where σ (2) is a coefficient that describes strength of the two-photon-absorption process. (Recall
that in conventional linear optics the absorption cross section σ is a constant.) Consequently, the
atomic transition rate R resulting from two-photon absorption scales as the square of the laser
intensity. To see why this is the case, we note that the transition rate R is given by R = σI/�ω,
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and consequently we find that

R = σ (2)I 2

�ω
. (1.2.29)

Two-photon absorption is a useful spectroscopic tool for determining the positions of energy
levels that are not connected to the atomic ground state by a one-photon transition. Two-photon
absorption was first observed experimentally by Kaiser and Garrett (1961).

1.2.13 Stimulated Raman Scattering

In stimulated Raman scattering, which is illustrated in Fig. 1.2.11, a photon of frequency ω

is annihilated and a photon at the Stokes-shifted frequency ωs = ω − ωv is created, leaving
the molecule (or atom) in an excited state with energy �ωv. The excitation energy is referred
to as ωv because stimulated Raman scattering was first studied in molecular systems, where
�ωv corresponds to a vibrational energy. The efficiency of stimulated Raman scattering can
be quite large, with often 10% or more of the power of the incident light being converted to
the Stokes frequency. In contrast, the efficiency of normal or spontaneous Raman scattering is
typically many orders of magnitude lower. Stimulated Raman scattering is described more fully
in Chapter 10.

FIGURE 1.2.11: Stimulated Raman scattering.

Other stimulated scattering processes such as stimulated Brillouin scattering and stimulated
Rayleigh scattering also occur and are described more fully in Chapter 9.

1.3 Formal Definition of the Nonlinear Susceptibility

Nonlinear optical interactions can be described by means of a nonlinear polarization of the form
given by Eq. (1.1.2) only for a material system that is lossless and dispersionless. In the present
section, we consider the more general case of a material with dispersion and/or absorption. In
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this more general case the nonlinear susceptibility becomes a complex quantity relating the
complex amplitude of the polarization to that of the applied electric field.

We assume that we can represent the electric field vector of the optical wave as the discrete
sum of a number of frequency components as

Ẽ(r, t) =
∑
n

′
Ẽn(r, t), (1.3.1)

where

Ẽn(r, t) = En(r)e−iωnt + c.c. (1.3.2)

The prime on the summation sign of Eq. (1.3.1) indicates that the summation is to be taken
over positive frequencies only. It is also convenient to define the spatially slowly varying field
amplitude An by means of the relation

En(r) = Ane
ikn·r, (1.3.3)

so that

Ẽ(r, t) =
∑
n

′
Ane

i(kn·r−ωnt) + c.c. (1.3.4)

On occasion, we shall express these field amplitudes using the alternative notation

En = E(ωn) and An = A(ωn), (1.3.5)

where

E(−ωn) = E(ωn)
∗ and A(−ωn) = A(ωn)

∗. (1.3.6)

Using this new notation, we can write the total field in the form

Ẽ(r, t) =
∑
n

E(ωn)e
−iωnt

=
∑
n

A(ωn)e
i(kn·r−ωnt), (1.3.7)

where the unprimed summation symbol denotes a summation over all frequencies, both positive
and negative.

Note that according to our definition of field amplitude the field given by

Ẽ(r, t) = E cos(k · r − ωt) (1.3.8)

is represented by the complex field amplitudes

E(ω) = 1

2
Eeik·r, E(−ω) = 1

2
Ee−ik·r, (1.3.9)
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or alternatively, by the slowly varying amplitudes

A(ω) = 1

2
E, A(−ω) = 1

2
E . (1.3.10)

In either representation, factors of 1
2 appear because the physical field amplitude E has been

divided equally between the positive- and negative-frequency field components.
Using a notation similar to that of Eq. (1.3.7), we can express the nonlinear polarization as

P̃(r, t) =
∑
n

P(ωn)e
−iωnt , (1.3.11)

where, as before, the summation extends over all positive- and negative-frequency field com-
ponents.

We now define the components of the second-order susceptibility tensor χ
(2)
ijk (ωn +

ωm,ωn,ωm) to be the constants of proportionality relating the amplitude of the nonlinear po-
larization to the product of field amplitudes according to

Pi(ωn + ωm) = ε0

∑
jk

∑
(nm)

χ
(2)
ijk (ωn + ωm,ωn,ωm)Ej (ωn)Ek(ωm). (1.3.12)

Here the indices ijk refer to the Cartesian components of the fields. The notation (nm) indi-
cates that, in performing the summation over n and m, the sum ωn + ωm is to be held fixed,
although ωn and ωm are each allowed to vary. Since the amplitude E(ωn) is associated with
the time dependence exp(−iωnt), and the amplitude E(ωm) is associated with the time de-
pendence exp(−iωmt), their product E(ωn)E(ωm) is associated with the time dependence
exp[−i(ωn + ωm)t]. Hence the product E(ωn)E(ωm) does in fact lead to a contribution to
the nonlinear polarization oscillating at frequency ωn +ωm, as the notation of Eq. (1.3.12) sug-
gests. Following convention, we have written χ(2) as a function of three frequency arguments.
This is technically unnecessary in that the first argument is always the sum of the other two. To
emphasize this fact, the susceptibility χ(2)(ω3,ω2,ω1) is sometimes written as χ(2)(ω3;ω2,ω1)

as a reminder that the first argument is different from the other two, or it may be written sym-
bolically as χ(2)(ω3 = ω2 + ω1).

Let us examine some of the consequences of the definition of the nonlinear susceptibility as
given by Eq. (1.3.12) by considering two simple examples.

1. Sum-frequency generation. We let the input field frequencies be ω1 and ω2 and the sum
frequency be ω3, so that ω3 = ω1 + ω2. Then, by carrying out the summation over ωn and ωm

in Eq. (1.3.12), we find that

Pi(ω3) = ε0

∑
jk

[
χ

(2)
ijk (ω3,ω1,ω2)Ej (ω1)Ek(ω2)

+ χ
(2)
ijk (ω3,ω2,ω1)Ej (ω2)Ek(ω1)

]
. (1.3.13)
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We now note that j and k are dummy indices and thus can be interchanged at will. We
interchange them in the second term, which becomes χ

(2)
ikj (ω3,ω2,ω1)Ek(ω2)Ej (ω1) We next

assume that the nonlinear susceptibility possesses intrinsic permutation symmetry (this sym-
metry is discussed in more detail in Eq. (1.5.6) below), which states that

χ
(2)
ikj (ωm + ωn,ωn,ωm) = χ

(2)
ijk (ωm + ωn,ωm,ωn). (1.3.14)

Through use of these relations, the expression for the nonlinear polarization becomes

Pi(ω3) = 2ε0

∑
jk

χ
(2)
ijk (ω3,ω1,ω2)Ej (ω1)Ek(ω2), (1.3.15)

and for the special case in which both input fields are polarized in the x direction the polariza-
tion becomes

Pi(ω3) = 2ε0χ
(2)
ixx(ω3,ω1,ω2)Ex(ω1)Ex(ω2). (1.3.16)

2. Second-harmonic generation. We take the input frequency as ω1 and the generated fre-
quency as ω3 = 2ω1. If we again perform the summation over field frequencies in Eq. (1.3.12),
we obtain

Pi(ω3) = ε0

∑
jk

χ
(2)
ijk (ω3,ω1,ω1)Ej (ω1)Ek(ω1). (1.3.17)

Again assuming the special case of an input field polarization along the x direction, this result
becomes

Pi(ω3) = ε0χ
(2)
ixx(ω3,ω1,ω1)Ex(ω1)

2. (1.3.18)

Note that a factor of 2 appears in Eqs. (1.3.15) and (1.3.16), which describe sum-frequency
generation, but not in Eqs. (1.3.17) and (1.3.18), which describe second-harmonic generation.
The fact that these expressions remain different even as ω2 approaches ω1 is perhaps at first
sight surprising, but is a consequence of our convention that χ

(2)
ijk (ω3,ω1,ω2) must approach

χ
(2)
ijk (ω3,ω1,ω1) as ω1 approaches ω2. Note that the expressions for P(2ω2) and P(ω1 + ω2)

that apply for the case of a dispersionless nonlinear susceptibility (Eq. (1.2.7)) also differ by
a factor of two. In fact, this behavior makes perfect sense. One should expect the nonlinear
polarization produced by two distinct fields to be larger than that produced by a single field
(both of the same amplitude, say), because the total light intensity is larger in the former case.

In general, the summation over field frequencies (
∑

(nm)) in Eq. (1.3.12) can be performed
formally to obtain the result

Pi(ωn + ωm) = ε0D
∑
jk

χ
(2)
ijk (ωn + ωm,ωn,ωm)Ej (ωn)Ek(ωm), (1.3.19)
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where D is known as the degeneracy factor and is equal to the number of distinct permutations
of the applied field frequencies ωn and ωm.

The expression (1.3.12) defining the second-order susceptibility can readily be general-
ized to higher-order interactions. In particular, the components of the third-order susceptibility
tensor are defined as the coefficients relating the complex amplitudes of the polarization and
electric field according to the expression

Pi(ωo + ωn + ωm) = ε0

∑
jkl

∑
(mno)

χ
(3)
ijkl(ωo + ωn + ωm,ωo,ωn,ωm)

×Ej(ωo)Ek(ωn)El(ωm). (1.3.20)

We can again perform the summation over m, n, and o to obtain the result

Pi(ωo + ωn + ωm) = ε0D
∑
jkl

χ
(3)
ijkl(ωo + ωn + ωm,ωo,ωn,ωm)

× Ej(ωo)Ek(ωn)El(ωm), (1.3.21)

where the degeneracy factor D represents the number of distinct permutations of the frequen-
cies ωm, ωn, and ωo.

1.4 Nonlinear Susceptibility of a Classical Anharmonic Oscillator

The Lorentz model of the atom, which treats the atom as a harmonic oscillator, is known to
provide a very good description of the linear optical properties of atomic vapors and of non-
metallic solids. In the present section, we extend the Lorentz model by allowing the possibility
of a nonlinearity in the restoring force exerted on the electron. The details of the analysis dif-
fer depending upon whether or not the medium possesses inversion symmetry.∗ We first treat
the case of a noncentrosymmetric medium, and we find that such a medium can give rise to a
second-order optical nonlinearity. We then treat the case of a medium that possesses a center of
symmetry and find that the lowest-order nonlinearity that can occur in this case is a third-order
nonlinear susceptibility. Our treatment is similar to that of Owyoung (1971).

The primary shortcoming of the classical model of optical nonlinearities presented here
is that this model ascribes a single resonance frequency (ω0) to each atom. In contrast, the
quantum-mechanical theory of the nonlinear optical susceptibility, to be developed in Chap-
ter 3, allows each atom to possess many energy eigenvalues and hence more than one resonance
frequency. Since the present model allows for only one resonance frequency, it cannot properly
describe the complete resonance nature of the nonlinear susceptibility (such as, for example,

∗ The role of symmetry in determining the nature of the nonlinear susceptibility is discussed from a more funda-
mental point of view in Section 1.5. See especially the treatment leading from Eq. (1.5.33) to (1.5.37).
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the possibility of simultaneous one- and two-photon resonances). However, it provides a good
description for those cases in which all of the optical frequencies are considerably smaller than
the lowest electronic resonance frequency of the material system.

1.4.1 Noncentrosymmetric Media

For the case of a noncentrosymmetric medium, we take the equation of motion of the electron
position x̃ to be of the form

¨̃x + 2γ ˙̃x + ω2
0x̃ + ax̃2 = −eẼ(t)/m. (1.4.1)

In this equation we have assumed that the applied electric field is given by Ẽ(t), that the charge
of the electron is −e, that there is a damping force of the form∗ −2mγ ˙̃x, and that the restoring
force is given by

F̃restoring = −mω2
0x̃ − max̃2, (1.4.2)

where a is a parameter that characterizes the strength of the nonlinearity. We obtain this form
by assuming that the restoring force is a nonlinear function of the displacement of the electron
from its equilibrium position and retaining the linear and quadratic terms in the Taylor series
expansion of the restoring force in the displacement x̃. We can understand the nature of this
form of the restoring force by noting that it corresponds to a potential energy function of the
form

U(x̃) = −
∫

F̃restoring dx̃ = 1

2
mω2

0x̃
2 + 1

3
max̃3. (1.4.3)

Here the first term corresponds to a harmonic potential and the second term corresponds to an
anharmonic correction term, as illustrated in Fig. 1.4.1. This model corresponds to the physical
situation of electrons in real materials, because the actual potential well that the atomic electron
feels need not be perfectly parabolic. The present model can describe only noncentrosymmetric
media because we have assumed that the potential energy function U(x̃) of Eq. (1.4.3) contains
both even and odd powers of x̃; for a centrosymmetric medium only even powers of x̃ could
appear, because the potential function U(x̃) must possess the symmetry U(x̃) = U(−x̃). For
simplicity, we have written Eq. (1.4.1) in the scalar-field approximation; note that we cannot
treat the tensor nature of the nonlinear susceptibility without making explicit assumptions re-
garding the symmetry properties of the material.

∗ The factor of 2 in the damping term is introduced for future convenience. By this convention, the full width at
half maximum of the atomic absorption profile in angular frequency units is equal to 2γ in the limit of linear
response.
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FIGURE 1.4.1: Potential energy function for a noncentrosymmetric medium.

We assume that the applied optical field is of the form

Ẽ(t) = E1e
−iω1t + E2e

−iω2t + c.c., (1.4.4)

where E1 = E(ω1) and E2 = E(ω2). No general solution to Eq. (1.4.1) for an applied field of
the form (1.4.4) is known. However, if the applied field is sufficiently weak, the nonlinear term
ax̃2 will be much smaller than the linear term ω2

0x̃ for any displacement x̃ that can be induced
by the field. Under this circumstance, Eq. (1.4.1) can be solved by means of a perturbation
expansion. We use a procedure analogous to that of Rayleigh–Schrödinger perturbation theory
in quantum mechanics. We replace Ẽ(t) in Eq. (1.4.1) by λẼ(t), where λ is a parameter that
ranges continuously between zero and unity and that will be set equal to unity at the end of
the calculation. The expansion parameter λ thus characterizes the strength of the interaction.
Equation (1.4.1) then becomes

¨̃x + 2γ ˙̃x + ω2
0x̃ + ax̃2 = −λeẼ(t)/m. (1.4.5)

We seek a solution to Eq. (1.4.5) in the form of a power-series expansion in the strength λ

of the perturbation, that is, a solution of the form

x̃ = λx̃(1) + λ2x̃(2) + λ3x̃(3) + · · · . (1.4.6)

In order for Eq. (1.4.6) to be a solution to Eq. (1.4.5) for any value of the coupling strength λ,
we require that the terms in Eq. (1.4.5) proportional to λ, λ2, λ3, etc., each satisfy the equation
separately. We find that these terms lead respectively to the equations

¨̃x(1) + 2γ ˙̃x(1) + ω2
0x̃

(1) = −eẼ(t)/m, (1.4.7a)

¨̃x(2) + 2γ ˙̃x(2) + ω2
0x̃

(2) + a
[
x̃(1)

]2 = 0, (1.4.7b)

¨̃x(3) + 2γ ˙̃x(3) + ω2
0x̃

(3) + 2ax̃(1)x̃(2) = 0, etc. (1.4.7c)
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We see from Eq. (1.4.7a) that the lowest-order contribution x̃(1) is governed by the same
equation as that of the conventional (i.e., linear) Lorentz model. Its steady-state solution is
given by

x̃(1)(t) = x(1)(ω1)e
−iω1t + x(1)(ω2)e

−iω2t + c.c., (1.4.8)

where the amplitudes x(1)(ωj ) have the form

x(1)(ωj ) = − e

m

Ej

D(ωj )
, (1.4.9)

where we have introduced the complex denominator function

D(ωj ) = ω2
0 − ω2

j − 2iωjγ. (1.4.10)

This expression for x̃(1)(t) is now squared and substituted into Eq. (1.4.7b), which is solved
to obtain the lowest-order correction term x̃(2). The square of x̃(1)(t) contains the frequencies
±2ω1, ±2ω2, ±(ω1 + ω2), ±(ω1 − ω2), and 0. To determine the response at frequency 2ω1,
for instance, we must solve the equation

¨̃x(2) + 2γ ˙̃x(2) + ω2
0x̃

(2) = −a(eE1/m)2e−2iω1t

D2(ω1)
. (1.4.11)

We seek a steady-state solution of the form

x̃(2)(t) = x(2)(2ω1)e
−2iω1t . (1.4.12)

Substitution of Eq. (1.4.12) into Eq. (1.4.11) leads to the result

x(2)(2ω1) = −a(e/m)2E2
1

D(2ω1)D2(ω1)
, (1.4.13)

where we have made use of the definition (1.4.10) of the function D(ωj ). Analogously, the
amplitudes of the responses at the other frequencies are found to be

x(2)(2ω2) = −a(e/m)2E2
2

D(2ω2)D2(ω2)
, (1.4.14a)

x(2)(ω1 + ω2) = −2a(e/m)2E1E2

D(ω1 + ω2)D(ω1)D(ω2)
, (1.4.14b)

x(2)(ω1 − ω2) = −2a(e/m)2E1E
∗
2

D(ω1 − ω2)D(ω1)D(−ω2)
, (1.4.14c)

x(2)(0) = −2a(e/m)2E1E
∗
1

D(0)D(ω1)D(−ω1)
+ −2a(e/m)2E2E

∗
2

D(0)D(ω2)D(−ω2)
. (1.4.14d)
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We next express these results in terms of the linear (χ(1)) and nonlinear (χ(2)) susceptibili-
ties. The linear susceptibility is defined through the relation

P (1)(ωj ) = ε0χ
(1)(ωj )E(ωj ). (1.4.15)

Since the linear contribution to the polarization is given by

P (1)(ωj ) = −Nex(1)(ωj ), (1.4.16)

where N is the number density of atoms, we find using Eqs. (1.4.8) and (1.4.9) that the linear
susceptibility is given by

χ(1)(ωj ) = Ne2/(ε0m)

D(ωj )
= Ne2/(ε0m)

ω2
0 − ω2

j − 2iωjγ
. (1.4.17a)

For future reference, we note that close to resonance the denominator function D(ωj ) can be
approximated as D(ωj ) = 2ω0(ωj − ω0 − iγ ) so that we obtain

χ(1)(ωj ) = Ne2/(2ε0mω0)

ωj − ω0 − iγ
= Ne2

2ε0mω0

(ωj − ω0) + iγ

(ωj − ω0)2 + γ 2
, (1.4.17b)

where the second form shows explicitly the real and imaginary parts of the susceptibility. This
result is shown graphically in Fig. 1.4.2.

The nonlinear susceptibilities are calculated in an analogous manner. For example, the non-
linear susceptibility describing second-harmonic generation is defined by the relation

P (2)(2ω1) = ε0χ
(2)(2ω1,ω1,ω1)E(ω1)

2, (1.4.18)

where P (2)(2ω1) is the amplitude of the component of the nonlinear polarization oscillating at
frequency 2ω1 and is given by

P (2)(2ω1) = −Nex(2)(2ω1). (1.4.19)

We now introduce expression (1.4.13) for x(2)(2ω1) to find that

χ(2)(2ω1,ω1,ω1) = N(e3/m2)a

ε0D(2ω1)D2(ω1)
. (1.4.20)

Through use of Eq. (1.4.17a), this result can be written instead in terms of the product of linear
susceptibilities as

χ(2)(2ω1,ω1,ω1) = ε2
0ma

N2e3
χ(1)(2ω1)

[
χ(1)(ω1)

]2
. (1.4.21)
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FIGURE 1.4.2: Linear optical response as predicted by the Lorentz model of the atom. The imaginary
part of χ(1) gives the atomic absorption profile, and the real part represents a contribution to the real part
of the refractive index. Note that the full-width at half maximum of Imχ(1) is equal to 2γ . The vertical
axis is plotted in normalized units. To obtain the numerical value of χ(1), the value on the vertical axis
should be multiplied by Ne2/(2ε0mγ ).

A crucial conclusion can be drawn from this result. The second-order susceptibility is propor-
tional to the product of three linear susceptibilities. The nature of this dependence is one of the
reasons why one conventionally expresses the second-order susceptibility as a function of three
frequencies, each of which is the argument of one of the linear susceptibilities appearing on
the right-hand side of this equation. The nonlinear susceptibility for second-harmonic genera-
tion of the ω2 field is obtained trivially from Eqs. (1.4.20) and (1.4.21) through the substitution
ω1 → ω2.

The nonlinear susceptibility describing sum-frequency generation can be obtained by means
of a similar calculation. We begin with the relations

P (2)(ω1 + ω2) = 2ε0χ
(2)(ω1 + ω2,ω1,ω2)E(ω1)E(ω2) (1.4.22)

and

P (2)(ω1 + ω2) = −Nex(2)(ω1 + ω2). (1.4.23)



26 Chapter 1

Note that in this case the relation defining the nonlinear susceptibility contains a factor of two
because the two input fields are distinct, as discussed in relation to Eq. (1.3.19). By comparison
of these equations with (1.4.14b), the nonlinear susceptibility is seen to be given by

χ(2)(ω1 + ω2,ω1,ω2) = N(e3/m2)a

ε0D(ω1 + ω2)D(ω1)D(ω2)
, (1.4.24)

which can be expressed in terms of the product of linear susceptibilities as

χ(2)(ω1 + ω2,ω1,ω2) = ε2
0ma

N2e3
χ(1)(ω1 + ω2)χ

(1)(ω1)χ
(1)(ω2). (1.4.25)

It can be seen by comparison of Eqs. (1.4.20) and (1.4.24) that, as ω2 approaches ω1, χ(2)(ω1 +
ω2,ω1,ω2) approaches χ(2)(2ω1,ω1,ω1).

The nonlinear susceptibilities describing the other second-order processes are obtained in
an analogous manner. For difference-frequency generation we find that

χ(2)(ω1 − ω2,ω1,−ω2) = N(e3/m2)a

ε0D(ω1 − ω2)D(ω1)D(−ω2)

= ε2
0ma

N2e3
χ(1)(ω1 − ω2)χ

(1)(ω1)χ
(1)(−ω2), (1.4.26)

and for optical rectification of the ω1 field we find that

χ(2)(0,ω1,−ω1) = N(e3/m2)a

ε0D(0)D(ω1)D(−ω1)

= ε2
0ma

N2e3
χ(1)(0)χ(1)(ω1)χ

(1)(−ω1). (1.4.27)

The analysis just presented shows that the lowest-order nonlinear contribution to the po-
larization of a noncentrosymmetric material is second order in the applied field strength. This
analysis can readily be extended to include higher-order effects. The solution to Eq. (1.4.7c),
for example, leads to a third-order or χ(3) susceptibility, and more generally terms proportional
to λn in the expansion described by Eq. (1.4.6) lead to a χ(n) susceptibility.

1.4.2 Miller’s Rule

An empirical rule due to Miller (Miller, 1964; see also Garrett and Robinson, 1966) can be
understood in terms of the calculation just presented. Miller noted that the quantity

χ(2)(ω1 + ω2, ω1, ω2)

χ(1)(ω1 + ω2)χ(1)(ω1)χ(1)(ω2)
(1.4.28)
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is nearly constant for all noncentrosymmetric crystals. By comparison with Eq. (1.4.25), we
see this quantity will be nearly constant only if the combination

maε2
0

N2e3
(1.4.29)

is nearly constant. In fact, the atomic number density N is nearly the same (∼1022 cm−3) for
all condensed matter, and the parameters m and e are fundamental constants. We can estimate
the size of the nonlinear coefficient a by noting that the linear and nonlinear contributions to
the restoring force given by Eq. (1.4.2) would be expected to become comparable when the
displacement x̃ of the electron from its equilibrium position is approximately equal to the size
of the atom. This distance is of the order of the separation between atoms—that is, of the
lattice constant d. This reasoning leads to the order-of-magnitude estimate that mω2

0d = mad2

or that

a = ω2
0

d
. (1.4.30)

Since ω0 and d are roughly the same for most solids, the quantity a would also be expected to
be roughly the same for all materials for which it does not vanish by reasons of symmetry.

We can also make use of the estimate of the nonlinear coefficient a given by Eq. (1.4.30) to
estimate of the size of the second-order susceptibility under highly nonresonant conditions. If
we replace D(ω) by ω2

0 in the denominator of Eq. (1.4.24), set N equal to 1/d3, and set a equal
to ω2

0/d , we find that χ(2) is given approximately by

χ(2) = e3

ε0m2ω4
0d

4
. (1.4.31)

Using the typical values ω0 = 1 × 1016 rad/s, d = 3 Å, e = 1.6 × 10−19 C, and m = 9.1 ×
10−31 kg, we find that

χ(2) � 6.9 × 10−12 m/V, (1.4.32)

which is in good agreement with the measured values presented in Table 1.5.3 (see p. 49).

1.4.3 Centrosymmetric Media

For the case of a centrosymmetric medium, we assume that the electronic restoring force is
given not by Eq. (1.4.2) but rather by

F̃restoring = −mω2
0x̃ + mbx̃3, (1.4.33)
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FIGURE 1.4.3: Potential energy function for a centrosymmetric medium.

where b is a parameter that characterizes the strength of the nonlinearity. This restoring force
corresponds to the potential energy function

U(x̃) = −
∫

F̃restoringdx̃ = 1

2
mω2

0x̃
2 − 1

4
mbx̃4. (1.4.34)

This potential function is illustrated in the Fig. 1.4.3 (for the usual case in which b is positive)
and is seen to be symmetric under the operation x̃ → −x̃, which it must be for a medium
that possesses a center of inversion symmetry. Note that −mbx̃4/4 is simply the lowest-order
correction term to the parabolic potential well described by the term 1

2mω2
0x̃

2. We assume that
the electronic displacement x̃ never becomes so large that it is necessary to include higher-order
terms in the potential function.

We shall see below that the lowest-order nonlinear response resulting from the restoring
force of Eq. (1.4.33) is a third-order contribution to the polarization, which can be described by
a χ(3) susceptibility. As in the case of non-centrosymmetric media, the tensor properties of this
susceptibility cannot be specified unless the internal symmetries of the medium are completely
known. One of the most important special cases is that of a material that is isotropic (as well as
being centrosymmetric). Examples of such materials are glasses and liquids. In such a case, we
can take the restoring force to have the form

F̃restoring = −mω2
0r̃ + mb(r̃ · r̃)r̃. (1.4.35)

where r is the vector displacement of the electron from its equilibrium position. The second
contribution to the restoring force must have the form shown because it is the only form that is
third-order in the displacement r̃ and is directed in the r̃ direction, which is the only possible
direction for an isotropic medium.

The equation of motion for the electron displacement from equilibrium is thus

¨̃r + 2γ ˙̃r + ω2
0r̃ − b(r̃ · r̃)r̃ = −eẼ(t)/m. (1.4.36)
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We assume that the applied field is given by

Ẽ(t) = E1e
−iω1t + E2e

−iω2t + E3e
−iω3t + c.c.; (1.4.37)

we allow the field to have three distinct frequency components because this is the most general
possibility for a third-order interaction. However, the algebra becomes very tedious if all three
terms are written explicitly, and hence we express the applied field as

Ẽ(t) =
∑
n

E(ωn)e
−iωnt . (1.4.38)

The method of solution is analogous to that used above for a noncentrosymmetric medium. We
replace Ẽ(t) in Eq. (1.4.36) by λẼ(t), where λ is a parameter that characterizes the strength of
the perturbation and that is set equal to unity at the end of the calculation. We seek a solution
to Eq. (1.4.36) having the form of a power series in the parameter λ:

r̃(t) = λr̃(1)(t) + λ2r̃(2)(t) + λ3r̃(3)(t) + · · · . (1.4.39)

We insert Eq. (1.4.39) into the equation of motion (1.4.36) and require that the terms propor-
tional to λn vanish separately for each value of n. We thereby find that

¨̃r(1) + 2γ ˙̃r(1) + ω2
0r̃(1) = −eẼ(t)/m, (1.4.40a)

¨̃r(2) + 2γ ˙̃r(2) + ω2
0r̃(2) = 0, (1.4.40b)

¨̃r(3) + 2γ ˙̃r(3) + ω2
0r̃(3) − b

(
r̃(1) · r̃(1)

)
r̃(1) = 0 (1.4.40c)

for n = 1, 2, and 3, respectively. Equation (1.4.40a) is simply the vector version of Eq. (1.4.7a),
encountered above. Its steady-state solution is

r̃(1)(t) =
∑
n

r(1)(ωn)e
−iωnt , (1.4.41a)

where

r(1)(ωn) = −eE(ωn)/m

D(ωn)
(1.4.41b)

with D(ωn) given as above by D(ωn) = ω2
0 − ω2

n − 2iωnγ . Since the polarization at frequency
ωn is given by

P(1)(ωn) = −Ner(1)(ωn), (1.4.42)

we can describe the Cartesian components of the polarization through the relation

P
(1)
i (ωn) = ε0

∑
j

χ
(1)
ij (ωn)Ej (ωn). (1.4.43a)
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Here the linear susceptibility is given by

χ
(1)
ij (ωn) = χ(1)(ωn)δij (1.4.43b)

with χ(1)(ωn) given as in Eq. (1.4.17) by

χ(1)(ωn) = Ne2/m

ε0D(ωn)
(1.4.43c)

and where δij is the Kronecker delta, which is defined such that δij = 1 for i = j and δij = 0
for i 	= j .

The second-order response of the system is described by Eq. (1.4.40b). Since this equation
is damped but not driven, its steady-state solution vanishes, that is,

r̃(2) = 0. (1.4.44)

To calculate the third-order response, we substitute the expression for r̃(1)(t) given by
Eq. (1.4.41a) into Eq. (1.4.40c), which becomes

¨̃r(3) + 2γ ˙̃r(3) + ω2
0r̃(3) = −

∑
mnp

be3[E(ωm) · E(ωn)]E(ωp)

m3D(ωm)D(ωn)D(ωp)

× e−i(ωm+ωn+ωp)t . (1.4.45)

Because of the summation over m, n, and p, the right-hand side of this equation contains many
different frequencies. We denote one of these frequencies by ωq = ωm +ωn +ωp. The solution
to Eq. (1.4.45) can then be written in the form

r̃(3)(t) =
∑
q

r(3)(ωq)e
−iωq t . (1.4.46)

We substitute Eq. (1.4.46) into Eq. (1.4.45) and find that r(3)(ωq) is given by

(−ω2
q − iωq2γ + ω2

0

)
r(3)(ωq) = −

∑
(mnp)

be3[E(ωm) · E(ωn)]E(ωp)

m3D(ωm)D(ωn)D(ωp)
, (1.4.47)

where the summation is to be carried out over frequencies ωm, ωn, and ωp with the restriction
that ωm + ωn + ωp must equal ωq . Since the coefficient of r(3)(ωq) on the left-hand side is just
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D(ωq), we obtain

r(3)(ωq) = −
∑

(mnp)

be3[E(ωm) · E(ωn)]E(ωp)

m3D(ωq)D(ωm)D(ωn)D(ωp)
. (1.4.48)

The amplitude of the polarization component oscillating at frequency ωq is given in terms of
this amplitude by

P(3)(ωq) = −Ner(3)(ωq). (1.4.49)

We next recall the definition of the third-order nonlinear susceptibility given by Eq. (1.3.20):

P
(3)
i (ωq) = ε0

∑
jkl

∑
(mnp)

χ
(3)
ijkl(ωq,ωm,ωn,ωp)Ej (ωm)Ek(ωn)El(ωp). (1.4.50)

Since this equation contains a summation over the dummy variables m, n, and p, there is more
than one possible choice for the expression for the nonlinear susceptibility. An obvious choice
for this expression for the susceptibility, based on the way in which Eqs. (1.4.48) and (1.4.49)
are written, is

χ
(3)
ijkl(ωq,ωm,ωn,ωp) = Nbe4δjkδil

ε0m3D(ωq)D(ωm)D(ωn)D(ωp)
. (1.4.51)

While Eq. (1.4.51) is a perfectly adequate expression for the nonlinear susceptibility, it does
not explicitly show the full symmetry of the interaction in terms of the arbitrariness of which
field we call Ej(ωm), which we call Ek(ωn), and which we call El(ωp). It is conventional
to define nonlinear susceptibilities in a manner that displays this symmetry, which is known
as intrinsic permutation symmetry. Since there are six possible permutations of the orders in
which Ej(ωm), Ek(ωn), and El(ωp) may be taken, we define the third-order susceptibility to
be one-sixth of the sum of the six expressions analogous to Eq. (1.4.51) with the input fields
taken in all possible orders. When we carry out this prescription, we find that only three distinct
contributions occur and that the resulting form for the nonlinear susceptibility is given by

χ
(3)
ijkl(ωq,ωm,ωn,ωp) = Nbe4[δij δkl + δikδjl + δilδjk]

3ε0m3D(ωq)D(ωm)D(ωn)D(ωp)
. (1.4.52)

This expression can be rewritten in terms of the linear susceptibilities at the four different
frequencies ωq,ωm,ωn, and ωp by using Eq. (1.4.43c) to eliminate the resonance denominator
factors D(ω). We thereby obtain

χ
(3)
ijkl(ωq,ωm,ωn,ωp) = bmε3

0

3N3e4

[
χ(1)(ωq)χ(1)(ωm)χ(1)(ωn)χ

(1)(ωp)
]

× [δij δkl + δikδjl + δilδjk]. (1.4.53)

We can estimate the value of the phenomenological constant b that appears in this result by
means of an argument analogous to that used above (see Eq. (1.4.30)) to estimate the value of
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the constant a that appears in the expression for χ(2). We assume that the linear and nonlinear
contributions to the restoring force given by Eq. (1.4.33) will become comparable in magni-
tude when the displacement x̃ becomes comparable to the atomic dimension d, that is, when
mω2

0d = mbd3, which implies that

b = ω2
0

d2
. (1.4.54)

Using this expression for b, we can now estimate the value of the nonlinear susceptibility.
For the case of nonresonant excitation, D(ω) is approximately equal to ω2

0, and hence from
Eq. (1.4.52) we obtain

χ(3) � Nbe4

ε0m3ω8
0

= e4

ε0m3ω6
0d

5
. (1.4.55)

Taking d = 3 Å and ω0 = 7 × 1015 rad/sec, we obtain

χ(3) � 344 pm2/V2 (1.4.56)

We shall see in Chapter 4 that this value is typical of the nonlinear susceptibility of many
materials.

1.5 Properties of the Nonlinear Susceptibility

In this section we study some of the formal symmetry properties of the nonlinear susceptibility.
Let us first see why it is important that we understand these symmetry properties. We consider
the mutual interaction of three waves of frequencies ω1, ω2, and ω3 = ω1 + ω2, as illustrated
in Fig. 1.5.1. A complete description of the interaction of these waves requires that we know
the nonlinear polarizations P(ωi) influencing each of them. Since these quantities are given in

FIGURE 1.5.1: Optical waves of frequencies ω1, ω2, and ω3 = ω1 +ω2 interact in a lossless second-order
nonlinear optical medium.
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general (see also Eq. (1.3.12)) by the expression

Pi(ωn + ωm) = ε0

∑
jk

∑
(nm)

χ
(2)
ijk (ωn + ωm,ωn,ωm)Ej (ωn)Ek(ωm), (1.5.1)

we therefore need to determine the six tensors quantities

χ
(2)
ijk (ω1,ω3,−ω2), χ

(2)
ijk (ω1,−ω2,ω3), χ

(2)
ijk (ω2,ω3,−ω1),

χ
(2)
ijk (ω2,−ω1,ω3), χ

(2)
ijk (ω3,ω1,ω2), and χ

(2)
ijk (ω3,ω2,ω1)

and six additional tensors in which each frequency is replaced by its negative. In these expres-
sions, the indices i, j , and k can independently take on the values x, y, and z. Since each of
these 12 tensors thus consists of 27 Cartesian components, as many as 324 different (complex)
numbers need to be specified in order to describe the interaction.

Fortunately, there are a number of restrictions resulting from symmetry considerations that
relate the various components of χ(2), and hence far fewer than 324 numbers are usually needed
to describe the nonlinear coupling. In this section, we study these formal properties of the
nonlinear susceptibility. The discussion will deal primarily with the second-order χ(2) suscep-
tibility, but can readily be extended to χ(3) and higher-order susceptibilities.

1.5.1 Reality of the Fields

Recall that the nonlinear polarization describing the sum-frequency response to input fields at
frequencies ωn and ωm has been represented as

P̃i(r, t) = Pi(ωn + ωm)e−i(ωn+ωm)t + Pi(−ωn − ωm)ei(ωn+ωm)t . (1.5.2)

Since P̃i(r, t) is a physically measurable quantity, it must be purely real, and hence its positive-
and negative-frequency components must be related by

Pi(−ωn − ωm) = Pi(ωn + ωm)∗. (1.5.3)

The electric field must also be a real quantity, and its complex frequency components must
obey the analogous conditions:

Ej(−ωn) = Ej(ωn)
∗, (1.5.4a)

Ek(−ωm) = Ek(ωm)∗. (1.5.4b)

Since the fields and polarization are related to each other through the second-order suscepti-
bility of Eq. (1.5.1), we conclude that the positive- and negative-frequency components of the
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susceptibility must be related according to

χ
(2)
ijk (−ωn − ωm,−ωn,−ωm) = χ

(2)
ijk (ωn + ωm,ωn,ωm)∗. (1.5.5)

Thus, the negative-frequency susceptibilities can be obtained directly from the positive-
frequency quantities. There is no need to measure or calculate each of these quantities sep-
arately.

1.5.2 Intrinsic Permutation Symmetry

Earlier we introduced the concept of intrinsic permutation symmetry when we rewrote the ex-
pression (1.4.51) for the nonlinear susceptibility of a classical, anharmonic oscillator in the
conventional form of Eq. (1.4.52). In the present section, we treat the concept of intrinsic per-
mutation symmetry from a more general point of view.

According to Eq. (1.5.1), one of the contributions to the nonlinear polarization Pi(ωn +
ωm) is the product χ

(2)
ijk (ωn + ωm,ωn,ωm)Ej (ωn)Ek(ωm). However, since j , k, n, and m are

dummy indices, we could just as well have written this contribution with n interchanged with
m and with j interchanged with k, that is, as χ

(2)
ikj (ωn + ωm,ωm,ωn)Ek(ωm)Ej (ωn). These

two quantities must be equal, because they differ only by the formal interchange of dummy
variables. We thus require that the nonlinear susceptibility must itself possess this property,
namely that it must remain unchanged by the simultaneous interchange of its last two frequency
arguments and its last two Cartesian indices:

χ
(2)
ijk (ωn + ωm,ωn,ωm) = χ

(2)
ikj (ωn + ωm,ωm,ωn). (1.5.6)

This property is known as intrinsic permutation symmetry. More physically, this condition is
simply a statement that it cannot matter which is the first field and which is the second field in
products such as Ej(ωn)Ek(ωm).

Note that this symmetry condition is introduced purely as a matter of convenience. For
example, we could set one member of the pair of elements shown in Eq. (1.5.6) equal to zero
and double the value of the other member. Then, when the double summation of Eq. (1.5.1)
is carried out, the result for the physically meaningful quantity Pj (ωn + ωm) would be left
unchanged.

This symmetry condition can also be derived from a more general point of view using the
concept of the nonlinear response function (Butcher, 1965; Flytzanis, 1975).

1.5.3 Symmetries for Lossless Media

Two additional symmetries of the nonlinear susceptibility tensor occur for the case of a lossless
nonlinear medium.
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The first of these conditions states that for a lossless medium all of the components of
χ

(2)
ijk (ωn + ωm,ωn,ωm) must be real. This result is obeyed for the classical anharmonic oscil-

lator described in Section 1.4, as can be verified by evaluating the expression for χ(2) in the
limit in which all of the applied frequencies and their sums and differences are significantly
different from the resonance frequency. A general proof that χ(2) is real for a lossless medium
is obtained by verifying that the quantum-mechanical expression for χ(2) (which is derived in
Chapter 3) is also purely real in this limit.

The second of these new symmetries is full permutation symmetry. This condition states
that all of the frequency arguments of the nonlinear susceptibility can be freely interchanged,
as long as the corresponding Cartesian indices are interchanged simultaneously. In permuting
the frequency arguments, it must be recalled that the first argument is always the sum of the
latter two, and thus that the signs of the frequencies must be inverted when the first frequency
is interchanged with either of the latter two. Full permutation symmetry implies, for instance,
that

χ
(2)
ijk (ω3 = ω1 + ω2) = χ

(2)
jki(−ω1 = ω2 − ω3). (1.5.7)

However, according to Eq. (1.5.5), the right-hand side of this equation is equal to χ
(2)
jki(ω1 =

−ω2 + ω3)
∗, which, due to the reality of χ(2) for a lossless medium, is equal to χ

(2)
jki(ω1 =

−ω2 + ω3). We hence conclude that

χ
(2)
ijk (ω3 = ω1 + ω2) = χ

(2)
jki(ω1 = −ω2 + ω3). (1.5.8)

By an analogous procedure, one can show that

χ
(2)
ijk (ω3 = ω1 + ω2) = χ

(2)
kij (ω2 = ω3 − ω1). (1.5.9)

A general proof of the validity of the condition of full permutation symmetry entails verify-
ing that the quantum-mechanical expression for χ(2) (which is derived in Chapter 3) obeys this
condition when all of the optical frequencies are detuned many linewidths from the resonance
frequencies of the optical medium. Full permutation symmetry can also be deduced from a
consideration of the field energy density within a nonlinear medium, as we show next.

1.5.4 Field Energy Density for a Nonlinear Medium

The condition that the nonlinear susceptibility must possess full permutation symmetry for a
lossless medium can be deduced from a consideration of the form of the electromagnetic field
energy within a nonlinear medium.
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For the case of a linear medium, the energy density associated with the electric field

Ẽi(t) =
∑
n

Ei(ωn)e
−iωnt (1.5.10)

is given according to Poynting’s theorem as

U = 1

2

〈
D̃ · Ẽ

〉 = 1

2

∑
i

〈
D̃iẼi

〉
, (1.5.11)

where the angular brackets denote a time average. Since the displacement vector is given by

D̃i(t) = ε0

∑
j

εij Ẽj (t) = ε0

∑
j

∑
n

εij (ωn)Ej (ωn)e
−iωnt , (1.5.12)

where the dielectric tensor is given by

εij (ωn) = δij + χ
(1)
ij (ωn), (1.5.13)

we can write the energy density as

U = ε0

2

∑
i

∑
n

E∗
i (ωn)Ei(ωn) + ε0

2

∑
ij

∑
n

E∗
i (ωn)χ

(1)
ij (ωn)Ej (ωn). (1.5.14)

Here the first term represents the energy density associated with the electric field in vacuum
and the second term represents the energy stored in the polarization of the medium.

For the case of a nonlinear medium, the expression for the electric field energy density
(Armstrong et al., 1962; Kleinman, 1962; Pershan, 1963; Shen, 1968) associated with the po-
larization of the medium takes the more general form

U = ε0

2

∑
ij

∑
n

χ
(1)
ij (ωn)E

∗
i (ωn)Ej (ωn)

+ ε0

3

∑
ijk

∑
mn

χ
(2)′
ijk (−ωn − ωm,ωm,ωn)E

∗
i (ωm + ωn)Ej (ωm)Ek(ωn)

+ ε0

4

∑
ijkl

∑
mno

χ
(3)′
ijkl(−ωo − ωn − ωm,ωm,ωn,ωo) (1.5.15)

× E∗
i (ωm + ωn + ωo)Ej (ωm)Ek(ωn)El(ωo) + · · · .

For the present, the quantities χ(2)′ , χ(3)′ , . . . are to be thought of simply as coefficients in
the power series expansion of U in the amplitudes of the applied field; we show below how
these quantities are related to the nonlinear susceptibilities. Since the order in which the fields
are multiplied together in determining U is immaterial, the quantities χ(n)′ clearly possess full
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permutation symmetry, that is, their frequency arguments can be freely permuted as long as the
corresponding indices are also permuted.

In order to relate the expression (1.5.15) for the energy density to the nonlinear polarization,
and subsequently to the nonlinear susceptibility, we use the result that the polarization of a
medium is given (Pershan, 1963; Landau and Lifshitz, 1960, Section 10) by the expression

Pi(ωn) = ∂U

∂E∗
i (ωn)

. (1.5.16)

Thus, by differentiation of Eq. (1.5.15), we obtain an expression for the linear polarization as

P
(1)
i (ωm) = ε0

∑
j

χ
(1)
ij (ωm)Ej (ωm), (1.5.17a)

and for the nonlinear polarization as∗

P
(2)
i (ωm + ωn) = ε0

∑
jk

∑
(mn)

χ
(2)′
ijk (−ωm − ωn,ωm,ωn)Ej (ωm)Ek(ωn)

(1.5.17b)

P
(3)
i (ωm + ωn + ωo) = ε0

∑
jkl

∑
(mno)

χ
(3)′
ijkl(−ωm − ωn − ωo,ωm,ωn,ωo)

× Ej(ωm)Ek(ωn)El(ωo). (1.5.17c)

We note that these last two expressions are identical to Eqs. (1.3.12) and (1.3.20), which define
the nonlinear susceptibilities (except for the unimportant fact that the quantities χ(n) and χ(n)′

use opposite conventions regarding the sign of the first frequency argument). Since the quanti-
ties χ(n)′ possess full permutation symmetry, we conclude that the susceptibilities χ(n) do also.
Note that this demonstration is valid only for the case of a lossless medium, because only in
this case is the internal energy a function of state.

1.5.5 Kleinman’s Symmetry

Quite often nonlinear optical interactions involve optical waves whose frequencies ωi are much
smaller than the lowest resonance frequency of the material system. Under these conditions,
the nonlinear susceptibility is essentially independent of frequency. For example, the expres-
sion (1.4.24) for the second-order susceptibility of an anharmonic oscillator predicts a value
of the susceptibility that is essentially independent of the frequencies of the applied waves
whenever these frequencies are much smaller than the resonance frequency ω0. Furthermore,

∗ In performing the differentiation, the prefactors 1
2 , 1

3 , 1
4 , . . . of Eq. (1.5.15) disappear because 2, 3, 4, . . . equiva-

lent terms appear as the result of the summations over the frequency arguments.
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under conditions of low-frequency excitation the system responds essentially instantaneously
to the applied field, and we have seen in Section 1.2 that under such conditions the nonlinear
polarization can be described in the time domain by the relation

P̃ (t) = ε0χ
(2)Ẽ2(t), (1.5.18)

where χ(2) can be taken to be a constant.
Since the medium is necessarily lossless whenever the applied field frequencies ωi are very

much smaller than the resonance frequency ω0, the condition of full permutation symmetry
(1.5.7) must be valid under these circumstances. This condition states that the indices can be
permuted as long as the frequencies are permuted simultaneously, and it leads to the conclusion
that

χ
(2)
ijk (ω3 = ω1 + ω2) = χ

(2)
jki(ω1 = −ω2 + ω3) = χ

(2)
kij (ω2 = ω3 − ω1) (1.5.19)

= χ
(2)
ikj (ω3 = ω2 + ω1) = χ

(2)
kj i (ω2 = −ω1 + ω3) (1.5.20)

= χ
(2)
j ik(ω1 = ω3 − ω2).

However, under the present conditions χ(2) does not actually depend on the frequencies, and
we can therefore permute the indices without permuting the frequencies, leading to the result

χ
(2)
ijk (ω3 = ω1 + ω2) = χ

(2)
jki(ω3 = ω1 + ω2) = χ

(2)
kij (ω3 = ω1 + ω2)

= χ
(2)
ikj (ω3 = ω1 +ω2) = χ

(2)
j ik(ω3 = ω1 +ω2)

= χ
(2)
kj i (ω3 = ω1 + ω2). (1.5.21)

This result is known as the Kleinman symmetry condition. It is valid whenever dispersion of
the susceptibility can be neglected.

1.5.6 Contracted Notation

We now introduce a notational device that is often used when the Kleinman symmetry condition
is valid. We introduce the tensor

dijk = 1

2
χ

(2)
ijk (1.5.22)

and for simplicity suppress the frequency arguments. The factor of 1
2 is a consequence of his-

torical convention. The nonlinear polarization can then be written as

Pi(ωn + ωm) = ε0

∑
jk

∑
(nm)

2dijkEj (ωn)Ek(ωm). (1.5.23)

We now assume that dijk is symmetric in its last two indices. This assumption is valid whenever
Kleinman’s symmetry condition is valid and in addition is valid in general for second-harmonic
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generation, since in this case ωn and ωm are equal. We then simplify the notation by introducing
a contracted matrix dil according to the prescription

jk: 11 22 33 23,32 31,13 12,21
l: 1 2 3 4 5 6

(1.5.24)

The nonlinear susceptibility tensor can then be represented as the 3 × 6 matrix

dil =
⎡
⎣d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

⎤
⎦ . (1.5.25)

If we now explicitly introduce the Kleinman symmetry condition—that is, we assert that the in-
dices dijk can be freely permuted, we find that not all of the 18 elements of dil are independent.
For instance, we see that

d12 ≡ d122 = d212 ≡ d26 (1.5.26a)

and that

d14 ≡ d123 = d213 ≡ d25. (1.5.26b)

By applying this type of argument systematically, we find that dil has only 10 independent ele-
ments when the Kleinman symmetry condition is valid; the form of dil under these conditions
is

dil =
⎡
⎣d11 d12 d13 d14 d15 d16

d16 d22 d23 d24 d14 d12

d15 d24 d33 d23 d13 d14

⎤
⎦ . (1.5.27)

Using this notation, we can describe the nonlinear polarization leading to second-harmonic
generation in terms of dil by the matrix equation

⎡
⎣Px(2ω)

Py(2ω)

Pz(2ω)

⎤
⎦ = 2ε0

⎡
⎣d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ex(ω)2

Ey(ω)2

Ez(ω)2

2Ey(ω)Ez(ω)

2Ex(ω)Ez(ω)

2Ex(ω)Ey(ω)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (1.5.28)

When the Kleinman symmetry condition is valid, we can describe the nonlinear polarization
leading to sum-frequency generation (with ω3 = ω1 + ω2) by the equation
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⎣Px(ω3)

Py(ω3)

Pz(ω3)

⎤
⎦ = 4ε0

⎡
⎣d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

⎤
⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎣

Ex(ω1)Ex(ω2)

Ey(ω1)Ey(ω2)

Ez(ω1)Ez(ω2)

Ey(ω1)Ez(ω2) + Ez(ω1)Ey(ω2)

Ex(ω1)Ez(ω2) + Ez(ω1)Ex(ω2)

Ex(ω1)Ey(ω2) + Ey(ω1)Ex(ω2)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (1.5.29)

As described above in relation to Eq. (1.3.16), the extra factor of 2 comes from the summation
over n and m in Eq. (1.5.23).

1.5.7 Effective Value of d (deff )

For a fixed geometry (i.e., for fixed propagation direction and polarization) it is possible to
express the nonlinear polarization giving rise to sum-frequency generation by means of the
scalar relationship

P(ω3) = 4ε0deffE(ω1)E(ω2), (1.5.30)

and analogously for second-harmonic generation by

P(2ω) = 2ε0deffE(ω)2, (1.5.31)

where

E(ω) = ∣∣E(ω)
∣∣ and P(ω) = ∣∣P(ω)

∣∣.
In each case, deff is obtained by first determining P explicitly through use of Eq. (1.5.28) or
(1.5.29) and then calculating its norm P(ω) = |P(ω)|.

A general prescription for calculating deff for each of the crystal classes has been presented
by Midwinter and Warner (1965); see also Table 3.1 of Zernike and Midwinter (1973). They
show, for example, that for a negative uniaxial crystal of crystal class 3m the effective value of
d is given by the expression

deff = d31 sin θ − d22 cos θ sin 3φ (1.5.32a)

under conditions (known as type I conditions) such that the two lower-frequency waves have
the same polarization, and by

deff = d22 cos2 θ cos 3φ (1.5.32b)

under conditions (known as type II conditions) such that the polarizations are orthogonal. In
these equations, θ is the angle between the propagation vector and the crystalline z axis (the
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optic axis), and φ is the azimuthal angle between the crystalline x axis and the projection of the
propagation vector onto the xz crystalline plane.

1.5.8 Spatial Symmetry of the Nonlinear Medium

The forms of the linear and nonlinear susceptibility tensors are constrained by the symmetry
properties of the optical medium. To see why this should be so, let us consider a crystal for
which the x and y directions are equivalent but for which the z direction is different. By say-
ing that the x and y directions are equivalent, we mean that if the crystal were rotated by 90
degrees about the z axis, the crystal structure would look identical after the rotation. The z axis
is then said to be a fourfold axis of symmetry. For such a crystal, we would expect that the
optical response would be the same for an applied optical field polarized in either the x or the
y direction, and thus, for example, that the second-order susceptibility components χ

(2)
zxx and

χ
(2)
zyy would be equal.

For any particular crystal, the form of the linear and nonlinear optical susceptibilities can be
determined by considering the consequences of all of the symmetry properties for that particular
crystal. For this reason, it is necessary to determine what types of symmetry properties can
occur in a crystalline medium. By means of the mathematical method known as group theory,
crystallographers have found that all crystals can be classified as belonging to one of 32 possible
crystal classes depending on what is called the point group symmetry of the crystal. The details
of this classification scheme lie outside of the subject matter of the present text.∗ However, by
way of examples, a crystal is said to belong to point group 4 if it possesses only a fourfold axis
of symmetry, to point group 3 if it possesses only a threefold axis of symmetry, and to belong
to point group 3m if it possesses a threefold axis of symmetry and in addition a plane of mirror
symmetry parallel to this axis.

1.5.9 Influence of Spatial Symmetry on the Linear Optical Properties of a Material
Medium

As an illustration of the consequences of spatial symmetry on the optical properties of a mate-
rial system, let us first consider the restrictions that this symmetry imposes on the form of the
linear susceptibility tensor χ(1). The results of a group theoretical analysis shows that five dif-
ferent cases are possible depending on the symmetry properties of the material system. These
possibilities are summarized in Table 1.5.1. Each entry is labeled by the crystal system to which
the material belongs. By convention, crystals are categorized in terms of seven possible crystal

∗ The reader who is interested in the details should consult Buerger (1963) or any of the other books on group
theory and crystal symmetry listed in the bibliography at the end of this chapter.
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TABLE 1.5.1: Form of the linear susceptibility tensor χ(1) as determined by the symmetry properties of
the optical medium, for each of the seven crystal classes and for isotropic materials. Each nonvanishing
element is denoted by its Cartesian indices.

Triclinic

⎡
⎣xx xy xz

yx yy yz

zx zy zz

⎤
⎦

Monoclinic

⎡
⎣xx 0 xz

0 yy 0
zx 0 zz

⎤
⎦

Orthorhombic

⎡
⎣xx 0 0

0 yy 0
0 0 zz

⎤
⎦

Tetragonal
Trigonal
Hexagonal

⎡
⎣xx 0 0

0 xx 0
0 0 zz

⎤
⎦

Cubic
Isotropic

⎡
⎣xx 0 0

0 xx 0
0 0 xx

⎤
⎦

systems on the basis of the form of the crystal lattice. (Table 1.5.2 on p. 46 gives the correspon-
dence between crystal system and each of the 32 point groups.) For completeness, isotropic
materials (such as liquids and gases) are also included in Table 1.5.1. We see from this table
that cubic and isotropic materials are isotropic in their linear optical properties, because χ(1)

is diagonal with equal diagonal components. All of the other crystal systems are anisotropic
in their linear optical properties (in the sense that the polarization P need not be parallel to
the applied electric field E) and consequently display the property of birefringence. Tetragonal,
trigonal, and hexagonal crystals are said to be uniaxial crystals because there is one particu-
lar direction (the z axis) for which the linear optical properties display rotational symmetry.
Crystals of the triclinic, monoclinic, and orthorhombic systems are said to be biaxial.

1.5.10 Influence of Inversion Symmetry on the Second-Order Nonlinear Response

One of the symmetry properties that some but not all crystals possess is centrosymmetry, also
known as inversion symmetry. For a material system that is centrosymmetric (i.e., possesses a
center of inversion) the χ(2) nonlinear susceptibility must vanish identically. Since 11 of the
32 crystal classes possess inversion symmetry, this rule is very powerful, as it immediately
eliminates all crystals belonging to these classes from consideration for second-order nonlinear
optical interactions.

Although the result that χ(2) vanishes for a centrosymmetric medium is general in nature,
we shall demonstrate this fact only for the special case of second-harmonic generation in a
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medium that responds instantaneously to the applied optical field. We assume that the nonlinear
polarization is given by

P̃ (t) = ε0χ
(2)Ẽ2(t), (1.5.33)

where the applied field is given by

Ẽ(t) = E cosωt. (1.5.34)

If we now change the sign of the applied electric field Ẽ(t), the sign of the induced polariza-
tion P̃ (t) must also change, because we have assumed that the medium possesses inversion
symmetry. Hence the relation (1.5.33) must be replaced by

−P̃ (t) = ε0χ
(2)

[−Ẽ(t)
]2

, (1.5.35)

which shows that

−P̃ (t) = ε0χ
(2)Ẽ2(t). (1.5.36)

By comparison of this result with Eq. (1.5.33), we see that P̃ (t) must equal −P̃ (t), which can
occur only if P̃ (t) vanishes identically. This result shows that

χ(2) = 0. (1.5.37)

This result can be understood intuitively by considering the motion of an electron in a
nonparabolic potential well. Because of the nonlinearity of the associated restoring force, the
atomic response will show significant harmonic distortion. Part (a) of Fig. 1.5.2 shows the
waveform of the incident monochromatic electromagnetic wave of frequency ω. For the case
of a medium with linear response (part (b)), there is no distortion of the waveform associated
with the polarization of the medium. Part (c) shows the induced polarization for the case of
a nonlinear medium that possesses a center of symmetry and whose potential energy function
has the form shown in Fig. 1.4.3. Although significant waveform distortion is evident, only odd
harmonics of the fundamental frequency are present. For the case (part (d)) of a nonlinear, non-
centrosymmetric medium having a potential energy function of the form shown in Fig. 1.4.1,
both even and odd harmonics are present in the waveform associated with the atomic response.
Note also the qualitative difference between the waveforms shown in parts (c) and (d). For the
centrosymmetric medium (part (c)), the time-averaged response is zero, whereas for the non-
centrosymmetric medium (part (d)) the time-average response is nonzero, because the medium
responds differently to an electric field pointing, say, in the upward direction than to one point-
ing downward.∗

∗ Parts (a) and (b) of Fig. 1.5.2 are plots of the function sinωt , part (c) is a plot of the function sinωt −0.25 sin 3ωt ,
and part (d) is a plot of −0.2 + sinωt + 0.2 cos 2ωt .
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FIGURE 1.5.2: Waveforms associated with the atomic response.

1.5.11 Influence of Spatial Symmetry on the Second-Order Susceptibility

We have just seen how inversion symmetry when present requires that the second-order sus-
ceptibility vanish identically. Any additional symmetry property of a nonlinear optical medium
imposes additional restrictions on the form of the nonlinear susceptibility tensor. By explicit
consideration of the symmetries of each of the 32 crystal classes, one can determine the al-
lowed form of the susceptibility tensor for crystals of that class. The results of such a calculation
for the second-order nonlinear optical response, which was performed by Butcher (1965), are
presented in Table 1.5.2. Under those conditions (described following Eq. (1.5.23)) where the
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second-order susceptibility can be described using contracted notation, the results presented in
Table 1.5.2 can usefully be displayed graphically. These results, as adapted from Zernike and
Midwinter (1973), are presented in Fig. 1.5.3. Note that the influence of Kleinman symmetry
is also described in the figure. As an example of how to use the table, the diagram for a crystal
of class 3m is meant to imply that the form of the dil matrix is

dil =
⎡
⎣ 0 0 0 0 d31 −d22

−d22 d22 0 d31 0 0
d31 d31 d33 0 0 0

⎤
⎦

The second-order nonlinear optical susceptibilities of a number of crystals are summarized
in Table 1.5.3. This table should be used only with some caution. There is considerable spread
in the values of the nonlinear coefficients quoted in the literature, both because of the wave-
length dependence of the nonlinear susceptibility and because of measurement inaccuracies.
A detailed analysis of the measurement of nonlinear coefficients has been presented by Shoji et
al. (1997). The references cited in the footnote to Table 1.5.3 provide more detailed tabulations
of nonlinear coefficients.

1.5.12 Number of Independent Elements of χ
(2)
ijk(ω3,ω2,ω1)

We remarked in relation to Eq. (1.5.1) that as many as 324 complex numbers must be specified
in order to describe the general interaction of three optical waves. In practice, this number is
often greatly reduced.

Because of the reality of the physical fields, only half of these numbers are independent (see
Eq. (1.5.5)). Furthermore, the intrinsic permutation symmetry of χ(2) (Eq. (1.5.6)) shows that
there are only 81 independent parameters. For a lossless medium, all elements of χ(2) are real
and the condition of full permutation symmetry is valid, implying that only 27 of these numbers
are independent. For second-harmonic generation, contracted notation can be used, and only 18
independent elements exist. When Kleinman’s symmetry is valid, only 10 of these elements are
independent. Furthermore, any crystalline symmetries of the nonlinear material can reduce this
number further.

1.5.13 Distinction between Noncentrosymmetric and Cubic Crystal Classes

It is worth noting that a material can possess a cubic lattice and yet be noncentrosymmetric. In
fact, gallium arsenide is an example of a material with just these properties. Gallium arsenide
crystallizes in what is known as the zincblende structure (named after the well-known mineral
form of zinc sulfide), which has crystal point group 4̄3m. As can be seen from Table 1.5.2 or
from Fig. 1.5.3, materials of the 4̄3m crystal class possess a nonvanishing second-order nonlin-
ear optical response. In fact, as can be seen from Table 1.5.3, gallium arsenide has an unusually
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TABLE 1.5.2: Form of the second-order susceptibility tensor for each of the 32 crystal classes. Each
element is denoted by its Cartesian indices.

Crystal System Crystal Class Nonvanishing Tensor Elements

Triclinic 1 = C1 All elements are independent and nonzero

1̄ = S2 Each element vanishes

Monoclinic 2 = C2 xyz, xzy, xxy, xyx, yxx, yyy, yzz, yzx, yxz, zyz, zzy, zxy, zyx

(twofold axis parallel to ŷ)

m = C1h xxx, xyy, xzz, xzx, xxz, yyz, yzy, yxy, yyx, zxx, zyy, zzz, zzx,

zxz (mirror plane perpendicular to ŷ)

2/m = C2h Each element vanishes

Orthorhombic 222 = D2 xyz, xzy, yzx, yxz, zxy, zyx

mm2 = C2v xzx, xxz, yyz, yzy, zxx, zyy, zzz

mmm = D2h Each element vanishes

Tetragonal 4 = C4 xyz = −yxz, xzy = −yzx, xzx = yzy, xxz = yyz, zxx = zyy,

zzz, zxy = −zyx

4̄ = S4 xyz = yxz, xzy = yzx, xzx = −yzy, xxz = −yyz,

zxx = −zyy, zxy = zyx

422 = D4 xyz = −yxz, xzy = −yzx, zxy = −zyx

4mm = C4v xzx = yzy, xxz = yyz, zxx = zyy, zzz

4̄2m = D2d xyz = yxz, xzy = yzx, zxy = zyx

4/m = C4h Each element vanishes

4/mmm = D4h Each element vanishes

Cubic 432 = O xyz = −xzy = yzx = −yxz = zxy = −zyx

4̄3m = Td xyz = xzy = yzx = yxz = zxy = zyx

23 = T xyz = yzx = zxy, xzy = yxz = zyx

m3 = Th, m3m = Oh Each element vanishes

Trigonal 3 = C3 xxx = −xyy = −yyz = −yxy, xyz = −yxz, xzy = −yzx,

xzx = yzy, xxz = yyz, yyy = −yxx = −xxy = −xyx, zxx =
zyy, zzz, zxy = −zyx

32 = D3 xxx = −xyy = −yyx = −yxy, xyz = −yxz, xzy = −yzx,

zxy = −zyx

3m = C3v xzx = yzy, xxz = yyz, zxx = zyy, zzz, yyy = −yxx = −xxy =
−xyx (mirror plane perpendicular to x̂)

3̄ = S6, 3̄m = D3d Each element vanishes

Hexagonal 6 = C6 xyz = −yxz, xzy = −yzx, xzx = yzy, xxz = yyz, zxx = zyy,

zzz, zxy = −zyx

6̄ = C3h xxx = −xyy = −yxy = −yyx, yyy = −yxx = −xyx = −xxy

622 = D6 xyz = −yxz, xzy = −yxz, zxy = −zyx

6mm = C6v xzx = yzy, xxz = yyz, zxx = zyy, zzz

6̄m2 = D3h yyy = −yxx = −xxy = −xyx

6/m = C6h Each element vanishes

6/mmm = D6h Each element vanishes
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FIGURE 1.5.3: Form of the dil matrix for the 21 crystal classes that lack inversion symmetry. Small
dot: zero coefficient; large dot: nonzero coefficient; square: coefficient that is zero when Kleinman’s
symmetry condition is valid; connected symbols: numerically equal coefficients, but the open-symbol
coefficient is opposite in sign to the closed symbol to which it is joined. Dashed connections are valid
only under Kleinman’s symmetry conditions. (After Zernike and Midwinter, 1973.)

large second-order nonlinear susceptibility. However, as the zincblende crystal structure pos-
sesses a cubic lattice, gallium arsenide does not display birefringence. We shall see in Chapter 2
that it is usually necessary that a material possess adequate birefringence in order that the phase



48 Chapter 1

FIGURE 1.5.3: (continued.)

matching condition of nonlinear optics be satisfied. Because gallium arsenide does not possess
birefringence, it cannot normally participate in standard phase-matched second-order interac-
tions.

It is perhaps surprising that a material can possess the highly regular spatial arrangement of
atoms characteristic of the cubic lattice and yet be noncentrosymmetric. This distinction can be
appreciated by examination of Fig. 1.5.4, which shows both the diamond structure (point group
m3m) and the zincblende structure (point group 4̄3m). One sees that the crystal lattice is the
same in the two cases, but that the arrangement of atoms within the lattice allows carbon but not
zincblende to possess a center of inversion symmetry. In detail, a point of inversion symmetry
for the diamond structure is located midway between any two nearest-neighbor carbon atoms.
This symmetry does not occur in the zincblende structure because the nearest neighbors are of
different species.
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TABLE 1.5.3: Second-order nonlinear optical susceptibilities for several crystals.

Material Point Group dil (pm/V)

Ag3AsS3
(proustite)

3m = C3v d22 = 18
d15 = 11

AgGaSe2 4̄2m = D2d d36 = 33

AgSbS3
(pyrargyrite)

3m = C3v d15 = 8
d22 = 9

beta-BaB2O4 (BBO)
(beta barium borate)

3m = C3v d22 = 2.2

CdGeAs2 4̄2m = D2d d36 = 235

CdS 6mm = C6v d33 = 78
d31 = −40

GaAs 4̄3m d36 = 370

KH2PO4
(KDP)

2m d36 = 0.43

KD2PO4
(KD*P)

2m d36 = 0.42

LiIO3 6 = C6 d15 = −5.5
d31 = −7

LiNbO3 3m = C3v d32 = −30
d31 = −5.9

Quartz 32 = D3 d11 = 0.3
d14 = 0.008

Notes: Values are obtained from a variety of sources. Some of the more complete tabulations are those of R. L. Sutherland (1996),
that of A. V. Smith, http://www.as-photonics.com/snlo, and the data sheets of Cleveland Crystals, Inc.

To convert to the gaussian system, multiply each entry by (3 × 10−8)/4π = 2.386 × 10−9 to obtain d in esu units of cm/statvolt.
In any system of units, χ(2) = 2d by convention.

FIGURE 1.5.4: Illustration of (a) the diamond structure and (b) the zincblende structure. Both possess a
cubic lattice and thus cannot display birefringence, but the carbon structure is centrosymmetric, whereas
the zincblende structure is noncentrosymmetric.
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1.5.14 Distinction between Noncentrosymmetric and Polar Crystal Classes

As noted above, of the 32 crystal point groups, only 21 are noncentrosymmetric and conse-
quently can possess a nonzero second-order susceptibility χ(2). A more restrictive condition is
that certain crystal possess a permanent dipole moment. Crystals of this sort are known as polar
crystals, or as ferroelectric crystals.∗ This property has important technological consequences,
because crystals of this sort can display the pyroelectric effect (a change of permanent dipole
moment with temperature, which can be used to construct optical detectors)† or the photore-
fractive effect, which is described in greater detail in Chapter 11. Group theoretical arguments
(see, for instance, Nye, 1985) demonstrate that the polar crystal classes are

1 2 3 4 6
m mm2 3m 4mm 6mm

Clearly, all polar crystal classes are noncentrosymmetric, but not all noncentrosymmetric crys-
tal classes are polar. This distinction can be seen straightforwardly by means of an example
from molecular physics. Consider a molecule with tetrahedral symmetry such as CCl4. In this
molecule the four chlorine ions are arranged on the vertices of a regular tetrahedron, which is
centered on the carbon ion. Clearly this arrangement cannot possess a permanent dipole mo-
ment, but this structure is nonetheless noncentrosymmetric.

1.5.15 Influence of Spatial Symmetry on the Third-Order Nonlinear Response

The spatial symmetry of the nonlinear optical medium also restricts the form of the third-order
nonlinear optical susceptibility. The allowed form of the susceptibility has been calculated by
Butcher (1965) and has been summarized by Hellwarth (1977); a minor correction to these re-
sults was later pointed out by Shang and Hsu (1987). These results are presented in Table 1.5.4.
Note that for the important special case of an isotropic optical material, the results presented in
Table 1.5.4 agree with the result derived explicitly in the discussion of the nonlinear refractive
index in Section 4.2.

1.6 Time-Domain Description of Optical Nonlinearities

In the preceding sections, we described optical nonlinearities in terms of the response of an
optical material to one or more monochromatic applied fields. We found that the induced non-
linear polarization consists of a discrete summation of frequency components at the harmonics
of and the sums and differences of the frequencies present in the applied field. In particular, we

∗ The subtle distinctions among polar, pyroelectric, piezoelectric, and ferroelectric crystals are described by Nye,
1985, pages 78–81.

† The operation of pyroelectric detectors is described, for instance, in Section 13.3 of R. W. Boyd (1983).
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TABLE 1.5.4: Form of the third-order susceptibility tensor χ(3) for each of the crystal classes and for
isotropic materials. Each element is denoted by its Cartesian indices.

Isotropic
There are 21 nonzero elements, of which only 3 are independent. They are:

yyzz = zzyy = zzxx = xxzz = xxyy = yyxx, (1.5.38)
yzyz = zyzy = zxzx = xzxz = xyxy = yxyx, (1.5.39)
yzzy = zyyz = zxxz = xzzx = xyyx = yxxy; (1.5.40)

and

xxxx = yyyy = zzzz = xxyy + xyxy + xyyx.

Cubic
For the two classes 23 and m3, there are 21 nonzero elements, of which only 7 are independent.
They are:

xxxx = yyyy = zzzz, (1.5.41)
yyzz = zzxx = xxyy, (1.5.42)
zzyy = xxzz = yyxx, (1.5.43)
yzyz = zxzx = xyxy, (1.5.44)
zyzy = xzxz = yxyx, (1.5.45)
yzzy = zxxz = xyyx, (1.5.46)
zyyz = xzzx = yxxy. (1.5.47)

For the three classes 432, 4̄3m, and m3m, there are 21 nonzero elements, of which only 4 are independent. They
are:

xxxx = yyyy = zzzz, (1.5.48)
yyzz = zzyy = zzxx = xxzz = xxyy = yyxx, (1.5.49)
yzyz = zyzy = zxzx = xzxz = xyxy = yxyx, (1.5.50)
yzzy = zyyz = zxxz = xzzx = xyyx = yxxy. (1.5.51)

Hexagonal
For the three classes 6, 6̄, and 6/m, there are 41 nonzero elements, of which only 19 are independent.
They are:

zzzz,
xxxx = yyyy = xxyy + xyyx + xyxy,

⎧⎨
⎩

xxyy = yyxx,

xyyx = yxxy,

xyxy = yxyx,

yyzz = xxzz, xyzz = −yxzz,
zzyy = zzxx, zzxy = −zzyx,
zyyz = zxxz, zxyz = −zyxz,
yzzy = xzzx, xzzy = −yzzx,
yzyz = xzxz, xzyz = −yzxz,
zyzy = zxzx, zxzy = −zyzx,

xxxy = −yyyx = yyxy + yxyy + xyyy,

{
yyxy = −xxyx,
yxyy = −xyxx,
xyyy = −yxxx.

continued on next page
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TABLE 1.5.4: (continued.)

For the four classes 622, 6mm, 6/mmm, and 6̄m2, there are 21 nonzero elements, of which only 10 are inde-
pendent. They are:

zzzz,
xxxx = yyyy = xxyy + xyyx + xyxy,

⎧⎨
⎩

xxyy = yyxx,

xyyx = yxxy,

xyxy = yxyx,

yyzz = xxzz, (1.5.52)
zzyy = zzxx, (1.5.53)
zyyz = zxxz, (1.5.54)
yzzy = xzzx, (1.5.55)
yzyz = xzxz, (1.5.56)
zyzy = zxzx. (1.5.57)

Trigonal
For the two classes 3 and 3̄, there are 73 nonzero elements, of which only 27 are independent. They
are:

zzzz,
xxxx = yyyy = xxyy + xyyx + xyxy,

⎧⎨
⎩

xxyy = yyxx,

xyyx = yxxy,

xyxy = yxyx,

yyzz = xxzz, xyzz = −yxzz,

zzyy = zzxx, zzxy = −zzyx,

zyyz = zxxz, zxyz = −zyxz,

yzzy = xzzx, xzzy = −yzzx,

yzyz = xzxz, xzyz = −yzxz,

zyzy = zxzx, zxzy = −zyzx,

xxxy = −yyyx = yyxy + yxyy + xyyy,

⎧⎨
⎩

yyxy = −xxyx,

yxyy = −xyxx,

xyyy = −yxxx.

yyyz = −yxxz = −xyxz = −xxyz, (1.5.58)
yyzy = −yxzx = −xyzx = −xxzy, (1.5.59)
yzyy = −yzxx = −xzyx = −xzxy, (1.5.60)
zyyy = −zyxx = −zxyx = −zxxy, (1.5.61)
xxxz = −xyyz = −yxyz = −yyxz, (1.5.62)
xxzx = −xyzy = −yxzy = −yyzx, (1.5.63)
xzxx = −yzxy = −yzyx = −xzyy, (1.5.64)
zxxx = −zxyy = −zyxy = −zyyx. (1.5.65)

For the three classes 3m, 3̄m, and 32, there are 37 nonzero elements, of which only 14 are independent. They
are:

zzzz,
xxxx = yyyy = xxyy + xyyx + xyxy,

⎧⎨
⎩

xxyy = yyxx,

xyyx = yxxy,

xyxy = yxyx,

continued on next page
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TABLE 1.5.4: (continued.)

yyzz = xxzz, xxxz = −xyyz = −yxyz = −yyxz,

zzyy = zzxx, xxzx = −xyzy = −yxzy = −yyzx,

zyyz = zxxz, xzxx = −xzyy = −yzxy = −yzyx,

yzzy = xzzx, zxxx = −zxyy = −zyxy = −zyyx,

yzyz = xzxz,

zyzy = zxzx.

Tetragonal
For the three classes 4, 4̄, and 4/m, there are 41 nonzero elements, of which only 21 are independent.
They are:

xxxx = yyyy, zzzz,

zzxx = zzyy, xyzz = −yxzz, xxyy = yyxx, xxxy = −yyyx,

xxzz = zzyy, zzxy = −zzyx, xyxy = yxyx, xxyx = −yyxy,

zxzx = zyzy, xzyz = −yzxz, xyyx = yxxy, xyxx = −yxyy,

xzxz = yzyz, zxzy = −zyzx, yxxx = −xyyy,

zxxz = zyyz, zxyz = −zyxz,

xzzx = yzzy, xzzy = −yzzx.

For the four classes 422, 4mm, 4/mmm, and 4̄2m, there are 21 nonzero elements, of which only 11 are inde-
pendent. They are:

xxxx = yyyy, zzzz,

yyzz = xxzz, yzzy = xzzx xxyy = yyxx,

zzyy = zzxx, yzyz = xzxz xyxy = yxyx,

zyyz = zxxz, zyzy = zxzx xyyx = yxxy.

Monoclinic
For the three classes 2, m, and 2/m, there are 41 independent nonzero elements, consisting of:

3 elements with indices all equal, (1.5.66)
18 elements with indices equal in pairs, (1.5.67)
12 elements with indices having two y’s one x, and one z, (1.5.68)
4 elements with indices having three x’s and one z, (1.5.69)
4 elements with indices having three z’s and one x. (1.5.70)

Orthorhombic
For all three classes, 222, mm2, and mmm, there are 21 independent nonzero elements, consisting of:

3 elements with indices all equal, (1.5.71)
18 elements with indices equal in pairs. (1.5.72)

Triclinic
For both classes, 1 and 1̄, there are 81 independent nonzero elements.
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described the nonlinear response in the frequency domain by relating the frequency components
P(ω) of the nonlinear polarization to those of the applied optical field, E(ω′).

It is also possible to describe optical nonlinearities directly in the time domain by consid-
ering the polarization P̃ (t) that is produced by some arbitrary applied field Ẽ(t). These two
methods of description are entirely equivalent, although description in the time domain is more
convenient for certain types of problems, such as those involving applied fields in the form of
short pulses; conversely, description in the frequency domain is more convenient when each
input field is nearly monochromatic.

Let us first consider the special case of a material that displays a purely linear response. We
can describe the polarization induced in such a material by

P̃ (1)(t) = ε0

∫ ∞

0
R(1)(τ )Ẽ(t − τ) dτ. (1.6.1)

Here R(1)(τ ) is the linear response function, which gives the contribution to the polarization
produced at time t by an electric field applied at the earlier time t − τ . The total polarization is
obtained by integrating these contributions over all previous times τ . In writing Eq. (1.6.1) as
shown, with the lower limit of integration set equal to zero and not to −∞, we have assumed
that R(1)(τ ) obeys the causality condition R(1)(τ ) = 0 for τ < 0. This condition expresses the
fact that P̃ (1)(t) depends only on past and not on future values of Ẽ(t).

Equation (1.6.1) can be transformed to the frequency domain by introducing the Fourier
transforms of the various quantities that appear in this equation. We adopt the following defini-
tion of the Fourier transform:

E(ω) =
∫ ∞

−∞
Ẽ(t)eiωt dt (1.6.2a)

Ẽ(t) = 1

2π

∫ ∞

−∞
E(ω)e−iωt dω (1.6.2b)

with analogous definitions for other quantities. By introducing Eq. (1.6.2b) into Eq. (1.6.1), we
obtain

P̃ (1)(t) = ε0

∫ ∞

0
dτ

∫ ∞

−∞
dω

2π
R(1)(τ )E(ω)e−iω(t−τ)

= ε0

∫ ∞

−∞
dω

2π

∫ ∞

0
dτR(1)(τ )eiωτE(ω)e−iωt (1.6.3)

or

P̃ (1)(t) = ε0

∫ ∞

−∞
dω

2π
χ(1)(ω;ω)E(ω)e−iωt , (1.6.4)



The Nonlinear Optical Susceptibility 55

where we have introduced an explicit expression for the linear susceptibility

χ(1)(ω;ω) =
∫ ∞

0
dτ R(1)(τ )eiωτ . (1.6.5)

Equation (1.6.4) gives the time-varying polarization in terms of the frequency components of
the applied field and the frequency dependent susceptibility. By replacing the left-hand side of
this equation with

∫
P (1)(ω) exp(−iωt) dω/2π and noting that the equality must be maintained

for each frequency ω, we recover the usual frequency domain description of linear response:

P (1)(ω) = ε0χ
(1)(ω;ω)E(ω). (1.6.6)

The nonlinear response can be described by analogous procedures. The contribution to the
polarization that is second-order in the applied field strength is represented as

P̃ (2)(t) = ε0

∫ ∞

0
dτ1

∫ ∞

0
dτ2 R(2)(τ1, τ2)E(t − τ1)E(t − τ2), (1.6.7)

where the causality condition requires that R(2)(τ1, τ2) = 0 if either τ1 or τ2 is negative. As
above, we write E(t − τ1) and E(t − τ2) in terms of their Fourier transforms using Eq. (1.6.2b)
so that the expression for the second-order polarization becomes

P̃ (2)(t) = ε0

∫ ∞

−∞
dω1

2π

∫ ∞

−∞
dω2

2π

∫ ∞

0
dτ1

∫ ∞

0
dτ2R

(2)(τ1, τ2)

× E(ω1)e
−iω1(t−τ1)E(ω2)e

−iω2(t−τ2)

= ε0

∫ ∞

−∞
dω1

2π

∫ ∞

−∞
dω2

2π
χ(2)(ωσ ;ω1,ω2)E(ω1)E(ω2)e

−iωσ t , (1.6.8)

where we have defined ωσ = ω1 + ω2 and have introduced the second-order susceptibility

χ(2)(ωσ ;ω1,ω2) =
∫ ∞

0
dτ1

∫ ∞

0
dτ2 R(2)(τ1, τ2)e

i(ω1τ1+ω2τ2). (1.6.9)

This procedure can readily be generalized to higher-order susceptibilities. In particular, we can
express the third-order polarization as

P̃ (3)(t) = ε0

∫ ∞

−∞
dω1

2π

∫ ∞

−∞
dω2

2π

∫ ∞

−∞
dω3

2π
χ(3)(ωσ ;ω1,ω2,ω3)

× E(ω1)E(ω2)E(ω3)e
−iωσ t , (1.6.10)
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where ωσ = ω1 + ω2 + ω3 and where

χ(3)(ωσ ;ω1,ω2,ω3) =
∫ ∞

0
dτ1

∫ ∞

0
dτ2

∫ ∞

0
dτ3

× R(3)(τ1, τ2, τ3) ei(ω1τ1+ω2τ2+ω3τ3). (1.6.11)

To summarize the results of this subsection, we have seen in Eq. (1.6.5) that the frequency-
dependent linear susceptibility is the Fourier transform of a time-domain linear response
function. We have similarly found in Eq. (1.6.9) that the frequency-dependent second-order
susceptibility is the Fourier transform of a time-domain second-order response function, and
we found in Eq. (1.6.11) that the frequency-dependent third-order susceptibility is the Fourier
transform of a time-domain third-order response function.

1.7 Kramers–Kronig Relations in Linear and Nonlinear Optics

Kramers–Kronig relations are often encountered in linear optics. These conditions relate the
real and imaginary parts of frequency-dependent quantities such as the linear susceptibility.
They are useful because, for instance, they allow one to determine the real part of the sus-
ceptibility at some particular frequency from a knowledge of the frequency dependence of the
imaginary part of the susceptibility. Since it is often easier to measure an absorption spectrum
than to measure the frequency dependence of the refractive index, this result is of considerable
practical importance. In this section, we review the derivation of the Kramers–Kronig relations
as they are usually formulated for a system with linear response, and then show how Kramers–
Kronig relations can be formulated to apply to some (but not all) nonlinear optical interactions.

1.7.1 Kramers–Kronig Relations in Linear Optics

We saw in the previous section that the linear susceptibility can be represented as

χ(1)(ω) ≡ χ(1)(ω;ω) =
∫ ∞

0
R(1)(τ )eiωτ dτ, (1.7.1)

where the lower limit of integration has been set equal to zero to reflect the fact that R(1)(τ )

obeys the causality condition R(1)(τ ) = 0 for τ < 0. Note also (e.g., from Eq. (1.6.1)) that
R(1)(τ ) is necessarily real, because it relates two inherently real quantities P̃ (t) and Ẽ(t). We
thus deduce immediately from Eq. (1.7.1) that

χ(1)(−ω) = χ(1)(ω)∗. (1.7.2)

Let us examine some of the other mathematical properties of the linear susceptibility.
In doing so, it is useful, as a purely mathematical artifact, to treat the frequency ω as a
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complex quantity ω = Re ω + i Im ω. An important mathematical property of χ(ω) is the
fact that it is analytic (i.e., single-valued and possessing continuous derivatives) in the up-
per half of the complex ω plane, that is, for Im ω ≥ 0. In order to demonstrate that χ(ω) is
analytic in the upper half plane, it is adequate to show that the integral in Eq. (1.7.1) con-
verges everywhere in that region. We first note that the integrand in Eq. (1.7.1) is of the form
R(1)(τ ) exp[i(Re ω)τ ] exp[−(Im ω)τ ], and because R(1)(τ ) is everywhere finite, the presence
of the factor exp[−(Im ω)τ ] is adequate to ensure convergence of the integral for Im ω > 0.
For Im ω = 0 (that is, along the real axis) the integral can be shown to converge, either from
a mathematical argument based on the fact the R(1)(τ ) must be square integrable or from the
physical statement that χ(ω) for ω real is a physically measurable quantity and hence must be
finite.

To establish the Kramers–Kronig relations, we next consider the integral

Int =
∫ ∞

−∞
χ(1)(ω′) dω′

ω′ − ω
. (1.7.3)

We adopt the convention that in expressions such as (1.7.3) we are to take the Cauchy principal
value of the integral—that is,

∫ ∞

−∞
χ(1)(ω′) dω′

ω′ − ω
≡ lim

δ→0

[∫ ω−δ

−∞
χ(1)(ω′) dω′

ω′ − ω
+

∫ ∞

ω+δ

χ(1)(ω′) dω′

ω′ − ω

]
. (1.7.4)

We evaluate expression (1.7.3) using the techniques of contour integration, noting that the de-
sired integral is given by Int = Int(A)−Int(B)−Int(C) where Int(A), Int(B), and Int(C) are the
path integrals of χ(1)(ω′)/(ω′ − ω) over the three paths shown in Fig. 1.7.1. Because χ(1)(ω′)
is analytic in the upper half plane, the only singularity of the integrand χ(ω′)/(ω′ − ω) in the
upper half-plane is a simple pole along the real axis at ω′ = ω. We thus find that Int(A) = 0
by Cauchy’s theorem because its closed path of integration contains no poles. Furthermore,
Int(B) = 0 since the integration path increases as |ω′|, whereas for large |ω′| the integrand
scales as χ(ω′)/|ω′|, and thus the product will tend toward zero so long as χ(ω′) approaches
zero for sufficiently large ω′. Finally, by considering the limit r2 → 0 and using standard tech-
niques from residue theory, we find that Int(C) = −πiχ(ω). By introducing these values into
Eq. (1.7.3), we obtain the result

χ(1)(ω) = −i

π

∫ ∞

−∞
χ(1)(ω′) dω′

ω′ − ω
. (1.7.5)

By separating χ(1)(ω) into its real and imaginary parts as χ(1)(ω) = Reχ(1)(ω)+ i Imχ(1)(ω),
we obtain one form of the Kramers–Kronig relations:
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FIGURE 1.7.1: Diagrams used in the contour integration of Eq. (1.7.3). (a) shows the complex ω′ plane,
(b) shows the desired path of integration, and (c), (d), and (e) show paths over which the integral can be
evaluated using the techniques of contour integration. In performing the integration the limits r1 → ∞
and r2 → 0 are taken.

Reχ(1)(ω) = 1

π

∫ ∞

−∞
Imχ(1)(ω′) dω′

ω′ − ω
, (1.7.6a)

Imχ(1)(ω) = − 1

π

∫ ∞

−∞
Reχ(1)(ω′) dω′

ω′ − ω
. (1.7.6b)
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These integrals show how the real part of χ(1) can be deduced from a knowledge of the fre-
quency dependence of the imaginary part of χ(1), and vice versa. As mentioned above, it is
usually easier to measure absorption spectra than the frequency dependence of the refractive
index, it can be quite useful to make use of Eq. (1.7.6a) as a means of predicting the frequency
dependence of the real part of χ(1).

The Kramers–Kronig relations can be rewritten to involve integration over only (physically
meaningful) positive frequencies. From Eq. (1.7.2), we see that

Reχ(1)(−ω) = Reχ(1)(ω), Imχ(1)(−ω) = − Imχ(1)(ω). (1.7.7)

We can thus rewrite Eq. (1.7.6b) as follows:

Imχ(1)(ω) = − 1

π

∫ 0

−∞
Reχ(1)(ω′) dω′

ω′ − ω
− 1

π

∫ ∞

0

Reχ(1)(ω′) dω′

ω′ − ω

= 1

π

∫ ∞

0

Reχ(1)(ω′) dω′

ω′ + ω
− 1

π

∫ ∞

0

Reχ(1)(ω′) dω′

ω′ − ω
(1.7.8)

and hence

Imχ(1)(ω) = −2ω

π

∫ ∞

0

Reχ(1)(ω′)
ω′2 − ω2

dω′. (1.7.9a)

We similarly find that

Reχ(1)(ω) = 2ω

π

∫ ∞

0

Imχ(1)(ω′)
ω′2 − ω2

dω′. (1.7.9b)

1.7.2 Kramers–Kronig Relations in Nonlinear Optics

Relations analogous to the usual Kramers–Kronig relations for the linear response can be
deduced for some but not all nonlinear optical interactions. Let us first consider a nonlinear
susceptibility of the form χ(3)(ωσ ;ω1,ω2,ω3) with ωσ = ω1 + ω2 + ω3 and with ω1,ω2, and
ω3 all positive and distinct. Such a susceptibility obeys a Kramers–Kronig relation in each of
the three input frequencies, for example,

χ(3)(ωσ ;ω1,ω2,ω3) = 1

iπ

∫ ∞

−∞
χ(3)(ω′

σ ;ω1,ω
′
2,ω3)

ω′
2 − ω2

dω′
2, (1.7.10)

where ω′
σ = ω1 + ω′

2 + ω3. Similar results hold for integrals involving ω′
1 and ω′

3. The proof of
this result proceeds in a manner strictly analogous to that of the linear Kramers–Kronig rela-
tion. In particular, we note from Eq. (1.6.11) that χ(3)(ωσ ;ω1,ω2,ω3) is the Fourier transform
of a causal response function, and hence χ(3)(ωσ ;ω1,ω2,ω3) considered as a function of its
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three independent variables ω1,ω2, and ω3, is analytic in the region Imω1 ≥ 0, Imω2 ≥ 0, and
Imω3 ≥ 0. We can then perform the integration indicated on the right-hand side of Eq. (1.7.10)
as a contour integration closed in the upper part of the complex ω2 plane, and obtain the indi-
cated result. In fact, it is not at all surprising that a Kramers–Kronig-like relation should exist
for the present situation; the expression χ(3)(ωσ ;ω1,ω2,ω3)E(ω1)E(ω2)E(ω3) is linear in the
field E(ω2) and the physical system is causal, and thus the reasoning leading to the usual linear
Kramers–Kronig relation is directly relevant to the present situation.

Note that in Eq. (1.7.10) all but one of the input frequencies are held fixed. Kramers–Kronig
relations can also be formulated under more general circumstances. It can be shown (see, for
instance, Section 6.2 of Hutchings et al., 1992) by means of a somewhat intricate argument that

χ(n)(ωσ ;ω1 + p1ω,ω2 + p2ω, . . . ,ωn + pnω)

= 1

iπ

∫ ∞

−∞
χ(n)(ω′

σ ;ω1 + p1ω
′,ω2 + p2ω

′, . . . ,ωn + pnω
′)

ω′ − ω
dω′ (1.7.11)

where pi ≥ 0 for all i and where at least one pi must be nonzero. Among the many special cases
included in Eq. (1.7.11) are those involving the susceptibility for second-harmonic generation

χ(2)(2ω;ω,ω) = 1

iπ

∫ ∞

−∞
χ(2)(2ω′;ω′,ω′)

ω′ − ω
dω′ (1.7.12)

and for third-harmonic generation

χ(3)(3ω;ω,ω,ω) = 1

iπ

∫ ∞

−∞
χ(3)(3ω′;ω′,ω′,ω′)

ω′ − ω
dω′. (1.7.13)

Kramers–Kronig relations can also be formulated for the change in refractive index induced
by an auxiliary beam, which is described by a susceptibility of the sort χ(3)(ω;ω,ω1,−ω1). In
particular, one can show (Hutchings et al., 1992) that

χ(3)(ω;ω,ω1,−ω1) = 1

iπ

∫ ∞

−∞
χ(3)(ω′;ω′,ω1,−ω1) dω′

ω′ − ω
. (1.7.14)

Probably the most important process for which it is not possible to form a Kramers–Kronig
relation is for the self-induced change in refractive index, that is, for processes described by
the nonlinear susceptibility χ(3)(ω;ω,ω,−ω). Note that this susceptibility is not of the form
of Eq. (1.7.10) or of (1.7.11), because the first two applied frequencies are equal and because the
third frequency is negative. Moreover, one can show by explicit calculation (see the problems
at the end of this chapter) that for specific model systems the real and imaginary parts of χ(3)

are not related in the proper manner to satisfy the Kramers–Kronig relations.
To summarize the results of this section, we have seen that Kramers–Kronig relations, which

are always valid in linear optics, are valid for some but not all nonlinear optical processes.
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Problems

1. Conversion from Gaussian to SI units. For proustite χ
(2)
yyy has the value 1.3×10−7 cm/stat-

volt in Gaussian units. What is its value in MKS units? [Ans: 5.4 × 10−11 m/V.]
2. Numerical estimate of nonlinear optical quantities. A laser beam of frequency ω carrying

1 W of power is focused to a spot size of 30- µm diameter in a crystal having a refrac-
tive index of n = 2 and a second-order susceptibility of χ(2) = 4 × 10−11 m/V. Calculate
numerically the amplitude P(2ω) of the component of the nonlinear polarization oscillat-
ing at frequency 2ω. Estimate numerically the amplitude of the dipole moment per atom
μ(2ω) oscillating at frequency 2ω. Compare this value with the atomic unit of dipole mo-
ment (ea0, where a0 is the Bohr radius) and with the linear response of the atom, that is,
with the component μ(ω) of the dipole moment oscillating at frequency ω. We shall see
in the next chapter that, under the conditions stated above, nearly all of the incident power
can be converted to the second harmonic for a 1-cm-long crystal.
[Ans: P(2ω) = 4.7 × 10−11 C/m3. Assuming that N = 1028 atoms/m3, μ(2ω) =
4.7 × 10−39 Cm = 5.56 × 10−10ea0, where ea0 = 8.5 × 10−30 Cm. By comparison,
P(ω) = 9.7 × 10−6 C/m3 and μ(ω) = 9.7 × 10−34 Cm = 1.14 × 10−4ea0, which shows
that μ(2ω)/μ(ω) = 4.9 × 10−6.]

3. Perturbation expansion. Explain why it is unnecessary to include the term λ0x̃(0) in the
power series of Eq. (1.4.6).

4. Tensor properties of the anharmonic oscillator model. Starting from Eq. (1.4.52), rele-
vant to a collection of isotropic, centrosymmetric, anharmonic oscillators, show that the
nonlinear susceptibility possesses the following tensor properties:

χ1122 = χ1212 = χ1221 = χ1133 = χ1313 = χ1331 = χ2233 = χ2323

= χ2332 = χ2211 = χ2121 = χ2112 = χ3311 = χ3131 = χ3113

= χ3322 = χ3232 = χ3223 = 1
3χ1111 = 1

3χ2222 = 1
3χ3333, (1.7.15)

with all other elements vanishing. Give a simple physical argument that explains why
the vanishing elements do vanish. Also, give a simple physical argument that ex-
plains why χijkl possesses off-diagonal tensor components, even though the medium is
isotropic.

5. Comparison of the centrosymmetric and noncentrosymmetric models. For the noncen-
trosymmetric anharmonic oscillator described by Eq. (1.4.1), derive an expression for
the third-order displacement x̃(3) and consequently for the third-order susceptibility
χ

(3)
1111(ωq,ωm,ωn,ωp). Compare this result to that given by Eq. (1.4.52) for a purely

centrosymmetric medium. Note that for a noncentrosymmetric medium both of these con-
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tributions can be present. Estimate the size of each of these contributions to see which is
larger.

6. Determination of deff. Verify Eqs. (1.5.32a) and (1.5.32b).
7. Formal properties of the third-order response. Section 1.5 contains a description of

some of the formal mathematical properties of the second-order susceptibility. For the
present problem, you are to determine the analogous symmetry properties of the third-
order susceptibility χ(3). In your response, be sure to include the equations analogous to
Eqs. (1.5.1), (1.5.2), (1.5.5), (1.5.6), (1.5.8), (1.5.9), and (1.5.21).

8. Consequences of crystalline symmetry. Through explicit consideration of the symmetry
properties of each of the 32 point groups, verify the results presented in Tables 1.5.2 and
1.5.4 and in Fig. 1.5.3.
[Notes: This problem is lengthy and requires a more detailed knowledge of group theory
and crystal symmetry than that presented in this text. For a list of recommended readings
on these subjects, see the reference list to the present chapter. For a discussion of this
problem, see also Butcher (1965).]

9. Subtlety regarding crystal class 432. According to Table 1.5.2, χ(2) possesses nonvanish-
ing tensor elements for crystal class 432, but according to Fig. 1.5.3 dil for this crystal
class vanishes identically. Justify these two statements by taking explicit account of the
additional constraints that are implicit in the definition of the dil matrix.

10. Kramers–Kronig relations. Show by explicit calculation that the linear susceptibility of an
optical transition modeled in the two-level approximation obeys the Kramers–Kronig rela-
tions, but that neither the total susceptibility χ nor the third-order susceptibility χ(3) obeys
these relations. Explain this result by finding the location of the poles of χ and of χ(3).
[Hints: χ(1) and χ(3) are given by Eqs. (6.3.33) and χ is given by Eq. (6.3.23).]

11. Kramers–Kronig relations. For the classical anharmonic oscillator model of Eq. (1.4.20)
show by explicit calculation that χ(2)(2ω;ω,ω) obeys the Kramers–Kronig relations in
the form (1.7.12). Show also that χ(2)(ω1;ω3,−ω2) does not satisfy Kramers–Kronig
relations.

12. Example of the third-order response. The third-order polarization includes a term oscillat-
ing at the fundamental frequency and given by

P (3)(ω) = 3ε0χ
(3)

∣∣E(ω)
∣∣2

E(ω).

Assume that the field at frequency ω includes two contributions that propagate in the di-
rections given by wave vectors k1 and k2. Assume also that the second contribution is
sufficiently weak that it can be treated linearly. Calculate the nonlinear polarization at the
fundamental frequency and give the physical interpretation of its different terms.
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Chapter 2

Wave-Equation Description of Nonlinear
Optical Interactions

2.1 The Wave Equation for Nonlinear Optical Media

We have seen in the last chapter how nonlinearity in the response of a material system to an in-
tense laser field can cause the polarization of the medium to develop new frequency components
not present in the incident radiation field. These new frequency components of the nonlinear
polarization act as sources of new frequency components of the electromagnetic field. In the
present chapter, we examine how Maxwell’s equations describe the generation of these new
components, and more generally we see how the various frequency components of the field
become coupled by the nonlinear interaction.

Before developing the mathematical theory of these effects, we give a simple physical pic-
ture of how these frequency components are generated. For definiteness, we consider the case
of sum-frequency generation as shown in part (a) of Fig. 2.1.1, where the input fields are at
frequencies ω1 and ω2. Because of nonlinearities in the atomic response, each atom develops
an oscillating dipole moment that contains a component at frequency ω1 +ω2. An isolated atom
would radiate at this frequency in the form of a dipole radiation pattern, as shown symbolically
in part (b) of the figure. However, any material sample contains an enormous number N of
atomic dipoles, each oscillating with a phase that is determined by the phases of the incident
fields. If the relative phasing of these dipoles is correct, the field radiated by each dipole will
add constructively in the forward direction, leading to radiation in the form of a well-defined
beam, as illustrated in part (c) of the figure. The system will act as a phased array of dipoles
when a certain condition, known as the phase-matching condition (see Eq. (2.2.14) in the next
section), is satisfied. Under these conditions, the electric field strength of the radiation emitted
in the forward direction will be N times larger than that due to any one atom, and consequently
the intensity will be N2 times as large.

Let us now consider the form of the wave equation for the propagation of light through a
nonlinear optical medium. We begin with Maxwell’s equations, which we write in SI units in

Nonlinear Optics. https://doi.org/10.1016/B978-0-12-811002-7.00011-4
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FIGURE 2.1.1: Sum-frequency generation.

the form∗

∇ · D̃ = ρ̃, (2.1.1)

∇ · B̃ = 0, (2.1.2)

∇ × Ẽ = −∂B̃
∂t

, (2.1.3)

∇ × H̃ = ∂D̃
∂t

+ J̃. (2.1.4)

We are primarily interested in the solution of these equations in regions of space that contain
no free charges, so that

ρ̃ = 0, (2.1.5)

and that contain no free currents, so that

J̃ = 0. (2.1.6)

∗ Throughout the text we use a tilde (~) to denote a quantity that varies rapidly in time.
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We also assume that the material is nonmagnetic, so that

B̃ = μ0H̃. (2.1.7)

However, we allow the material to be nonlinear in the sense that the fields D̃ and Ẽ are related
by

D̃ = ε0Ẽ + P̃, (2.1.8)

where in general the polarization vector P̃ depends nonlinearly upon the local value of the
electric field strength Ẽ.

We now proceed to derive the optical wave equation in the usual manner. We take the curl
of the curl-Ẽ Maxwell equation (2.1.3), interchange the order of space and time derivatives on
the right-hand side of the resulting equation, and use Eqs. (2.1.4), (2.1.6), and (2.1.7) to replace
∇ × B̃ by μ0(∂D̃/∂t), to obtain the equation

∇ × ∇ × Ẽ + μ0
∂2

∂t2
D̃ = 0. (2.1.9a)

We now use Eq. (2.1.8) to eliminate D̃ from this equation, and we thereby obtain the expression

∇ × ∇ × Ẽ + 1

c2

∂2

∂t2
Ẽ = − 1

ε0c2

∂2P̃
∂t2

. (2.1.9b)

On the right-hand side of this equation we have replaced μ0 by 1/ε0c
2 for future convenience.

This is the most general form of the wave equation in nonlinear optics. Under certain condi-
tions it can be simplified. For example, by using an identity from vector calculus, we can write
the first term on the left-hand side of Eq. (2.1.9b) as

∇ × ∇ × Ẽ = ∇(∇ · Ẽ
) − ∇2Ẽ. (2.1.10)

In the linear optics of isotropic source-free media, the first term on the right-hand side of this
equation vanishes because the Maxwell equation ∇ · D̃ = 0 implies that ∇ · Ẽ = 0. However,
in nonlinear optics this term is generally nonvanishing even for isotropic materials, as a conse-
quence of the more general relation (2.1.8) between D̃ and Ẽ. Fortunately, in nonlinear optics
the first term on the right-hand side of Eq. (2.1.10) can usually be dropped for cases of interest.
For example, if Ẽ is of the form of a transverse, infinite plane wave, ∇ · Ẽ vanishes identically.
More generally, the first term can often be shown to be small, even when it does not vanish
identically, especially when the slowly varying amplitude approximation (see Section 2.2) is
valid. For the remainder of this book, we shall usually assume that the contribution of ∇(∇ · Ẽ)

in Eq. (2.1.10) is negligible so that the wave equation can be taken to have the form

∇2Ẽ − 1

c2

∂2

∂t2
Ẽ = 1

ε0c2

∂2P̃
∂t2

. (2.1.11)

Alternatively, the wave equation can be expressed as
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∇2Ẽ − 1

ε0c2

∂2

∂t2
D̃ = 0 (2.1.12)

where D̃ = ε0Ẽ + P̃.
It is often convenient to split P̃ into its linear and nonlinear parts as

P̃ = P̃(1) + P̃NL. (2.1.13)

Here P̃(1) is the part of P̃ that depends linearly on the electric field strength Ẽ. We can similarly
decompose the displacement field D̃ into its linear and nonlinear parts as

D̃ = D̃(1) + P̃NL, (2.1.14a)

where the linear part is given by

D̃(1) = ε0Ẽ + P̃(1). (2.1.14b)

In terms of this quantity, the wave equation (2.1.11) can be written as

∇2Ẽ − 1

ε0c2

∂2D̃(1)

∂t2
= 1

ε0c2

∂2P̃NL

∂t2
. (2.1.15)

To see why this form of the wave equation is useful, let us first consider the case of a lossless,
dispersionless medium. We can then express the relation between D̃(1) and Ẽ in terms of a real,
frequency-independent dielectric tensor ε(1) as

D̃(1) = ε0ε
(1) · Ẽ. (2.1.16a)

For the case of an isotropic material, this relation reduces to simply

D̃(1) = ε0ε
(1)Ẽ, (2.1.16b)

where ε(1) is a scalar quantity. Note that we are using the convention that ε0 = 8.85 ×
10−12 F/m is a fundamental constant, the permittivity of free space, whereas ε(1) is the di-
mensionless, relative permittivity which is different for each material. For this (simpler) case
of an isotropic, dispersionless material, the wave equation (2.1.15) becomes

∇2Ẽ − ε(1)

c2

∂2Ẽ
∂t2

= 1

ε0c2

∂2P̃NL

∂t2
. (2.1.17)

This equation has the form of a driven (i.e., inhomogeneous) wave equation; the nonlinear
response of the medium acts as a source term that appears on the right-hand side of this
equation. In the absence of this source term, Eq. (2.1.17) admits solutions of the form of free
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waves propagating with velocity c/n, where n is the (linear) index of refraction that satisfies
n2 = ε(1).

For the case of a dispersive medium, we must consider each frequency component of the
field separately. We represent the electric, linear displacement, and polarization fields as the
sums of their various frequency components:

Ẽ(r, t) =
∑
n

′
Ẽn(r, t), (2.1.18a)

D̃(1)(r, t) =
∑
n

′
D̃(1)

n (r, t), (2.1.18b)

P̃NL(r, t) =
∑
n

′
P̃NL

n (r, t), (2.1.18c)

where the summation is to be performed over positive field frequencies only, and we represent
each frequency component in terms of its complex amplitude as

Ẽn(r, t) = En(r)e−iωnt + c.c., (2.1.19a)

D̃(1)
n (r, t) = D(1)

n (r)e−iωnt + c.c., (2.1.19b)

P̃NL
n (r, t) = PNL

n (r)e−iωnt + c.c. (2.1.19c)

If dissipation can be neglected, the relationship between D̃(1)
n and Ẽn can be expressed in terms

of a real, frequency-dependent dielectric tensor according to

D̃(1)
n (r, t) = ε0ε

(1)(ωn) · Ẽn(r, t). (2.1.20)

When Eqs. (2.1.18a) through (2.1.20) are introduced into the wave equation in the form of
(2.1.15), we obtain a wave equation analogous to (2.1.17) that is valid for each frequency com-
ponent of the field:

∇2Ẽn − ε(1)(ωn)

c2
· ∂2Ẽn

∂t2
= 1

ε0c2

∂2P̃NL
n

∂t2
. (2.1.21)

The general case of a dissipative medium is treated by allowing the dielectric tensor to be a
complex quantity that relates the complex field amplitudes according to

D(1)
n (r) = ε0ε

(1)(ωn) ·En(r). (2.1.22)

This expression, along with Eqs. (2.1.18) and (2.1.19), can be introduced into the wave equation
(2.1.15), to obtain

∇2En(r) + ω2
n

c2
ε(1)(ωn) ·En(r) = − ω2

n

ε0c2
PNL

n (r). (2.1.23)

This equation is the frequency-domain version of the wave equation and is often referred to as
a Helmholtz equation.
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2.2 The Coupled-Wave Equations for Sum-Frequency Generation

We next study how the nonlinear optical wave equation that we derived in the previous section
can be used to describe specific nonlinear optical interactions. In particular, we consider sum-
frequency generation in a lossless nonlinear optical medium involving collimated, monochro-
matic, continuous-wave input beams. We assume the configuration shown in Fig. 2.2.1, where
the applied waves fall onto the nonlinear medium at normal incidence. For simplicity, we ig-
nore double refraction effects. The treatment given here can be generalized straightforwardly
to include nonnormal incidence and double refraction.∗

FIGURE 2.2.1: Sum-frequency generation.

The wave equation in Eq. (2.1.21) must hold for each frequency component of the field and
in particular for the sum-frequency component at frequency ω3. In the absence of a nonlinear
source term, the solution to this equation for a plane wave at frequency ω3 propagating in the
+z direction is

Ẽ3(z, t) = A3e
i(k3z−ω3t) + c.c., (2.2.1)

where†

k3 = n3ω3

c
, n2

3 = ε(1)(ω3), (2.2.2)

and where the amplitude of the wave A3 is a constant. We expect on physical grounds that,
when the nonlinear source term is not too large, the solution to Eq. (2.1.21) will still be of the
form of Eq. (2.2.1), except that A3 will become a slowly varying function of z. We hence adopt
Eq. (2.2.1) with A3 taken to be a function of z as the form of the trial solution to the wave
equation (2.1.21) in the presence of the nonlinear source term.

We represent the nonlinear source term appearing in Eq. (2.1.21) as

P̃3(z, t) = P3e
−iω3t + c.c., (2.2.3)

∗ See, for example, Shen (1984a), Chapter 6.
† For convenience, we are working in the scalar field approximation; n3 represents the refractive index appropriate

to the state of polarization of the ω3 wave.
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where according to Eq. (1.5.28)

P3 = 4ε0deffE1E2. (2.2.4)

We represent the applied fields (i = 1,2) as

Ẽi(z, t) = Eie
−iωi t + c.c., where Ei = Aie

ikiz. (2.2.5)

The amplitude of the nonlinear polarization can then be written as

P3 = 4ε0deffA1A2e
i(k1+k2)z ≡ p3e

i(k1+k2)z. (2.2.6)

We now substitute Eqs. (2.2.1), (2.2.3), and (2.2.6) into the wave equation (2.1.21). Since
the fields depend only on the longitudinal coordinate z, we can replace ∇2 by d2/dz2. We then
obtain [

d2A3

dz2
+ 2ik3

dA3

dz
− k2

3A3 + ε(1)(ω3)ω
2
3A3

c2

]
ei(k3z−ω3t) + c.c.

= −4deffω
2
3

c2
A1A2e

i[(k1+k2)z−ω3t] + c.c. (2.2.7)

Since k2
3 = ε(1)(ω3)ω

2
3/c

2, the third and fourth terms on the left-hand side of this expression
cancel. Note that we can drop the complex conjugate terms from each side and still maintain
the equality. We can then cancel the factor exp(−iω3t) on each side and write the resulting
equation as

d2A3

dz2
+ 2ik3

dA3

dz
= −4deffω

2
3

c2
A1A2e

i(k1+k2−k3)z. (2.2.8)

It is usually permissible to neglect the first term on the left-hand side of this equation on the
grounds that it is very much smaller than the second. This approximation is known as the slowly
varying amplitude approximation and is valid whenever∣∣∣∣d2A3

dz2

∣∣∣∣ �
∣∣∣∣k3

dA3

dz

∣∣∣∣. (2.2.9)

This condition requires that the fractional change in A3 in a distance of the order of an optical
wavelength must be much smaller than unity. When this approximation is made, Eq. (2.2.8)
becomes

dA3

dz
= 2ideffω3

n3c
A1A2e

i�kz, (2.2.10)

where n3 is the refractive index experienced by the ω3 wave and where we have introduced the
quantity

�k = k1 + k2 − k3, (2.2.11)
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which is called the wavevector (or momentum) mismatch. Equation (2.2.10) is known as a
coupled-amplitude equation, because it shows how the amplitude of the ω3 wave varies as a
consequence of its coupling to the ω1 and ω2 waves. In general, the spatial variation of the ω1

and ω2 waves must also be taken into consideration, and we can derive analogous equations for
the ω1 and ω2 fields by repeating the derivation given above for each of these frequencies. We
hence find two additional coupled-amplitude equations given by

dA1

dz
= 2ideffω1

n1c
A3A

∗
2e

−i�kz, (2.2.12a)

dA2

dz
= 2ideffω2

n2c
A3A

∗
1e

−i�kz. (2.2.12b)

Note that, in writing these equations in the forms shown, we have assumed that the medium is
lossless. For a lossless medium, no explicit loss terms need be included in these equations, and
furthermore we can make use of the condition of full permutation symmetry (Eq. (1.5.8)) to
conclude that the coupling coefficient deff has the same value in each equation.

For future reference, we note that Eq. (2.2.10) can be written more generally in terms of the
slowly varying amplitude p3 of the nonlinear polarization as

dA3

dz
= iω3

2ε0n3c
p3e

i�kz, (2.2.13)

where according to Eq. (2.2.6) p3 is given by P3 = p3 exp[i(k1 + k2)z]. Analogous equations
can of course be written for the spatial variations of A1 and A2.

2.2.1 Phase-Matching Considerations

For simplicity, let us assume that the amplitudes A1 and A2 of the input fields can be taken
as constants on the right-hand side of Eq. (2.2.10). This assumption is valid whenever the
conversion of the input fields into the sum-frequency field is not too large. We note that, for the
special case

�k = 0, (2.2.14)

the amplitude A3 of the sum-frequency wave increases linearly with z, and consequently that
its intensity increases quadratically with z. The condition (2.2.14) is known as the condition
of perfect phase matching. When this condition is fulfilled, the generated wave maintains a
fixed phase relation with respect to the nonlinear polarization and is able to extract energy
most efficiently from the incident waves. From a microscopic point of view, when the condition
(2.2.14) is fulfilled the individual atomic dipoles that constitute the material system are properly
phased so that the field emitted by each dipole adds coherently in the forward direction. The
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total power radiated by the ensemble of atomic dipoles thus scales as the square of the number
of atoms that participate.

When the condition (2.2.14) is not satisfied, the intensity of the emitted radiation is smaller
than for the case of �k = 0. The amplitude of the sum-frequency (ω3) field at the exit plane of
the nonlinear medium is obtained in this case by integrating Eq. (2.2.10) from z = 0 to z = L,
yielding

A3(L) = 2ideffω3A1A2

n3c

∫ L

0
ei�kz dz = 2ideffω3A1A2

n3c

(
ei�kL − 1

i�k

)
. (2.2.15)

The intensity of the ω3 wave is given by the magnitude of the time-averaged Poynting vector,
which for our definition of field amplitude is given by

Ii = 2niε0c|Ai |2, i = 1,2,3. (2.2.16)

We thus find that the intensity of the generated wave is given by

I3 = 8n3ε0d
2
effω

2
3|A1|2|A2|2

n2
3c

∣∣∣∣ei�kL − 1

�k

∣∣∣∣
2

. (2.2.17)

The squared modulus that appears in this equation can be expressed as∣∣∣∣ei�kL − 1

�k

∣∣∣∣
2

= L2
(

ei�kL − 1

�kL

)(
e−i�kL − 1

�kL

)
= 2L2 (1 − cos�kL)

(�kL)2

= L2 sin2(�kL/2)

(�kL/2)2
≡ L2 sinc2(�kL/2). (2.2.18)

Finally, our expression for I3 can be written in terms of the intensities of the incident fields by
using Eq. (2.2.16) to express |Ai |2 in terms of the intensities, yielding the result

I3 = 2d2
effω

2
3I1I2

n1n2n3ε0c3
L2 sinc2

(
�kL

2

)
. (2.2.19)

Note that the effect of wavevector mismatch is included entirely in the factor sinc2(�kL/2).
This phase mismatch factor is plotted in Fig. 2.2.2.

It should be noted that the efficiency of the three-wave mixing process decreases as |�k|L
increases, with some oscillations occurring. The reason for this behavior is that if L is greater
than approximately 1/�k, the output wave can get out of phase with its driving polarization,
and power can flow from the ω3 wave back into the ω1 and ω2 waves (see Eq. (2.2.10)). For
this reason, one sometimes defines

Lcoh = 2/�k (2.2.20)

to be the coherent buildup length of the interaction, so that the phase mismatch factor in
Eq. (2.2.19) can be written as

sinc2(L/Lcoh). (2.2.21)
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FIGURE 2.2.2: Effects of wavevector mismatch on the efficiency of sum-frequency generation.

2.3 Phase Matching

We saw in Section 2.2 that for sum-frequency generation involving undepleted input beams, the
intensity of the generated field at frequency ω3 = ω1 +ω2 varies with the wavevector mismatch

�k = k1 + k2 − k3 (2.3.1)

according to

I3 = I
(max)
3

[
sin(�kL/2)

(�kL/2)

]2

. (2.3.2)

This expression predicts a drastic decrease in the efficiency of the sum-frequency generation
process when the condition of perfect phase matching, �k = 0, is not satisfied.

For nonlinear mixing processes that are sufficiently efficient to lead to depletion of the input
beams, the functional dependence of the efficiency of the process on the phase mismatch is no
longer given by Eq. (2.3.2). However, even in this case the efficient generation of the output
field requires that the condition �k = 0 be maintained.

Behavior of the sort predicted by Eq. (2.3.2) was first observed experimentally by Maker
et al. (1962) and is illustrated in Fig. 2.3.1. Their experiment involved focusing the output
of a pulsed ruby laser into a single crystal of quartz and measuring how the intensity of the
second-harmonic signal varied as the crystal was rotated, thus varying the effective path length
L through the crystal. The wavevector mismatch �k was nonzero and approximately the same
for all orientations used in their experiment.

The phase-matching condition �k = 0 is often difficult to achieve because the refractive
index of materials that are lossless in the range ω1 to ω3 (we assume that ω1 ≤ ω2 < ω3)
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FIGURE 2.3.1: (a) Experimental setup of Maker et al. (b) Their experimental results.

shows an effect known as normal dispersion: the refractive index is an increasing function of
frequency. As a result, the condition for perfect phase matching with collinear beams,

n1ω1

c
+ n2ω2

c
= n3ω3

c
, (2.3.3)

where

ω1 + ω2 = ω3, (2.3.4)

cannot be achieved. For the case of second-harmonic generation, with ω1 = ω2, ω3 = 2ω1,
these conditions require that

n(ω1) = n(2ω1), (2.3.5)

which is clearly not possible when n(ω) increases monotonically with ω. For the case of sum-
frequency generation, the argument is slightly more complicated, but the conclusion is the
same. To show that phase matching is not possible in this case, we first rewrite Eq. (2.3.3) as

n3 = n1ω1 + n2ω2

ω3
. (2.3.6)

This result is now used to express the refractive index difference n3 − n2 as

n3 − n2 = n1ω1 + n2ω2 − n2ω3

ω3
= n1ω1 − n2(ω3 − ω2)

ω3
= n1ω1 − n2ω1

ω3
,



76 Chapter 2

or finally as

n3 − n2 = (n1 − n2)
ω1

ω3
. (2.3.7)

For normal dispersion, n3 must be greater than n2, and hence the left-hand side of this equation
must be positive. However, n2 must also be greater than n1, showing that the right-hand side
must be negative, which demonstrates that Eq. (2.3.7) cannot possess a solution.

In principle, it is possible to achieve the phase-matching condition by making use of anoma-
lous dispersion, that is, the decrease in refractive index with increasing frequency that occurs
near an absorption feature. However, the most common procedure for achieving phase match-
ing is to make use of use of birefringence, which is displayed by many crystals. Birefringence
is the dependence of the refractive index on the direction of polarization of the optical radia-
tion. Not all crystals display birefringence; in particular, crystals belonging to the cubic crystal
system are optically isotropic (i.e., show no birefringence) and thus are not phase-matchable by
this procedure.

The linear optical properties of the various crystal systems are summarized in Table 2.3.1.
In order to achieve phase matching through the use of birefringent crystals, the highest-

frequency wave ω3 = ω1 + ω2 is polarized in the direction that gives it the lower of the two
possible refractive indices. For the case of a negative uniaxial crystal, as in the example shown
in Fig. 2.3.2, this choice corresponds to the extraordinary polarization. There are two choices
for the polarizations of the lower-frequency waves. Midwinter and Warner (1965) define type I
phase matching to be the case in which the two lower-frequency waves have the same polar-
ization, and type II to be the case where the polarizations are orthogonal. The possibilities are
summarized in Table 2.3.2. No assumptions regarding the relative sizes of ω1 and ω2 are im-
plied by the classification scheme. However, for type II phase matching it is easier to achieve
the phase-matching condition (i.e., less birefringence is required) if ω2 > ω1 for the choice of
ω1 and ω2 used in writing the table. Also, independent of the relative values of ω1 and ω2,
type I phase matching is easier to achieve than type II.

TABLE 2.3.1: Linear optical classification of the various crystal systems.

System Linear Optical Classification

Triclinic, monoclinic, orthorhombic Biaxial

Trigonal, tetragonal, hexagonal Uniaxial

Cubic Isotropic

Careful control of the refractive indices at each of the three optical frequencies is required
in order to achieve the phase-matching condition (�k = 0). Typically phase matching is ac-
complished by one of two methods: angle tuning and temperature tuning.
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FIGURE 2.3.2: Dispersion of the refractive indices of a negative uniaxial crystal. For the opposite case
of a positive uniaxial crystal, the extraordinary index ne is greater than the ordinary index no.

TABLE 2.3.2: Phase-matching methods for uniaxial crystals.

Positive uniaxial
(ne > n0)

Negative uniaxial
(ne < n0)

Type I no
3ω3 = ne

1ω1 + ne
2ω2 ne

3ω3 = no
1ω1 + no

2ω2

Type II no
3ω3 = no

1ω1 + ne
2ω2 ne

3ω3 = ne
1ω1 + no

2ω2

Angle Tuning

This method involves precise angular orientation of the crystal with respect to the propagation
direction of the incident light. It is most simply described for the case of a uniaxial crystal, and
the following discussion is restricted to this case. Uniaxial crystals are characterized by a partic-
ular direction known as the optic axis (or c axis or z axis). Light polarized perpendicular to the
plane containing the propagation vector k and the optic axis is called the ordinary polarization.
Such light experiences the ordinary refractive index no. Light polarized in the plane containing
k and the optic axis is called the extraordinary polarization and experiences a refractive index
ne(θ) that depends on the angle θ between the optic axis and k according to the relation∗

1

ne(θ)2
= sin2 θ

n̄2
e

+ cos2 θ

n2
o

. (2.3.8)

Here n̄e is the principal value of the extraordinary refractive index. Note that ne(θ) is equal
to the principal value n̄e for θ = 90 degrees and is equal to no for θ = 0. Phase matching is
achieved by adjusting the angle θ to obtain the value of ne(θ) for which the condition �k = 0
is satisfied.

∗ For a derivation of this relation, see, for example, Born and Wolf (1975), Section 14.3; Klein (1970),
Eq. (11.160a); or Zernike and Midwinter (1973a), Eq. (1.26).



78 Chapter 2

As an illustration of angle phase matching, we consider the case of type I second-harmonic
generation in a negative uniaxial crystal, as shown in Fig. 2.3.3. Since ne is less than no for
a negative uniaxial crystal, one chooses the fundamental frequency to propagate as an ordi-
nary wave and the second-harmonic frequency to propagate as an extraordinary wave, in order
that the birefringence of the material can compensate for the dispersion. The phase-matching
condition (2.3.5) then becomes

ne(2ω,θ) = no(ω), (2.3.9)

or

sin2 θ

n̄e(2ω)2
+ cos2 θ

no(2ω)2
= 1

no(ω)2
. (2.3.10)

In order to simplify this equation, we replace cos2 θ by 1 − sin2 θ and solve for sin2 θ to obtain

FIGURE 2.3.3: Geometry of angle-tuned phase matching of second-harmonic generation for the case of
a negative uniaxial crystal.

sin2 θ =
1

no(ω)2
− 1

no(2ω)2

1

n̄e(2ω)2
− 1

no(2ω)2

. (2.3.11)

This equation shows how the crystal should be oriented in order to achieve the phase-matching
condition. Note that this equation does not necessarily possess a solution for a physically real-
izable orientation angle (that is, a real value of the angle θ ). For example, if for some material
the dispersion in the linear refractive index is too large or the birefringence is too small, the
right-hand side of this equation can have a magnitude larger than unity and consequently the
equation will have no solution.

The determination of the phase matching angle can be performed as a function of the wave-
lengths of the two input waves. The results of such a calculation are shown in Fig. 2.3.4 for
type-I collinear phase matching in lithium niobate. Lithium niobate is a negative uniaxial crys-
tal, and thus the two longer-wavelength waves have o polarization and the high-frequency
wave has e polarization. The label on each curve gives the phase matching angle, that is,
the angle between the wavevector of the waves and the optic axis of the crystal. This plot
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was obtained through use of the refractive index data of Jundt (1997) and of Edwards and
Lawrence (1984) which were analyzed by the commercial software package SNLO (http://
www.as-photonics.com/snlo).

FIGURE 2.3.4: Phase matching curves for type-I collinear phase matching in lithium niobate. Here λ3 is
the wavelength of the wave with the highest frequency, and the low frequency waves have wavelengths
λ1 and λ2. The number that labels each curve is the phase matching angle in degrees.

Temperature Tuning

There is one serious drawback to the use of angle tuning. Whenever the angle θ between the
propagation direction and the optic axis has a value other than 0 or 90 degrees, the Poynting
vector S and the propagation vector k are not parallel for extraordinary rays. As a result, ordi-
nary and extraordinary rays with parallel propagation vectors quickly diverge from one another
as they propagate through the crystal. This walkoff effect limits the spatial overlap of the two
waves and decreases the efficiency of any nonlinear mixing process involving such waves.

For some crystals, notably lithium niobate, the amount of birefringence is strongly tempera-
ture-dependent. As a result, it is possible to phase-match the mixing process by holding θ fixed
at 90 degrees and varying the temperature of the crystal. The temperature dependence of the
refractive indices of lithium niobate has been given by Hobden and Warner (1966).

2.4 Quasi-Phase-Matching (QPM)

Section 2.3 describes techniques that utilize the birefringence of an optical material to achieve
the phase-matching condition of nonlinear optics. This condition must be maintained for the ef-
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ficient generation of new frequency components in any nonlinear optical interaction. However,
there are circumstances under which these techniques are not suitable. For instance, a partic-
ular material may possess no birefringence (an example is gallium arsenide) or may possess
insufficient birefringence to compensate for the dispersion of the linear refractive indices over
the wavelength range of interest. The problem of insufficient birefringence becomes increas-
ingly acute at shorter wavelengths, because (as illustrated very schematically in Fig. 2.3.2) the
refractive index of a given material tends to increase rapidly with frequency at high frequen-
cies, whereas the birefringence (that is, the difference between the ordinary and extraordinary
refractive indices) tends to be more nearly constant. Another circumstance under which bire-
fringence phase matching cannot be used is when a particular application requires the use of
the d33 nonlinear coefficient, which tends to be much larger than the off-diagonal coefficients.
For example, for lithium niobate, the d31 coefficient is equal to 4.35 pm/V, whereas the d33

coefficient is equal to 27 pm/V. However, the d33 nonlinear coefficient can be accessed only if
all the interacting waves are polarized in the same direction. Under this circumstance, even if
birefringence is present it cannot be used to compensate for dispersion.

A technique known as quasi-phase-matching can be used when normal birefringence-based
phase matching cannot be implemented. The idea of quasi-phase-matching is illustrated in
Fig. 2.4.1, which shows both a single crystal of nonlinear optical material (part (a)) and a
periodically poled material (part (b)). A periodically poled material is a structure that has been
fabricated in such a manner that the orientation of one of the crystalline axes, often the c axis of
a ferroelectric material, is inverted periodically as a function of position within the material. An
inversion in the direction of the c axis has the consequence of inverting the sign of the nonlin-
ear coupling coefficient deff. This periodic alternation of the sign of deff can compensate for a
nonzero wavevector mismatch �k. The nature of this effect is illustrated in Fig. 2.4.2. Curve (a)
of this figure shows that, in a perfectly phase matched interaction in an ordinary single-crystal
nonlinear optical material, the field strength of the generated wave grows linearly with prop-
agation distance. In the presence of a wavevector mismatch (curve c), the field amplitude of

FIGURE 2.4.1: Schematic representations of a second-order nonlinear optical material in the form of (a)
a homogeneous single crystal and (b) a periodically poled material in which the positive c axis alternates
in orientation with period 	.
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the generated wave oscillates with propagation distance. The nature of quasi-phase-matching is
illustrated by curve (b). Here it is assumed that the period 	 of the alternation of the crystalline
axis has been set equal to twice the coherent buildup length Lcoh of the nonlinear interaction.
Then, each time the field amplitude of the generated wave is about to begin to decrease as a
consequence of the wavevector mismatch, a reversal of the sign of deff occurs which allows the
field amplitude to continue to grow monotonically.

FIGURE 2.4.2: Comparison of the spatial variation of the field amplitude of the generated wave in a
nonlinear optical interaction for three different phase matching conditions. Curve (a) assumes that the
phase-matching condition is perfectly satisfied, and consequently the field amplitude grows linearly with
propagation distance. Curve (c) assumes that the wavevector mismatch �k is nonzero, and consequently
the field amplitude of the generated wave oscillates periodically with distance. Curve (b) assumes the
case of a quasi-phase-matched interaction, in which the orientation of the positive c axis is periodically
modulated with a period of twice the coherent buildup length Lcoh, in order to compensate for the in-
fluence of wavevector mismatch. In this case the field amplitude grows monotonically with propagation
distance, although less rapidly than in the case of a perfectly phase-matched interaction.

A mathematical description of quasi-phase-matching can be formulated as follows. We let
d(z) denote the spatial dependence of the nonlinear coupling coefficient. In the example shown
in part (b) of Fig. 2.4.1, d(z) is simply the square-wave function which can be represented as

d(z) = deff sign
[
cos(2πz/	)

]; (2.4.1)

more complicated spatial variations are also possible. In this equation, deff denotes the nonlin-
ear coefficient of the homogeneous material. The spatial variation of the nonlinear coefficient
leads to a modification of the coupled-amplitude equations describing the nonlinear optical in-
teraction. The nature of the modification can be deduced by noting that, in the derivation of
the coupled-amplitude equations, the constant quantity deff appearing in Eq. (2.2.6) must be
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replaced by the spatially varying quantity d(z). It is useful to describe the spatial variation of
d(z) in terms of a Fourier series as

d(z) = deff

∞∑
m=−∞

Gm exp(ikmz), (2.4.2)

where km = 2πm/	 is the magnitude of the grating vector associated with the mth Fourier
component of d(z). For the form of modulation given in the example of Eq. (2.4.1), the coeffi-
cients Gm are readily shown to be given by

Gm = (2/mπ) sin(mπ/2), (2.4.3)

from which it follows that the fundamental amplitude G1 is given by G1 = 2/π . Coupled-
amplitude equations are now derived as in Section 2.2. In performing this derivation, one
assumes that one particular Fourier component of d(z) provides the dominant coupling among
the interacting waves. After making the slowly varying amplitude approximation, one obtains
the set of equations

dA1

dz
= 2iω1dm

n1c
A3A

∗
2e

−i(�km−2km)z, (2.4.4a)

dA2

dz
= 2iω2dm

n2c
A3A

∗
1e

−i(�km−2km)z, (2.4.4b)

dA3

dz
= 2iω3dm

n3c
A1A2e

i�kmz, (2.4.4c)

where dm is the nonlinear coupling coefficient which depends on the Fourier order m according
to

dm = deffGm (2.4.5)

and where the wavevector mismatch for order m is given by

�km = k1 + k2 − k3 + km. (2.4.6)

Note that these coupled-amplitude equations are formally identical to those derived above
(that is, Eqs. (2.2.10), (2.2.12a), and (2.2.12b)) for a homogeneous material, but they involve
modified values of the nonlinear coupling coefficient deff and wavevector mismatch �k. Be-
cause of the tendency for dm to decrease with increasing values of m (see Eq. (2.4.3)), it is most
desirable to achieve quasi-phase-matching through use of a first-order (m = 1) interaction for
which

�km = k1 + k2 − k3 − 2π/	, dm = (2/π)deff. (2.4.7)
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From the first of these relations, we see that the optimum period for the quasi-phase-matched
structure is given by

	 = 2Lcoh = 2π/(k1 + k2 − k3). (2.4.8)

As a numerical example, one finds that Lcoh is equal to 3.4 µm for second-harmonic generation
of radiation at a wavelength of 1.06 µm in lithium niobate.

A number of different approaches have been proposed for the fabrication of quasi-phase-
matched structures. The idea of quasi-phase-matching originates in the very early paper by
Armstrong et al. (1962), which suggests slicing a nonlinear optical medium into thin segments
and rotating alternating segments by 180 degrees. This approach, while feasible (see, for ex-
ample Szilagyi et al., 1976), is hampered by the required micrometer-scale thinness of the
individual layers. A breakthrough came when it was discovered that the procedure for growing
lithium niobate crystals from a melt could be controlled so as to obtain a crystal with a periodic
modulation of the orientation of the ferroelectric domains and hence in the sign of deff. QPM
was demonstrated in this manner by Feng et al. (1980), Lim et al. (1989), Magel et al. (1990),
Fejer et al. (1992), and Myers et al. (1995). A further breakthrough came when Yamada et al.
(1993) demonstrated the use of a static electric field to invert the orientation of the ferroelectric
domains (and consequently of the crystalline c axis) in a thin sample of lithium niobate. In
this approach, a metallic electrode pattern in the form of long stripes is deposited onto the top
surface of a lithium niobate crystal, whereas the bottom surface is uniformly coated to act as
a ground plane. A static electric field of the order of 21 kV/mm is then applied to the mate-
rial, which leads to domain reversal only of the material directly under the top electrode. QPM
based on periodic poling has also been reported in gallium arsenide (Vodopyanov et al., 2004),
potassium titanyl phosphate (KTP) (van der Poel et al., 1990), and lithium tantalate (Meyn and
Fejer, 1997). Quasi-phase-matched materials offer promise for many applications of nonlinear
optics, some of which are outlined in the review of Byer (1997).

The examples described above involve induced phase matching in materials that possess
a second-order χ(2) nonlinear response. This approach is somewhat related to work aimed at
inducing a second-order response in amorphous materials through the application of an intense
static electric field. Under certain circumstances, the induced response persists even after the
static field is removed. Such effects have been observed in silica glass waveguides (Myers et
al., 1991) and in amorphous silicon nitride (Grassani et al., 2019). Furthermore, Khanarian et
al. (1990) have demonstrated that polymeric materials can similarly be periodically poled by
the application of a static electric field.

2.5 The Manley–Rowe Relations

Let us now consider, from a general point of view, the mutual interaction of three optical waves
propagating through a lossless nonlinear optical medium, as illustrated in Fig. 2.5.1.
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FIGURE 2.5.1: Optical waves of frequencies ω1, ω2, and ω3 = ω1 + ω2 interact in a lossless nonlinear
optical medium.

We have just derived the coupled-amplitude equations (Eqs. (2.2.10) through (2.2.12b)) that
describe the spatial variation of the amplitude of each wave. Let us now consider the spatial
variation of the intensity associated with each of these waves. Since

Ii = 2niε0cAiA
∗
i , (2.5.1)

the variation of the intensity is described by

dIi

dz
= 2niε0c

(
A∗

i

dAi

dz
+ Ai

dA∗
i

dz

)
. (2.5.2)

Through use of this result and Eq. (2.2.12a), we find that the spatial variation of the intensity of
the wave at frequency ω1 is given by

dI1

dz
= 2niε0c

2deffω
2
1

k1c2

(
iA∗

1A3A
∗
2e

−i�kz + c.c.
)

= 4ε0deffω1
(
iA3A

∗
1A

∗
2e

−i�kz + c.c.
)

or by

dI1

dz
= −8ε0deffω1 Im

(
A3A

∗
1A

∗
2e

−i�kz
)
. (2.5.3a)

We similarly find that the spatial variation of the intensities of the waves at frequencies ω2 and
ω3 is given by

dI2

dz
= −8ε0deffω2 Im

(
A3A

∗
1A

∗
2e

−i�kz
)
, (2.5.3b)

dI3

dz
= −8ε0deffω3 Im

(
A∗

3A1A2e
i�kz

)
= 8ε0deffω3 Im

(
A3A

∗
1A

∗
2e

−i�kz
)
. (2.5.3c)

We see that the sign of dI1/dz is the same as that of dI2/dz but is opposite to that of dI3/dz. We
also see that the direction of energy flow depends on the relative phases of the three interacting
fields.
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The set of Eqs. (2.5.3) shows that the total power flow is conserved, as expected for propa-
gation through a lossless medium. To demonstrate this fact, we define the total intensity as

I = I1 + I2 + I3. (2.5.4)

We then find that the spatial variation of the total intensity is given by

dI

dz
= dI1

dz
+ dI2

dz
+ dI3

dz

= −8ε0deff(ω1 + ω2 − ω3) Im
(
A3A

∗
1A

∗
2e

−i�kz
) = 0, (2.5.5)

where we have made use of Eqs. (2.5.3) and where the last equality follows from the fact that
ω3 = ω1 + ω2.

The set of Eqs. (2.5.3) also implies that

d

dz

(
I1

ω1

)
= d

dz

(
I2

ω2

)
= − d

dz

(
I3

ω3

)
, (2.5.6)

as can be verified by inspection. These equalities are known as the Manley–Rowe relations
(Manley and Rowe, 1959). Since the energy of a photon of frequency ωi is �ωi , the quantity
Ii/ωi that appears in these relations is proportional to the intensity of the wave measured in
photons per unit area per unit time. The Manley–Rowe relations can alternatively be expressed
as

d

dz

(
I2

ω2
+ I3

ω3

)
= 0,

d

dz

(
I1

ω1
+ I3

ω3

)
= 0,

d

dz

(
I1

ω1
− I2

ω2

)
= 0. (2.5.7)

These equations can be formally integrated to obtain the three conserved quantities (conserved
in the sense that they are spatially invariant) M1, M2, and M3, which are given by

M1 = I2

ω2
+ I3

ω3
, M2 = I1

ω1
+ I3

ω3
, M3 = I1

ω1
− I2

ω2
. (2.5.8)

These relations tell us that the rate at which photons at frequency ω1 are created is equal
to the rate at which photons at frequency ω2 are created and is equal to the rate at which
photons at frequency ω3 are destroyed. This result can be understood intuitively by means of
the energy level description of a three-wave mixing process, which is shown in Fig. 2.5.2. This
diagram shows that, for a lossless medium, the creation of an ω1 photon must be accompanied
by the creation of an ω2 photon and the annihilation of an ω3 photon. It seems at first sight
surprising that the Manley–Rowe relations should be consistent with this quantum-mechanical
interpretation, when our derivation of these relations appears to be entirely classical. Note,
however, that our derivation implicitly assumes that the nonlinear susceptibility possesses full
permutation symmetry in that we have taken the coupling constant deff to have the same value
in each of the coupled-amplitude equations (2.2.10), (2.2.12a), and (2.2.12b). We remarked
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FIGURE 2.5.2: Photon description of the interaction of three optical waves.

earlier (following Eq. (1.5.9)) that in a sense the condition of full permutation symmetry is a
consequence of the laws of quantum mechanics.

2.6 Sum-Frequency Generation

In Section 2.2, we treated the process of sum-frequency generation in the simple limit in which
the two input fields are undepleted by the nonlinear interaction. In the present section, we treat
this process more generally. We assume the configuration shown in Fig. 2.6.1.

The coupled-amplitude equations describing this interaction were derived above and appear
as Eqs. (2.2.10) through (2.2.12b). These equations can be solved exactly in terms of the Jacobi
elliptic functions. We shall not present the details of this solution, because the method is very
similar to the one that we use in Section 2.7 to treat second-harmonic generation. Details can
be found in Armstrong et al. (1962); see also Problem 2 at the end of this chapter.

Instead, we treat the somewhat simpler (but more illustrative) case in which one of the
applied fields (taken to be at frequency ω2) is strong, but the other field (at frequency ω1) is
weak. This situation would apply to the conversion of a weak infrared signal of frequency ω1 to
a visible frequency ω3 by mixing with an intense laser beam of frequency ω2 (see, for example,
Boyd and Townes, 1977a). This process is known as upconversion, because in this process the
information-bearing beam is converted to a higher frequency. Usually optical-frequency waves
are easier to detect with good sensitivity than are infrared waves. Since we can assume that the

FIGURE 2.6.1: Sum-frequency generation. Typically, no input field is applied at frequency ω3.
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amplitude A2 of the field at frequency ω2 is unaffected by the interaction, we can take A2 to
be a constant in the coupled-amplitude equations (Eqs. (2.2.10) through (2.2.12b)), which then
reduce to the simpler set

dA1

dz
= K1A3e

−i�kz, (2.6.1a)

dA3

dz
= K3A1e

+i�kz, (2.6.1b)

where we have introduced the quantities

K1 = 2iω2
1deff

k1c2
A∗

2, K3 = 2iω2
3deff

k3c2
A2, (2.6.2a)

and

�k = k1 + k2 − k3. (2.6.2b)

The solution to Eqs. (2.6.1) is particularly simple if we set �k = 0, and we treat this case
first. We take the derivative of Eq. (2.6.1a) to obtain

d2A1

dz2
= K1

dA3

dz
. (2.6.3)

We now use Eq. (2.6.1b) to eliminate dA3/dz from the right-hand side of this equation to obtain
an equation involving only A1(z):

d2A1

dz2
= −κ2A1, (2.6.4)

where we have introduced the positive coupling coefficient κ2 defined by

κ2 ≡ −K1K3 = 4ω2
1ω

2
3d

2
eff|A2|2

k1k3c4
. (2.6.5)

The general solution to Eq. (2.6.4) is

A1(z) = B cosκz + C sinκz. (2.6.6a)

We now obtain the form of A3(z) through use of Eq. (2.6.1a), which shows that A3(z) =
(dA1/dz)/K1, or

A3(z) = −Bκ

K1
sinκz + Cκ

K1
cosκz. (2.6.6b)

We next find the solution that satisfies the appropriate boundary conditions. We assume that
the ω3 field is not present at the input, so that the boundary conditions become A3(0) = 0 with
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A1(0) specified. We find from Eq. (2.6.6b) that the boundary condition A3(0) = 0 implies that
C = 0, and from Eq. (2.6.6a) that B = A1(0). The solution for the ω1 field is thus given by

A1(z) = A1(0) cosκz (2.6.7)

and for the ω3 field by

A3(z) = −A1(0)
κ

K1
sinκz. (2.6.8)

We next express the ratio κ/K1 as follows:

κ

K1
= 2ω1ω3deff|A2|

(k1k3)1/2c2

k1c
2

2iω2
1deffA

∗
2

= −i

(
n1ω3

n3ω1

)1/2 |A2|
A∗

2
.

The ratio |A2|/A∗
2 can be represented as

|A2|
A∗

2
= A2

A2

|A2|
A∗

2
= A2|A2|

|A2|2 = A2

|A2| = eiφ2,

where φ2 denotes the phase of A2. We hence find that

A3(z) = i

(
n1ω3

n3ω1

)1/2

A1(0) sinκzeiφ2 . (2.6.9)

The nature of the solution given by Eqs. (2.6.7) and (2.6.9) is illustrated in Fig. 2.6.2.
Let us next solve Eqs. (2.6.1) for the general case of arbitrary wave vector mismatch. We

seek a solution to these equations of the form

A1(z) = (Feigz + Ge−igz)e−i�kz/2, (2.6.10)

A3(z) = (Ceigz + De−igz)ei�kz/2, (2.6.11)

FIGURE 2.6.2: Variation of |A1|2 and |A3|2 for the case of perfect phase matching in the undepleted-
pump approximation.
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where g gives the rate of spatial variation of the fields and where C, D, F , and G are con-
stants whose values depend on the boundary conditions. We take this form for the trial solution
because we expect the ω1 and ω3 waves to display the same spatial variation, since they are
coupled to each other. We separate out the factors e±i�kz/2 because doing so simplifies the
final form of the solution. Equations (2.6.10) and (2.6.11) are now substituted into Eq. (2.6.1a),
to obtain (

igFeigz − igGe−igz
)
e−(1/2)i�kz − 1

2 i�k
(
Feigz + Ge−igz

)
e−(1/2)i�kz

= (
K1Ceigz + K1De−igz

)
e−(1/2)i�kz. (2.6.12)

Since this equation must hold for all values of z, the terms that vary as eigz and e−igz must each
maintain the equality separately; the coefficients of these terms thus must be related by

F
(
ig − 1

2 i�k
) = K1C, (2.6.13)

−G
(
ig + 1

2 i�k
) = K1D. (2.6.14)

In a similar fashion, we find by substituting the trial solution into Eq. (2.6.1b) that(
igCeigz − igDe−igz

)
e(1/2)i�kz + 1

2 i�k
(
Ceigz + De−igz

)
e(1/2)i�kz

= (
K3Feigz + K3Ge−igz

)
e(1/2)i�kz, (2.6.15)

and in order for this equation to hold for all values of z, the coefficients must satisfy

C
(
ig + 1

2 i�k
) = K3F, (2.6.16)

−D
(
ig − 1

2 i�k
) = K3G. (2.6.17)

Equations (2.6.13) and (2.6.16) constitute simultaneous equations for F and C. We write
these equations in matrix form as[

i
(
g − 1

2�k
) −K1

−K3 i
(
g + 1

2�k
)
][

F

C

]
= 0.

A solution to this set of equations exists only if the determinant of the matrix of coefficients
vanishes, i.e., if

g2 = −K1K3 + 1
4�k2. (2.6.18)

As before (cf. Eq. (2.6.5)), we introduce the positive quantity κ2 = −K1K3, so that we can
express the solution to Eq. (2.6.18) as

g =
√

κ2 + 1
4�k2. (2.6.19)
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In determining g we take only the positive square root in the foregoing expression, since our
trial solution (2.6.10) and (2.6.11) explicitly contains both the e+gz and e−gz spatial variations.

The general solution to our original set of equations (2.6.1) is given by Eqs. (2.6.10) and
(2.6.11) with g given by Eq. (2.6.19). We evaluate the arbitrary constants C, D, F , and G

appearing in the general solution by applying appropriate boundary conditions. We assume that
the fields A1 and A3 are specified at the input plane z = 0 of the nonlinear medium, so that
A1(0) and A3(0) are known. Then, by evaluating Eqs. (2.6.10) and (2.6.11) at z = 0, we find
that

A1(0) = F + G, (2.6.20)

A3(0) = C + D. (2.6.21)

Equations (2.6.13) and (2.6.14) give two additional relations among the quantities C, D, F , and
G. Consequently there are four independent linear equations relating the four quantities C, D,
F , and G, and their simultaneous solution specifies these four quantities. The values of C, D,
F , and G thereby obtained are introduced into the trial solutions (2.6.10) and (2.6.11) to obtain
the solution that meets the boundary conditions. This solution is given by

A1(z) =
[
A1(0) cosgz +

(
K1

g
A3(0) + i�k

2g
A1(0)

)
singz

]
e−(1/2)i�kz, (2.6.22)

A3(z) =
[
A3(0) cosgz +

(−i�k

2g
A3(0) + K3

g
A1(0)

)
singz

]
e(1/2)i�kz. (2.6.23)

In order to interpret this result, let us consider the special case in which no sum-frequency
field is incident on the medium, so that A3(0) = 0. Equation (2.6.23) then reduces to

A3(z) = K3

g
A1(0) singz e(1/2)i�kz (2.6.24)

and the intensity of the generated wave is proportional to

∣∣A3(z)
∣∣2 = ∣∣A1(0)

∣∣2 |K3|2
g2

sin2 gz, (2.6.25)

where g is given as before by Eq. (2.6.19). We note that the characteristic scale length g−1 of the
interaction becomes shorter as �k increases. However, as �k increases the maximum intensity
of the generated wave decreases. Since, according to Eq. (2.6.25), the intensity of the generated
wave is inversely proportional to g2, we see that as �k is increased the maximum intensity
of the generated wave is decreased by the factor |K3|2/(κ2 + 1

4�k2). This sort of behavior is
illustrated in Fig. 2.6.3, in which the predictions of Eq. (2.6.25) are displayed graphically.
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FIGURE 2.6.3: Spatial variation of the sum-frequency wave in the undepleted-pump approximation.

2.7 Second-Harmonic Generation

In this section we present a mathematical description of the process of second-harmonic gen-
eration, shown symbolically in Fig. 2.7.1. We assume that the medium is lossless both at the
fundamental frequency ω1 and at the second-harmonic frequency ω2 =2ω1, so that the non-
linear susceptibility obeys the condition of full permutation symmetry. We treat the interacting
waves as plane waves of infinite transverse extent. Our discussion closely follows that of one
of the first theoretical treatments of second-harmonic generation (Armstrong et al., 1962).

We take the total electric field within the nonlinear medium to be given by

Ẽ(z, t) = Ẽ1(z, t) + Ẽ2(z, t), (2.7.1)

where each component is expressed in terms of a complex amplitude Ej(z) and slowly varying
complex amplitude Aj(z) according to

Ẽj (z, t) = Ej(z)e
−iωj t + c.c., (2.7.2)

for j = 1,2, where

Ej(z) = Aj(z)e
ikj z, (2.7.3)

and where the propagation constants and refractive indices are given by

kj = njωj/c, nj = [
ε(1)(ωj )

]1/2
. (2.7.4)

We assume that each frequency component of the electric field obeys the driven wave equation
(see also Eq. (2.1.21))

∂2Ẽj

∂z2
− ε(1)(ωj )

c2

∂2Ẽj

∂t2
= 1

ε0c2

∂2

∂t2
P̃j . (2.7.5)
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FIGURE 2.7.1: Second-harmonic generation.

The nonlinear polarization is represented as

P̃ NL(z, t) = P̃1(z, t) + P̃2(z, t) (2.7.6)

with

P̃j (z, t) = Pj (z)e
−iωj t + c.c., j = 1,2. (2.7.7)

The expressions for the polarization amplitudes are given according to Eqs. (1.5.28) and
(1.5.29) by

P1(z) = 4ε0deffE2E
∗
1 = 4ε0deffA2A

∗
1e

i(k2−k1)z (2.7.8)

and

P2(z) = 2ε0deffE
2
1 = 2ε0deffA

2
1e

2ik1z. (2.7.9)

Note that the degeneracy factors appearing in these two expressions are different. We obtain
coupled-amplitude equations for the two frequency components by methods analogous to those
used in Section 2.2 in deriving the coupled-amplitude equations for sum-frequency generation.
We find that

dA1

dz
= 2iω2

1deff

k1c2
A2A

∗
1e

−i�kz (2.7.10)

and

dA2

dz
= iω2

2deff

k2c2
A2

1e
i�kz, (2.7.11)

where

�k = 2k1 − k2. (2.7.12)

In the undepleted-pump approximation (i.e., A1 constant), Eq. (2.7.11) can be integrated im-
mediately to obtain an expression for the spatial dependence of the second-harmonic field
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amplitude. More generally, the pair of coupled equations must be solved simultaneously. To
do so, it is convenient to work with the modulus and phase of each of the field amplitudes
rather than with the complex quantities themselves. It is also convenient to express these am-
plitudes in dimensionless form. To do so, we write the complex, slowly varying field amplitudes
as

A1 =
(

I

2n1ε0c

)1/2

u1e
iφ1, (2.7.13)

A2 =
(

I

2n2ε0c

)1/2

u2e
iφ2 . (2.7.14)

Here we have introduced the total intensity of the two waves,

I = I1 + I2, (2.7.15)

where the intensity of each wave is given by

Ij = 2njε0c|Aj |2. (2.7.16)

As a consequence of the Manley–Rowe relations, the total intensity I is invariant under propa-
gation. The real, normalized field amplitudes u1 and u2 are defined such that u2

1 + u2
2 is also a

conserved (i.e., spatially invariant) quantity that satisfies the relation

u1(z)
2 + u2(z)

2 = 1. (2.7.17)

We next introduce a normalized distance parameter

ζ = z/l, (2.7.18)

where

l =
(

n2
1n2ε0c

2I

)1/2
c

ω1deff
(2.7.19)

is the characteristic distance over which the fields exchange energy. We also introduce the
relative phase of the interacting fields,

θ = 2φ1 − φ2 + �kz, (2.7.20)

and a normalized phase-mismatch parameter

�s = �kl. (2.7.21)
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The quantities uj , φj , ζ , and �s defined in Eqs. (2.7.13) through (2.7.21) are now introduced
into the coupled-amplitude equations (2.7.10) and (2.7.11), which reduce after straightforward
(but lengthy) algebra to the set of coupled equations for the three real quantities u1, u2, and θ :

du1

dζ
= u1u2 sin θ, (2.7.22)

du2

dζ
= −u2

1 sin θ, (2.7.23)

dθ

dζ
= �s + cos θ

sin θ

d

dζ

(
lnu2

1u2
)
. (2.7.24)

This set of equations has been solved under general conditions by Armstrong et al. We shall
return later to a discussion of the general solution, but for now we assume the case of perfect
phase matching so that �k and hence �s vanish. It is easy to verify by direct differentiation
that, for �s = 0, Eq. (2.7.24) can be rewritten as

d

dζ
ln

(
u2

1u2 cos θ
) = 0. (2.7.25)

Hence the quantity ln(cos θu2
1u2) is a constant, which we call ln�, so that the solution to

Eq. (2.7.25) can be expressed as

u2
1u2 cos θ = �. (2.7.26)

The quantity � is independent of the normalized propagation distance ζ , and thus the value of �

can be determined from the known values of u1, u2, and θ at the entrance face to the nonlinear
medium, ζ = 0.

We have thus found two conserved quantities: u2
1 + u2

2 (according to Eq. (2.7.17)) and
u2

1u2 cos θ (according to Eq. (2.7.26)). These conserved quantities can be used to decouple
the set of equations (2.7.22)–(2.7.24). Equation (2.7.23), for instance, can be written using
Eq. (2.7.17) and the identity sin2 θ + cos2 θ = 1 as

du2

dζ
= ±(

1 − u2
2

)(
1 − cos2 θ

)1/2
. (2.7.27)

Equations (2.7.26) and (2.7.17) are next used to express cos2 θ in terms of the conserved quan-
tity � and the unknown function u2; the resulting expression is substituted into Eq. (2.7.27),
which becomes

du2

dζ
= ±(

1 − u2
2

)(
1 − �2

u4
1u

2
2

)1/2

= ±(
1 − u2

2

)(
1 − �2

(1 − u2
2)

2u2
2

)1/2

. (2.7.28)
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This result is simplified algebraically to give

u2
du2

dζ
= ±[(

1 − u2
2

)2
u2

2 − �2]1/2
,

or

du2
2

dζ
= ±2

[(
1 − u2

2

)2
u2

2 − �2]1/2
. (2.7.29)

This equation is of a standard form, whose solution can be expressed in terms of the Jacobi
elliptic functions. An example of the solution for one particular choice of initial conditions
is illustrated in Fig. 2.7.2. Note that, in general, the fundamental and second-harmonic fields
interchange energy periodically.

FIGURE 2.7.2: Typical solution to Eq. (2.7.29), after Armstrong et al. (1962).

The solution of Eq. (2.7.29) becomes particularly simple for the special case in which the
constant � vanishes. The condition � = 0 occurs whenever the amplitude of either of the two
input fields is equal to zero or whenever the fields are initially phased so that cos θ = 0. We
note that since � is a conserved quantity, it is then equal to zero for all values of ζ , which in
general requires (see Eq. (2.7.26)) that

cos θ = 0. (2.7.30a)

For definiteness, we assume that

sin θ = −1 (2.7.30b)

(rather than +1). We hence see that the relative phase of the interacting fields is spatially in-
variant for the case of � = 0. In addition, when � = 0 the coupled-amplitude equations (2.7.22)
through (2.7.24) take on the relatively simple forms
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du1

dζ
= −u1u2, (2.7.31)

du2

dζ
= u2

1. (2.7.32)

This second equation can be transformed through use of Eq. (2.7.17) to obtain

du2

dζ
= 1 − u2

2, (2.7.33)

whose solution is

u2 = tanh(ζ + ζ0), (2.7.34)

where ζ0 is a constant of integration.
We now assume that the initial conditions are

u1(0) = 1, u2(0) = 0. (2.7.35)

These conditions imply that no second-harmonic light is incident on the nonlinear crystal, as is
the case in most experiments. Then, since tanh 0 = 0, we see that the integration constant ζ0 is
equal to 0 and hence that

u2(ζ ) = tanh ζ. (2.7.36)

The amplitude u1 of the fundamental wave is found immediately through use of Eq. (2.7.32)
(or through use of Eq. (2.7.17)) to be given by

u1(ζ ) = sech ζ. (2.7.37)

Recall that ζ = z/l. For the case in which only the fundamental field is present at z = 0, the
length parameter of Eq. (2.7.19) is given by

l = (n1n2)
1/2c

2ω1deff|A1(0)| . (2.7.38)

The solution given by Eqs. (2.7.36) and (2.7.37) is shown graphically in Fig. 2.7.3. We see
that in the limit ζ → ∞ all of the incident radiation is converted into the second harmonic.
In addition, we note that tanh (ζ + ζ0) has the same asymptotic behavior for any finite value
of ζ0. Thus, whenever � is equal to zero, all of the radiation at the fundamental frequency will
eventually be converted to the second harmonic, for any initial ratio of u1 to u2.
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FIGURE 2.7.3: Spatial variations of the fundamental and second-harmonic field amplitudes for the case
of perfect phase matching and the boundary condition u2(0) = 0.

FIGURE 2.7.4: Effect of wavevector mismatch on the efficiency of second-harmonic generation.

As mentioned above, Armstrong et al. have also solved the coupled-amplitude equations
describing second-harmonic generation for arbitrary �k. They find that in this case the solution
can also be expressed in terms of elliptic integrals. We shall not reproduce their derivation here;
instead we summarize their results graphically in Fig. 2.7.4 for the case in which no radiation is
incident at the second-harmonic frequency. We see from the figure that the effect of a nonzero
propagation-vector mismatch is to lower the conversion efficiency and to lead to an oscillatory
solution.

As an illustration of how to apply the formulas derived in this section, we estimate the
conversion efficiency for second-harmonic generation attainable using typical cw lasers. We
first estimate the numerical value of the parameter ζ given by Eqs. (2.7.18) and (2.7.38) at the
plane z = L, where L is the length of the nonlinear crystal. We assume that the incident laser
beam carries power P and is focused to a spot size w0 at the center of the crystal. The field
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strength A1 can then be estimated by the expression

I1 = P

πw2
0

= 2n1ε0cA
2
1. (2.7.39)

We assume that the beam is optimally focused in the sense that the focal spot size w0 is chosen
so that the depth b of the focal region is equal to the length L of the crystal, that is,∗

b ≡ 2πw2
0

λ1/n1
= L, (2.7.40)

where λ1 denotes the wavelength of the incident wave in vacuum. From Eqs. (2.7.39) and
(2.7.40), the characteristic value of the laser field amplitude under these conditions is seen to
be given by

A1 =
(

P

ε0cλ1L

)1/2

, (2.7.41)

and hence the parameter ζ = L/l is given through use of Eq. (2.7.38) by

ζ =
(

16π2d2
effLP

ε0cn1n2λ
3
1

)1/2

. (2.7.42)

Typical values of the parameters appearing in this equation are deff = 4 × 10−12 m/V, L =
0.01 m, P = 1 W, λ = 0.5×10−6 m, and n = 2, which lead to the value ζ = 0.14. The efficiency
η for conversion of power from the ω1 wave to the ω2 wave can be defined by

η = u2
2(L)

u2
1(0)

, (2.7.43)

and from Eq. (2.7.36), we see that for the values just given, η is of the order of 2%. However,
under optimized conditions, an efficiency as large as 55% has been observed (Chaitanya Kumar
et al., 2011).

2.7.1 Applications of Second-Harmonic Generation

Surface Nonlinear Optics

One important application of second-harmonic generation is its use as an exacting diagnostic
of the surface properties of optical materials. As noted above, second-harmonic generation is a
forbidden process for a material that possesses a center of inversion symmetry. The surface of
a material clearly lacks inversion symmetry, and thus second-harmonic generation can occur at

∗ See also the discussion of nonlinear interactions involving focused Gaussian beams presented in Section 2.10.
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the surface of a material of any symmetry group. For the same reason, the intensity and angular
distribution of surface second-harmonic generation depends critically on the morphology of
a surface and on the presence of impurities on the surface of the material. Good reviews of
the early work in this area are given by Shen (1985, 1989), and procedures for calculating the
intensity of the second-harmonic light are given by Mizrahi and Sipe (1988a). Second-harmonic
generation at a surface is described more fully in Section 2.9.

Nonlinear Optical Microscopy

An important application of harmonic generation is nonlinear microscopy. One motivation
for using nonlinear effects and in particular harmonic generation in microscopy is to provide
enhanced transverse and longitudinal resolution. Resolution is enhanced because nonlinear
processes are excited most efficiently in the region of maximum intensity of a focused laser
beam. Microscopy based on harmonic generation also offers the advantage that the signal is
far removed in frequency from unwanted background light that results from linear scattering
of the incident laser beam. Moreover, light at a wavelength sufficiently long that it will not
damage biological materials can be used to achieve a resolution that would normally require a
much shorter wavelength. Harmonic-generation microscopy can make use either of the intrinsic
nonlinear response of biological materials or can be used with materials that are labeled with
nonlinear optical chromophores. Microscopy based on second-harmonic generation in the con-
figuration of a confocal microscope and excited by femtosecond laser pulses was introduced
by Curley et al. (1992). Also, harmonic-generation microscopy can be used to form images of
transparent (phase) objects, because the phase matching condition of nonlinear optics depends
sensitively on the refractive index variation within the sample being imaged (Muller et al.,
1998).

Guo et al. (1997) have used tomography based on second-harmonic generation to character-
ize biological materials. Gauderon et al. (1998) have demonstrated three-dimensional imaging
based on second-harmonic generation with fs laser pulses. They used this method to char-
acterize the microcrystal structure of lithium triborate. Campagnola et al. (1999) have used
second-harmonic generation to produce images of live cells. Moreaux et al. (2000) have used
styrl dyes as labels to image membranes using second-harmonic generation microscopy.

Third-harmonic generation has also been used for imaging applications. Muller et al. (1998)
have demonstrated imaging of transparent objects using microscopy based on third-harmonic
generation. Yelin and Silberberg (1999) have constructed a scanning microscope based on third-
harmonic generation and have used it for the imaging of biological materials.

Nonlinear optical interactions that do not entail harmonic generation also have been shown
to hold great promise in optical microscopy. For example, Gustafsson (2005) has shown that
through the use of structured illumination and a sample that exhibits saturable absorption, he
was able to achieve a transverse resolution of 50 nm. Moreover, Westphal and Hell (2005) have
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shown the depletion of fluorescence by means of stimulated emission can be used to achieve
extremely high subwavelength resolution (in particular, 16 nm or 1/50 of their operating wave-
length) in optical microscopy.

2.8 Difference-Frequency Generation and Parametric Amplification

Let us now consider the situation shown in Fig. 2.8.1, in which optical waves at frequencies ω3

and ω1 interact in a lossless nonlinear optical medium to produce an output wave at the differ-
ence frequency ω2 = ω3 −ω1. For simplicity, we assume that the ω3 wave is a strong wave (i.e.,
is undepleted by the nonlinear interaction, so that we can treat A3 as being essentially constant),
and for the present we assume that no field is incident on the medium at frequency ω2.

The coupled-amplitude equations describing this interaction are obtained by a method anal-
ogous to that used in Section 2.2 to obtain the equations describing sum-frequency generation
and have the form

dA1

dz
= 2ideffω

2
1

k1c2
A3A

∗
2e

i�kz, (2.8.1a)

dA2

dz
= 2ideffω

2
2

k2c2
A3A

∗
1e

i�kz, (2.8.1b)

where

�k = k3 − k1 − k2. (2.8.2)

We first solve these equations for the case of perfect phase matching—that is, �k = 0. We
differentiate Eq. (2.8.1b) with respect to z and introduce the complex conjugate of Eq. (2.8.1a)
to eliminate dA∗

1/dz from the right-hand side. We thereby obtain the equation

d2A2

dz2
= 4d2

effω
2
1ω

2
2

k1k2c4
A3A

∗
3A2 ≡ κ2A2, (2.8.3)

where we have introduced the real coupling constant κ given by

κ2 = 4d2
effω

2
1ω

2
2

k1k2c4
|A3|2. (2.8.4)

FIGURE 2.8.1: Difference-frequency generation. Typically, no input field is applied at frequency ω2.
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FIGURE 2.8.2: Spatial evolution of A1 and A2 for difference-frequency generation for the case �k = 0
in the constant-pump approximation.

The general solution to this equation is

A2(z) = C sinhκz + D coshκz, (2.8.5)

where C and D are integration constants whose values depend on the initial conditions.
We now assume the initial conditions

A2(0) = 0, A1(0) arbitrary. (2.8.6)

The solution to Eqs. (2.8.1a) and (2.8.1b) that meets these initial conditions is readily found to
be

A1(z) = A1(0) coshκz, (2.8.7)

A2(z) = i
(n1ω2

n2ω1

)1/2 A3

|A3|A
∗
1(0) sinhκz. (2.8.8)

The nature of this solution is shown in Fig. 2.8.2. Note that both the ω1 and the ω2 fields ex-
perience monotonic growth and that asymptotically each field experiences exponential growth
(i.e., for κz 
 1, each grows as eκz). We see from the form of the solution that the ω1 field
retains its initial phase and is simply amplified by the interaction, whereas the generated wave
at frequency ω2 has a phase that depends both on that of the pump wave and on that of the ω1

wave. This behavior of monotonic growth of both waves is qualitatively dissimilar from that of
sum-frequency generation, where oscillatory behavior occurs.

The reason for the different behavior in this case can be understood intuitively in terms of
the energy-level diagram shown in Fig. 2.8.3. We can think of diagram (a) as showing how the
presence of a field at frequency ω1 stimulates the downward transition that leads to the genera-
tion of the ω2 field. Likewise, diagram (b) shows that the ω2 field stimulates the generation of
the ω1 field. Hence the generation of the ω1 field reinforces the generation of the ω2 field, and
vice versa, leading to the exponential growth of each wave.

Since the ω1 field is amplified by the process of difference-frequency generation, which is
a parametric process, this process is also known as parametric amplification. In this language,
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FIGURE 2.8.3: Illustration of how the generation of light at frequency ω2 reinforces the generation of
light at frequency ω1 and vice versa.

one says that the signal wave (the ω1 wave) is amplified by the nonlinear mixing process, and an
idler wave (at ω2 = ω3 − ω1) is generated by the process. If mirrors that are highly reflecting at
frequencies ω1 and/or ω2 are placed on either side of the nonlinear medium to form an optical
resonator, oscillation can occur as a consequence of the gain of the parametric amplification
process. Such a device is known as a parametric oscillator and is described in greater detail in
the following section. The first cw optical parametric oscillator was built by Giordmaine and
Miller (1965, 1966). The theory of parametric amplification and parametric oscillators has been
reviewed by Byer and Herbst (1977).

The solution to the coupled-amplitude equations (2.8.1) for the general case of arbitrary
�k �= 0 makes a good exercise for the reader (see Problem 4 at the end of this chapter).

2.9 Optical Parametric Oscillators

We noted in the previous section that the process of difference-frequency generation necessar-
ily leads to the amplification of the lower-frequency input field. This amplification process is
known as optical parametric amplification, and the gain resulting from this process can be used
to construct a device known as an optical parametric oscillator (OPO). These features are sum-
marized in Fig. 2.9.1. Here we adopt the standard notation (see part (a) of the figure) that the
highest-frequency wave is known as the pump wave and the lower-frequency waves are known
as the signal and idler waves. There is no consistent usage regarding the naming of the signal
and idler waves. However, the desired output wave is typically referred to as the signal wave.
The gain associated with the process of optical parametric amplification can in the presence
of feedback produce oscillation, as shown in part (b) of the figure. If the end mirrors of this
device are highly reflecting at both frequencies ωs and ωi, the device is known as a doubly
resonant oscillator; if they are highly reflecting at ωs or ωi but not at both, the device is known
as a singly resonant oscillator. Note that when an OPO is operated near the point of degeneracy
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FIGURE 2.9.1: (a) Relationship between difference-frequency generation and optical parametric am-
plification. (b) The gain associated with the process of optical parametric amplification can be used to
construct the device shown, which is known as an optical parametric oscillator.

(ωs = ωi) it tends to operate as a doubly resonant oscillator.∗ The optical parametric oscillator
has proven to be a versatile source of frequency-tunable radiation throughout the infrared, vis-
ible, and ultraviolet spectral regions. It can produce either a continuous-wave output or pulses
of nanosecond, picosecond, or femtosecond duration.

Let us recall the treatment of Section 2.8 on how to calculate the gain of the process of opti-
cal parametric amplification. For convenience, we label the pump, signal, and idler frequencies
as ωp = ω3,ωs = ω1, and ωi = ω2. We take the coupled-amplitude equations to have the form
(see also Eqs. (2.8.1))

dA1

dz
= 2iω2

1deff

k1c2
A3A

∗
2e

i�kz, (2.9.1a)

dA2

dz
= 2iω2

2deff

k2c2
A3A

∗
1e

i�kz, (2.9.1b)

where �k ≡ k3 − k1 − k2. These equations possess the solution (see Problem 4 at the end of
this chapter)

A1(z) =
[
A1(0)

(
coshgz − i�k

2g
sinhgz

)
+ κ1

g
A∗

2(0) sinhgz

]
ei�kz/2, (2.9.2a)

A2(z) =
[
A2(0)

(
coshgz − i�k

2g
sinhgz

)
+ κ2

g
A∗

1(0) sinhgz

]
ei�kz/2, (2.9.2b)

where we have introduced the quantities

g = [
κ1κ

∗
2 − (�k/2)2]1/2 and κi = 2iω2

i deffA3

kic2
. (2.9.3)

For the special case of perfect phase matching (�k = 0) and under the assumption that the input
amplitude of field A2 vanishes (A2(0) = 0), the solution reduces to

A1(z) = A1(0) coshgz ⇒ 1
2A1(0) exp(gz) (2.9.4a)

∗ In principle, polarization effects can be used to suppress cavity feedback for either the signal or idler wave for the
case of type-II phase matching.
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A2(z) = i
(n1ω2

n2ω1

)1/2 A3

|A3|A
∗
1(0) sinhgz ⇒ O(1)A∗

1(0) exp(gz). (2.9.4b)

In each expression, the last form gives the asymptotic value for large z, and the symbol O(1)

means of the order of unity. One sees that asymptotically both waves experience exponential
growth, with an amplitude gain coefficient of g.

Threshold for Parametric Oscillation

We next consider the threshold condition for the establishment of parametric oscillation. We
treat the device shown in Fig. 2.9.1(b), in which the two end mirrors are assumed to be identical
but are allowed to have different (intensity) reflectivities R1 and R2 at the signal and idler
frequencies.

We first present a simple model of the threshold condition by taking it to be a statement
that the fractional energy gain per pass must equal the fractional energy loss per pass. Under
the assumptions of exact cavity resonance, of perfect phase matching (�k = 0), and that the
cavity is doubly resonant with the same reflectivity at the signal and idler frequencies (that is,
R1 =R2 ≡R, (1 − R) � 1), this condition can be expressed as(

e2gL − 1
) = 2(1 − R). (2.9.5)

Under the realistic condition that the single-pass exponential gain 2gL is not large compared to
unity, this condition becomes

gL = 1 − R. (2.9.6)

This is the threshold condition formulated by Giordmaine and Miller (1965, 1966).
The threshold condition for optical parametric oscillation can be formulated more formally

as a statement that the fields within the resonator must replicate themselves each round trip.
For arbitrary end-mirror reflectivities at the signal and idler frequencies, this condition can be
expressed, again assuming perfect phase matching, as

A1(0) =
[
A1(0) coshgL + κ1

g
A∗

2(0) sinhgL
]
(1 − l1), (2.9.7a)

A∗
2(0) =

[
A∗

2(0) coshgL + κ∗
2

g
A1(0) sinhgL

]
(1 − l2), (2.9.7b)

where li = 1 − Rie
−αiL is the fractional amplitude loss per pass, αi being the absorption

coefficient of the crystal at frequency ωi. By requiring that both of Eqs. (2.9.7) be satisfied
simultaneously, we find the threshold condition to be

coshgL = 1 + l1l2

2 − l1 − l2
. (2.9.8)
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The threshold conditions for both doubly resonant oscillators and singly resonant oscillators are
contained in this result. The doubly resonant oscillator is described by taking the limit of low
loss for both the signal and idler waves (l1, l2 � 1). In this limit, coshgL can be approximated
by 1 + 1

2 g2L2, leading to the conclusion that the threshold condition for a doubly resonant
oscillator is

g2L2 = l1l2, (2.9.9)

in consistency with Eq. (2.9.6).
The threshold condition for a singly resonant oscillator can be obtained by assuming that

there is no feedback for the idler frequency, that is, that l2 = 1. If we assume low loss for the
signal frequency (that is, l1 � 1), the threshold condition becomes

g2L2 = 2l1. (2.9.10)

Note that the threshold value of gL for a singly resonant oscillator is larger than that of the
doubly resonant oscillator by a factor of (2/l2)

1/2. Despite this fact, it is usually desirable to
configure optical parametric oscillators to be singly resonant because of the increased stability
of singly resonant oscillators, for reasons that are explained below.

For simplicity, the treatment of this subsection has assumed the case of perfect phase match-
ing. It is straightforward to show that the threshold condition for the case �k �= 0 can be
obtained by replacing g2 by g2 sinc2(�kL/2) in Eqs. (2.9.9) and (2.9.10).

Wavelength Tuning of an OPO

The condition of energy conservation ωs + ωi = ωp allows any frequency ωs smaller than ωp

to be generated by an optical parametric oscillator. The output frequency ωs can be controlled
through the phase-matching condition �k = 0, which invariably can be satisfied for at most
one pair of frequencies ωs and ωi. The output frequency bandwidth can often be narrowed by
placing wavelength-selective items (such as etalons) inside the OPO cavity.

The principles of phase matching were described earlier in Section 2.3. Recall that phase
matching can be achieved either by varying the orientation of the nonlinear crystal (angle phase
matching) or by varying the temperature of the crystal.

2.9.1 Influence of Cavity Mode Structure on OPO Tuning

Let us now take a more detailed look at the tuning characteristics of an OPO. We shall see that
both the tuning and stability characteristics of an OPO are very different for the singly resonant
and doubly resonant cases.

Note first that under typical conditions the cavity mode spacing and cavity resonance width
tend to be much smaller than the width of the gain curve of the optical parametric amplification
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FIGURE 2.9.2: Schematic representation of the gain spectrum (the broad curve) and cavity mode struc-
ture of an OPO. Note that typically many cavity modes lie beneath the gain profile of the OPO.

process. This circumstance is illustrated in Fig. 2.9.2.∗ Let us next consider which of these
cavity modes will actually undergo oscillation.

For the case of a singly resonant oscillator (displayed in part (a) of Fig. 2.9.3), the situation
is relatively simple. Oscillation occurs on the cavity mode closest to the peak of the gain curve.
Note also that (barring mechanical instabilities, etc.) oscillation will occur on only one cavity
mode. The reason for this behavior is that once oscillation commences on the cavity mode
closest to the peak of the gain curve, the pump power becomes depleted, thus lowering the gain
to the value of the loss for this mode. By assumption, the gain will be smaller at the frequencies
of the other cavity modes, and thus these modes will be below threshold for oscillation. This
behavior is very much analogous to that of a homogeneously broadened laser, which tends to
oscillate on a single cavity mode.

Consider now the different situation of a doubly resonant oscillator (Fig. 2.9.3(b)). For a
doubly resonant oscillator, oscillation is very much favored under conditions such that a signal
and its corresponding idler mode can simultaneously support oscillation. Note from the figure
that neither of these modes is necessarily the mode closest to the peak of the gain curve (which
occurs at �k = 0). As a consequence doubly resonant oscillators tend not to tune smoothly.
Moreover, such devices tend not to run stably, because, for example, small fluctuations in the
pump frequency or the cavity length L can lead to disproportionately large variations in the
signal frequency.

The argument just presented, based on the structure of Fig. 2.9.3(b), presupposes that the
cavity modes are not equally spaced. In fact, it is easy to show that the cavity mode spacing for

∗ This example assumes that the cavity length Lc is 15 cm so that the cavity mode spacing �νc = c/2Lc is 1 GHz,
that the cavity finesse F is 100 so that the linewidth associated with each mode is 1 GHz/F = 10 MHz and that
the width of the gain curve is 100 GHz. This gain linewidth is estimated by assuming that �kL (which is zero at
the center of the gain line and where L is the crystal length) drops to the value π at the edge of the gain line. If
we then assume that �k changes with signal frequency because of material dispersion, and that dn/dν is of the
order of 10−15 sec, we obtain 100 GHz as the gain bandwidth.
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FIGURE 2.9.3: (a) Symbolic representation of the mode structure of a singly resonant OPO. (b) Sym-
bolic representation of the mode structure of a doubly resonant OPO. The signal-frequency and idler-
frequency axes increase in opposite directions, such that at each horizontal point ωs + ωi has the
fixed value ωp. Thus, any point on the axis represents a point where the energy conservation relation
ωs + ωi = ωp is satisfied, although only at points where signal and idler modes occur at the same hori-
zontal point is the double-resonance condition satisfied.

a cavity of length Lc filled with a dispersive medium is given by

�νc = 1

n(g)

c

2Lc

; where n(g) = n + ν
dn

dν
(2.9.11)

(see Problems 7 and 8 at the end of this chapter), which normally is not constant as a function
of frequency ν. Here n(g) is known as the group index.

Let us next examine more quantitatively the nature of the decreased stability of the doubly
resonant oscillator. We first estimate the characteristic frequency separation δω between the
peak of the gain curve and the frequency of actual oscillation, which is illustrated pictorially in
Fig. 2.9.3(b). To do so, it is convenient to first introduce the quantity

�ω ≡ ωp − ω (m)
s − ω

(m)
i , (2.9.12)

where ω
(m)
s is one of the signal cavity-mode frequencies and similarly for ω

(m)
i . Clearly, oscil-

lation can occur only for a pair of modes such that �ω ≈ 0 (or more precisely where �ω � δωc

where δωc is the spectral width of the cavity resonance). Note next that in jumping by one
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cavity mode for both ωs and ωi, the quantity �ω will change by the amount

δ(�ω) = 2π

(
c

2n
(g)
s Lc

− c

2n
(g)
i Lc

)
= πc

Lc

(
n

(g)
i − n

(g)
s

n
(g)
s n

(g)
i

)
. (2.9.13)

We next estimate the value of the frequency separation δω by noting that it corresponds to
a change in �ω from its value near the point �k = 0 to its value (≈ 0) at the oscillation point.
Unless the length of the OPO cavity is actively controlled, the value of �ω near �k = 0 can be
as large as one-half of a typical mode spacing or

�ω0 � 1

2

(
2πc

2n(g)Lc

)
= πc

2n(g)Lc

, (2.9.14)

where n(g) is some typical value of the group index. The number of modes between the peak of
the gain curve and the actual operating point under this situation is thus of the order of

N = �ω0

δ(�ω)
= n(g)

2(n
(g)
s − n

(g)
i )

(2.9.15)

and the characteristic frequency separation δω is thus given by

δω = �ωcN � 2πc

2n(g)Lc

N = πc

2Lc

1

(n
(g)
s − n

(g)
i )

. (2.9.16)

Note that this shift can be very large for n
(g)
s ≈ n

(g)
i .

The model just presented can be used to estimate an important quantity, the operational
linewidth δω(OPO) of the oscillator. We noted above that in principle an OPO should oscillate
on a single cavity mode. However, because of unavoidable technical noise, an OPO might be
expected to oscillate (simultaneously or sequentially) on several different cavity modes. The
technical noise might be in the form of mechanical vibrations of the OPO cavity, leading to a
jitter of amount δωc in the resonance frequency of each cavity mode. Alternatively, the technical
noise might be in the form of the spectral breadth δωp of the pump radiation. Whichever effect
is larger might be expected to dominate, and thus the effective value of the technical noise is
given by δωeff = max(δωc, δωp). Analogously to Eq. (2.9.15), one then expects the number of
modes that undergo oscillation to be given by

Nosc = δωeff

δ(�ω)
= max(δωp, δωc)

δ(�ω)
. (2.9.17)

Consequently, the OPO linewidth is expected to be

δω(osc) = NOPO�ωc = ng

n
(s)
g − n

(i)
g

max(δωp, δωc). (2.9.18)

Note that the linewidth of an OPO tends to be much greater than that of the pump field or that
of the bare OPO cavity. Active stabilization can be used to decrease this linewidth.



Wave-Equation Description of Nonlinear Optical Interactions 109

Equation (2.9.18) has important implications in the design of OPOs. Note that this expres-
sion formally diverges at the point of degeneracy for a type-I (but not a type-II) OPO. The
narrower linewidth of a type-II OPO compared to that of a type-I OPO constructed of the same
material has been observed in practice by Bosenberg and Tang (1990).

We conclude this section with a brief historical summary of progress in the development
of OPOs. As mentioned above, the first operating OPO was demonstrated by Giordmaine and
Miller (1965, 1966); it utilized the nonlinear optical response of lithium niobate and worked
in the pulsed regime. Continuous-wave operation of an OPO was demonstrated by Smith
et al. (1968) and utilized a Ba2NaNb5O15 nonlinear crystal. Interest in the development of
OPOs was renewed in the 1980s as a consequence of the availability of new nonlinear mate-
rials such as β-BaB2O4 (beta-barium borate or BBO), LiB3O5 (lithium borate or LBO), and
KTiOPO4 (KTP), which possess high nonlinearity, high resistance to laser damage, and large
birefringence. These materials led to the rapid development of new OPO capabilities, such as
continuous tunability from 0.42 to 2.3 µm in a BBO OPO with conversion efficiencies as large
as 32% (Bosenberg et al., 1989), and OPOs that can produce tunable femtosecond pulses in
KTP Edelstein et al., 1989. The use of quasi-phase-matching in periodically poled lithium nio-
bate has also been utilized to produce novel OPOs. For additional information, the reader might
refer to Byer et al. (1973), Simon and Tittel (1994), and Ebrahimzadeh and Dunn (2001).

2.10 Nonlinear Optical Interactions with Focused Gaussian Beams

In the past several sections we have treated nonlinear optical interactions in the approximation
in which the interacting waves are taken to be infinite plane waves. However, in practice, the
incident radiation is usually focused into the nonlinear optical medium in order to increase
its intensity and thereby increase the efficiency of the nonlinear optical process. The present
section explores the nature of nonlinear optical interactions that are excited by focused laser
beams.

2.10.1 Paraxial Wave Equation

We begin by deriving what is known as the paraxial wave equation. We assume that each fre-
quency component of the beam obeys a wave equation of the form of Eq. (2.1.21)—that is,

∇2Ẽn − 1

(c/n)2

∂2Ẽn

∂t2
= 1

ε0c2

∂2P̃n

∂t2
. (2.10.1)

We next represent the electric field Ẽn and polarization P̃n as

Ẽn(r, t) = An(r)ei(knz−ωnt) + c.c., (2.10.2a)
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P̃n(r, t) = pn(r)ei(k′
nz−ωnt) + c.c. (2.10.2b)

Here we allow Ẽn and P̃n to represent nonplane waves by allowing the complex amplitudes An

and pn to be spatially varying quantities. In addition, we allow the possibility of a wavevector
mismatch by allowing the wavevector of P̃n to be different from that of Ẽn. We next substitute
Eqs. (2.10.2) into (2.10.1). Since we have specified the z direction as the dominant direction of
propagation of the wave Ẽn, it is useful to express the Laplace operator as ∇2 = ∂2/∂z2 + ∇2

T,
where the transverse Laplacian is given by ∇2

T = ∂2/∂x2 + ∂2/∂y2 in rectangular coordinates
and is given by ∇2

T = (1/r)(∂/∂r)(r∂/∂r) + (1/r)2∂2/∂φ2, where r2 = x2 + y2, in cylindrical
coordinates. As in the derivation of Eq. (2.2.10), we now make the slowly varying amplitude
approximation, that is, we assume that any longitudinal variation of An can occur only over
distances much larger than an optical wavelength. We hence find that Eq. (2.10.1) becomes

2ikn

∂An

∂z
+ ∇2

TAn = − ω2
n

ε0c2
pne

i�kz, (2.10.3)

where �k = k′
n − kn. This result is known as the paraxial wave equation, because the approxi-

mation of neglecting the contribution ∂2A/∂z2 on the left-hand side is justifiable insofar as the
wave En is propagating primarily along the z axis.

2.10.2 Gaussian Beams

Let us first study the nature of the solution to Eq. (2.10.3) for the case of the free propagation
of an optical wave, that is, for the case in which the source term containing pn vanishes. The
paraxial wave equation is solved in such a case by a beam having a transverse intensity distri-
bution that is everywhere a Gaussian and that can be represented in the scalar approximation as
(Kogelnik and Li, 1966)

A(r, z) =A w0

w(z)
e−r2/w(z)2

eikr2/2R(z)ei�(z), (2.10.4a)

where

w(z) = w0
[
1 + (

λz/πw2
0

)2]1/2 (2.10.4b)

represents the 1/e radius of the field distribution, where

R(z) = z
[
1 + (

πw2
0/λz

)2] (2.10.4c)

represents the radius of curvature of the optical wavefront, and where

�(z) = − arctan
(
λz/πw2

0

)
(2.10.4d)
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represents the spatial variation of the phase of the wave (measured with respect to that of an
infinite plane wave). In these formulas, w0 represents the beam waist radius (that is, the value
of w at the plane z = 0), and λ = 2πc/nω represents the wavelength of the radiation in the
medium. The angular divergence of the beam in the far field is given by θff = λ/πw0. The
nature of this solution is illustrated in Fig. 2.10.1.

FIGURE 2.10.1: (a) Field amplitude distribution of a Gaussian laser beam. (b) Variation of the beam
radius w and wavefront radius of curvature R with position z. (c) Relation between the beam waist
radius and the confocal parameter b.

For theoretical work it is often convenient to represent the Gaussian beam in the more com-
pact (but less intuitive) form (see Problem 10 at the end of the chapter)

A(r, z) = A
1 + iζ

e−r2/w2
0(1+iζ ). (2.10.5a)

Here∗

ζ = 2z/b (2.10.5b)

∗ Note that the quantity ζ defined here bears no relation to the quantity ζ introduced in Eq. (2.7.18) in our discussion
of second-harmonic generation.
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is a dimensionless longitudinal coordinate defined in terms of the confocal parameter

b = 2πw2
0/λ = kw2

0, (2.10.5c)

which, as illustrated in part (c) of Fig. 2.10.1, is a measure of the longitudinal extent of the
focal region of the Gaussian beam. It is worth noting that the confocal parameter b is related
to another standard quantity known as the Rayleigh range zR through the relation b = 2zR .
The total power P carried by a Gaussian laser beam can be calculated by integrating over the
transverse intensity distribution of the beam. Since P = ∫

I (r)2πrdr , where the intensity is
given by I = 2nε0c|A|2, we find that

P = nε0cπw2
0|A|2. (2.10.6)

2.10.3 Harmonic Generation Using Focused Gaussian Beams

Let us now treat harmonic generation excited by a fundamental beam of frequency ω and a
Gaussian transverse profile. For generality, we consider the generation of the qth harmonic.∗
According to Eq. (2.10.3), the amplitude Aq of the q-th harmonic (that is, the ωq = qω fre-
quency component) of the optical field must obey the equation

2ikq

∂Aq

∂z
+ ∇2

TAq = −ω2
q

c2
χ(q)A

q

1ei�kz, (2.10.7)

where �k = qk1 − kq and where we have set the complex amplitude pq of the nonlinear
polarization equal to pq = ε0χ

(q)A
q

1 . Here χ(q) is the nonlinear susceptibility describing qth-
harmonic generation—that is, χ(q) = χ(q)(qω = ω + ω + · · · + ω), and A1 is the complex
amplitude of the fundamental wave, which according to Eq. (2.10.5a) can be represented as

A1(r, z) = A1

1 + iζ
e−r2/w2

0(1+iζ ). (2.10.8)

We work in the constant-pump approximation. We solve Eq. (2.10.7) by adopting the trial
solution

Aq(r, z) = Aq(z)

1 + iζ
e−qr2/w2

0(1+iζ ), (2.10.9)

where Aq(z) is a function of z. One might guess this form for the trial solution because its
radial dependence is identical to that of the source term in Eq. (2.10.7). Note also that (ignoring

∗ Our current treatment is valid for both even and odd values of q, even though the nonlinear susceptibility χ(q)

would normally be expected to vanish for even values of q for noncentrosymmetric media of the sort implicitly
assumed here.
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FIGURE 2.10.2: Variation of the beam parameter w(z) in the focal region for the fundamental and third-
and fifth-harmonic beams. All three fields have the same confocal parameter b, although the beam waist
radius w0 and far field diffraction angle scale as q−1/2.

the longitudinal variation of Aq(z)) the trial solution corresponds to a beam with the same
confocal parameter as the fundamental beam Eq. (2.10.8); this behavior makes sense in that the
harmonic wave is generated coherently over a region whose longitudinal extent is equal to that
of the fundamental wave. If the trial solution Eq. (2.10.9) is substituted into Eq. (2.10.7), we
find that it satisfies this equation so long as Aq(z) obeys the (ordinary) differential equation

dAq

dz
= iqω

2nqc
χ(q)Aq

1
ei�kz

(1 + iζ )q−1
. (2.10.10)

This equation can be integrated directly to obtain

Aq(z) = iqω

2nc
χ(q)Aq

1Jq(�k, z0, z), (2.10.11a)

where

Jq(�k, z0, z) =
∫ z

z0

ei�kz′
dz′

(1 + 2iz′/b)q−1
, (2.10.11b)

and where z0 represents the value of z at the entrance to the nonlinear medium. We see that the
harmonic radiation is generated with a confocal parameter equal to that of the incident laser
beam, as shown in Fig. 2.10.2. Hence the beam waist radius of the qth harmonic radiation
is q1/2 times smaller than that of the incident beam, and the far-field diffraction angle θff =
λ/πw0 is q1/2 times smaller than that of the incident laser beam. We have solved Eq. (2.10.7)
by guessing the correct form (Eq. (2.10.9)) for the trial solution; a constructive solution to
Eq. (2.10.7) has been presented by Kleinman et al. (1966) for second-harmonic generation and
by Ward and New (1969) for the general case of qth-harmonic generation.

The integral appearing in Eq. (2.10.11b) can be evaluated analytically for certain special
cases. One such case is the plane-wave limit, where b 
 |z0|, |z|. In this limit the integral
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FIGURE 2.10.3: Dependence of the phase-matching factor J3 for third-harmonic generation on the nor-
malized confocal parameter b�k, in the tight-focusing limit.

reduces to

Jq(�k, z0, z) =
∫ z

z0

ei�kz′
dz′ = ei�kz − ei�kz0

i�k
, (2.10.12a)

which implies that

∣∣Jq(�k, z0, z)
∣∣2 = L2 sinc2

(
�kL

2

)
(2.10.12b)

where L = z − z0 is the length of the interaction region.
The opposite limiting case is that in which the fundamental wave is focused tightly within

the interior of the nonlinear medium; this condition implies that z0 = −|z0|, z = |z|, and b �
|z0|, |z|. In this limit the integral in Eq. (2.10.11b) can be approximated by replacing the limits
of integration by plus and minus infinity—that is,

Jq(�k, z0, z) =
∫ ∞

−∞
ei�kz′

dz′

(1 + 2iz′/b)q−1
. (2.10.13a)

This integral can be evaluated by means of a straightforward contour integration. One finds that

Jq(�k, z0, z) =
{

0, �k ≤ 0,

b
2

2π
(q−2)!(

b�k
2 )q−2e−b�k/2, �k > 0.

(2.10.13b)

This functional form is illustrated for the case of third-harmonic generation (q = 3) in
Fig. 2.10.3. We find the somewhat surprising result that the efficiency of third-harmonic gen-
eration in the tight-focusing limit vanishes identically for the case of perfect phase matching
(�k = 0) and is maximized through the use of a positive wavevector mismatch. This behavior
can be understood in terms of the phase shift of π radians that any beam of light experiences
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FIGURE 2.10.4: Illustration of why a positive value of �k is desirable in harmonic generation with fo-
cused laser beams. (a) Wavevector diagram for third-harmonic generation with �k positive. Even though
the process is phase mismatched, the fundamental beam contains an angular spread of wavevectors and
the phase-matched process illustrated in (b) can occur with high efficiency. (c) Conversely, for �k nega-
tive, efficient harmonic generation cannot occur.

in passing through its focus. This effect is known as the phase anomaly and was first studied
systematically by Gouy (1890). For the case of nonlinear optics, this effect has important con-
sequences over and above the phase shift imparted to the transmitted light beam, because in
general the nonlinear polarization p = ε0χ

(q)A
q

1 will experience a phase shift that is q times
larger than that experienced by the incident wave of amplitude A1. Consequently, the nonlinear
polarization will be unable to couple efficiently to the generated wave of amplitude Aq unless
a wavevector mismatch �k is introduced to compensate for the phase shift due to the passage
of the incident wave through its focus. The reason why �k should be positive in order for
this compensation to occur can be understood intuitively in terms of the argument presented in
Fig. 2.10.4.

Boyd and Kleinman (1968) have considered how to adjust the focus of the incident laser
beam to optimize the efficiency of second-harmonic generation. They find that the highest
efficiency is obtained when beam walkoff effects (mentioned in Section 2.3) are rendered negli-
gible, when the incident laser beam is focused so that the beam waist is located longitudinally at
the center of the crystal and the ratio L/b is equal to 2.84, and when the wavevector mismatch
is set equal to �k = 3.2/L. In this case, the power generated at the second-harmonic frequency
is equal to

P2ω = K

[
128π2ω3

1d
2
effL

c4n1n2

]
P2

ω. (2.10.14)

Here K is a numerical constant that depends on the system of units in which this equation is
evaluated. For the Gaussian system, which was used in the original work, K = 1.068. In ad-
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dition, Boyd and Kleinman show heuristically that other parametric processes, such as sum-
and difference-frequency generation, are optimized by choosing the same confocal parameter
for both input waves and applying the same criteria used to optimize second-harmonic genera-
tion. The effects of focusing on various third-order processes have been analyzed by Bjorklund
(1975).

2.11 Nonlinear Optics at an Interface

There are certain nonlinear optical processes that can occur at the interface between two dis-
similar optical materials. Two such examples are shown schematically in Fig. 2.11.1. Part (a)
shows an optical wave falling onto a second-order nonlinear optical material. We saw earlier
(in Section 2.7) how to predict the amplitude of the second-harmonic wave generated in the
forward direction. But in fact, a much weaker second-harmonic wave is generated in reflection
at the interface separating the two materials. We shall see in the present section how to predict
the intensity of this reflected harmonic wave. Part (b) of the figure shows a wave falling onto a
centrosymmetric nonlinear optical material. Such a material cannot possess a bulk second-order
nonlinear optical susceptibility, but the presence of the interface breaks the inversion symme-
try for a thin region (of the order of one molecular diameter in thickness) near the interface,
and this thin layer can emit a second-harmonic wave. The intensity of the light emitted by this
surface layer depends sensitively on the structural properties of the surface and especially upon

FIGURE 2.11.1: Illustration of second-harmonic generation in reflection at the surface of (a) a second-
order nonlinear optical material and (b) a centrosymmetric nonlinear optical material.
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the presence of molecules absorbed onto the surface. For this reason surface second-harmonic
generation is an important diagnostic method for studies in surface science.

Let us consider in greater detail the situation illustrated in part (a) of Fig. 2.11.1. We assume
that the wave at the fundamental frequency incident on the interface can be described by

Ẽi(r, t) = Ei(ωi)e
−iωit + c.c. where Ei(ωi) = Ai(ωi)e

iki(ωi)·r. (2.11.1)

This wave will be partially reflected and partially transmitted into the nonlinear optical material.
Let us represent the transmitted component as

ET(ωi) = AT(ωi)e
ikT(ωi)·r, (2.11.2)

where the amplitude AT(ωi) and propagation direction kT(ωi) can be determined from the
standard Fresnel equations of linear optics. For simplicity, in the present discussion we ignore
the effects of birefringence; we note that birefringence vanishes identically in crystals (such as
GaAs) that are noncentrosymmetric yet possess a cubic lattice. The transmitted fundamental
wave will create a nonlinear polarization at frequency ωs = 2ωi within the medium that we
represent as

P̃(r, t) = Pe−iωst + c.c. where P = peiks(ωs)·r and p = p̂ε0χ
(2)
eff A2

T(ωi) (2.11.3)

where ks(ωs) = 2kT(ωi) and where p̂ is the unit vector p̂ = p/|p̂|.
The details of the ensuing analysis differ depending upon whether p lies within or is per-

pendicular to the plane of incidence. Here we treat only the case of p perpendicular to the plane
of incidence (also known as the TE geometry); a treatment of the other case can be found for
instance in Bloembergen and Pershan (1962) or in Shen (1984b). As described by Eq. (2.1.23),
this nonlinear polarization will give rise to radiation at the second-harmonic frequency ωs. The
generation of this radiation is governed by the wave equation in the form

∇2E(ωs) + [
ε(ωs)ω

2
s /c

2]E(ωs) = −(
ω2

s /ε0c
2)p⊥eiks·r (2.11.4)

where p⊥ is the component of p perpendicular to the plane of incidence. Here ε(ω) is taken
to be εT (ω) in the nonlinear medium and as εR(ω) in the linear medium. The formal solution
to this equation consists of a particular solution plus a general solution to the homogeneous
version of this equation obtained by setting its right-hand side equal to zero. It turns out that we
can meet all of the appropriate boundary conditions by assuming that the homogeneous solution
is an infinite plane wave of as yet unspecified amplitude AT(ωs) and wavevector kT(ωs). We
thus represent the solution to Eq. (2.11.4) as

ET(ωs) = AT(ωs)e
ikT(ωs)·r + (ω2

s /ε0c
2)

|ks|2 − |kT(ωs)|2 p⊥eiks·r, (2.11.5)
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FIGURE 2.11.2: (a) Geometry showing the creation of a transmitted and reflected second-harmonic wave
at the surface of a second-order nonlinear optical material. (b) Definition of the electric and magnetic field
vectors for the case in which P is perpendicular to the plane of incidence.

where the second term on the right-hand side represents the particular solution, with ks =√
ε(ωs)ωs/c, and with |kT(ωs)|2 = εT(ωs)ω2

s /c
2. The electromagnetic boundary conditions at

the interface require that the components of E and of H tangential to the plane of the interface
be continuous. These boundary conditions can be satisfied only if we postulate the existence of
a reflected, second-harmonic wave that we represent as

ER(ωs) = AR(ωs)e
ikR(ωs)·r. (2.11.6)

In order that the boundary conditions be met at each point along the interface, it is necessary that
the nonlinear polarization of wavevector ks = 2kT(ωi), the transmitted second-harmonic wave
of wavevector kT(ωs), and the reflected second-harmonic wave of wavevector kR(ωs) have
identical wavevector components along the plane of the interface. This situation is illustrated
in Fig. 2.11.2, where we let x be a coordinate measured along the interface in the plane of
incidence and let z denote a coordinate measured perpendicular to the plane of incidence. We
thus require that

ks
x = kR,x(ωs) = kT,x(ωs) (2.11.7)
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(note that ks
x ≡ 2kT,x(ωi)). Furthermore, we can express the magnitude of each of the propaga-

tion vectors in terms of the dielectric constant of each medium as

kT(ωs) = ε
1/2
T (ωs) ωs/c, (2.11.8a)

kR(ωs) = ε
1/2
R (ωs) ωs/c, (2.11.8b)

ki(ωi) = ε
1/2
R (ωi) ωi/c, (2.11.8c)

where, as before, εR denotes the dielectric constant of the linear, incident medium and εT de-
notes the linear dielectric constant of the nonlinear medium. For mathematical convenience,
we also introduce a fictitious dielectric constant εs associated with the nonlinear polarization
defined such that

ks = ε
1/2
s ωs/c. (2.11.9)

From Eqs. (2.11.7) through (2.11.9) we can readily determine expressions relating the angles
θi, θR, θs, and θT (see Fig. 2.11.2), which are given by

ε
1/2
R (ωi) sin θi = ε

1/2
R (ωs) sin θR = ε

1/2
T (ωs) sin θT = ε

1/2
s sin θs. (2.11.10)

This equation can be considered to be the nonlinear optical generalization of Snell’s law.
We next apply explicitly the boundary conditions at the interface between the linear and

nonlinear medium. According to Eq. (2.11.5), p⊥ will lead to the generation of an electric field
in the E⊥ = Ey direction, and in accordance with Maxwell’s equations the associated mag-
netic field will lie in the xz plane (see part (b) of Fig. 2.11.2). The continuity of the tangential
components of E and H then leads to the equations

Ey : AR⊥(ωs) = AT⊥(ωs) + p⊥/
[
ε0(εs − εT(ωs))

]
,

Hx : − ε
1/2
R (ωs)A

R⊥(ωs) cos θR = ε
1/2
T (ωs)A

T⊥(ωs) cos θT

+ p⊥ cos θsε
1/2
s

/[
ε0(εs − εT(ωs))

]
. (2.11.11)

Here the perpendicular symbol ⊥ is introduced as a reminder that we are treating the case in
which the incident light is polarized perpendicular to the plane of incidence. These equations
are readily solved simultaneously to obtain expressions for AR⊥ and AT⊥. These expressions are
then introduced into Eqs. (2.11.5) and (2.11.6) to find that the transmitted and reflected fields
are given by

ER⊥(ωs) = −p⊥eikR(ωs)·r

ε0[ε1/2
T (ωs) cos θT + ε

1/2
R (ωs) cos θR][ε1/2

T (ωs) cos θT + ε
1/2
s cos θs

]
≡ AR⊥(ωs)e

ikR(ωs)·r, (2.11.12a)
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ET⊥(ωs) = −p⊥
ε0[εT(ωs) − εs]

[
eiks ·r − ε

1/2
s cos θs + ε

1/2
R (ωs) cos θR

ε
1/2
T (ωs) cos θT + ε

1/2
R (ωs) cos θR

eikT(ωs)·r
]
.

(2.11.12b)

The transmitted second-harmonic wave is thus composed of a homogeneous contribution with
propagation vector kT and an inhomogeneous wave with propagation vector ks . We see from
Fig. 2.11.2 that ks − kT must lie in the z direction and is given by

ks − kT = �kẑ = (ωs/c)
[
ε

1/2
s cos θs − ε

1/2
T (ωs) cos θT

]
ẑ. (2.11.13)

If this result is introduced into Eq. (2.11.12b), we can express the transmitted field in the form

ET⊥(ωs) =
[
AR⊥(ωs) + (ω2

s /ε0c
2)p⊥

2kT(ωs)

(
ei�kz − 1

�k

)]
eikT(ωs)·r

≡ AT⊥(ωs) eikT(ωs)·r. (2.11.14)

This equation has the form of a plane wave with a spatially varying amplitude; the spatial
variation is a manifestation of imperfect phase matching of the nonlinear optical interaction.
The present formalism demonstrates that the origin of the spatial variation associated with
wavevector mismatch is the interference of the homogeneous and inhomogeneous solutions of
the driven wave equation.

Let us interpret further the result given by Eq. (2.11.14). We assume that �kz is much
smaller than unity for propagation distances z of interest. We then find that, correct to first
order in �k, the amplitude of the transmitted wave is given by

AT⊥(ωs) = AR⊥(ωs) + (ω/c)2p⊥(iz)

2ε0kT(ωs)
= AR⊥(ωs) + i(ω/c)p⊥z

2ε0ε1/2(ωs)
. (2.11.15)

We see that the amplitude of the generated wave grows linearly from its boundary value
AR⊥(ωs). We also see from Eq. (2.11.12a) that AR⊥(ωs) will be given to order of magnitude
by

AR⊥(ωs) � − p⊥
4ε0ε

, (2.11.16)

where ε is some characteristic value of the dielectric constant of the region near the interface.
On the basis of this result, Eq. (2.11.15) can be approximated as

AT⊥(ωs) � −πp⊥
4ε0ε

[
1 − 2ikT(ωs)z

]
. (2.11.17)

This result shows that the surface term makes a contribution comparable to that of the bulk term
for a thickness t given by

t = λ/4π. (2.11.18)
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Let us next examine the situation of Fig. 2.11.1(b), which considers harmonic generation
at the interface between two centrosymmetric media. An accurate treatment of such a situation
would require that we know the nonlinear optical properties of the region near the interface
at a molecular level, which is not possible at the present level of description (because we can
rigorously deduce macroscopic properties from microscopic properties, but not vice versa).
Nonetheless, we can make an order-of-magnitude estimate of the amplitude of the reflected
wave for typical materials. Let us model the interface between two centrosymmetric materi-
als as possessing a second-order susceptibility χ(2) confined to a thickness of the order of a
molecular dimension a0. Here χ(2) is a typical value of the second-order susceptibility of a
noncentrosymmetric material. This assumption taken in conjunction with Eq. (2.11.18) leads
to the prediction

AT⊥(centrosymmetric) = 4πa0

λ
AT⊥(noncentrosymmetric)

� 10−3AT⊥(noncentrosymmetric). (2.11.19)

This result is in agreement with the predictions of more detailed models (see, for instance,
Mizrahi and Sipe, 1988b).

2.12 Advanced Phase Matching Methods

Types of Phase Matching

In the examples given thus far in the present chapter, we have been considering collinear phase
matching, which is illustrated for sum-frequency generation in Fig. 2.12.1(a). More gener-
ally, one can consider noncollinear phase matching, also known as vector phase matching,
which is illustrated in Fig. 2.12.1(b). A subtlety occurs when we allow the possibility of a
wavevector mismatch, as shown in Figs. 2.12.1(c) and (d). For the case of a vector interaction
(Fig. 2.12.1(d)), we see that the wavevector mismatch

�k = k1 + k2 − k3 (2.12.1)

can have both longitudinal and transverse components. When working in the paraxial approx-
imation, one often assumes that the transverse components of �k must vanish so that �k has
a component only along the direction of propagation. We note that this assumption is rigor-
ously true for plane waves of infinite transverse extent, as there cannot be any uncertainty in
the transverse wavevector in this case.

We now turn to the case of angle phase matching in birefringent crystals and point out some
additional behavior. In Fig. 2.12.2 we show plots of the refractive index as a function of the
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FIGURE 2.12.1: (a) Collinear phase matching; (b) noncollinear (vector) phase matching. (c) and (d)
Three wave interactions with a wavevector mismatch.

FIGURE 2.12.2: Refractive index surfaces for (a) negative and (b) positive uniaxial crystals. These
curves show how the refractive index varies as a function of the propagation direction (k-vector direction)
within the crystal.

propagation direction through the crystal.∗ We shall find that curves of the sort are extremely
useful in understanding the nature of phase matching by means of angle tuning.

Beam Walk-Off Effects
We next describe a feature of birefringence phase matching that can under many circum-

stances limit the efficiency of the nonlinear process. In general, the wave vector k and the
Poynting vector S are not parallel to one another in an anisotropic medium, as illustrated in
Fig. 2.12.3. We reach this conclusion by first recalling the relation S = E × H, which shows
that S must be perpendicular to the E. However, the Maxwell equation ∇ · D = 0 (written for a
medium without free charges) leads to the transversality condition that k must be perpendicular

∗ These plots should not to be confused with the index ellipsoid, which plays an important role in the theory of
crystal optics. Since k = nω/c, the plots of Fig. 2 have the same shape as a plot of k as a function of propagation
direction for constant frequency ω. These plots are known as a plots of the normal surface or of the k surface.
The relation between the k surface and the index ellipsoid are well explained in Saleh and Teich (2007) and in
Zernike and Midwinter (1973b).
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FIGURE 2.12.3: Orientation of the E, D, B, H, k, and S vectors in an anisotropic material.

to D. Because D and E are not in general parallel in a anisotropic medium, k and S are also
generally not parallel. These vectors are parallel only for beams of ordinary polarization or, for
extraordinary polarization, for propagation along the optic axis or for propagation perpendic-
ular to it. Phase-matching conditions dictate the directions of the k vectors, but energy flow
occurs in the direction of the Poynting vector S. Thus the interacting beams tend to walk away
from each other as they propagate. The consequences of this beam walk-off are slightly dif-
ferent for type-I and type-II interactions. The consequences tend to be more severe for type-II
interactions, because the two input beams can walk so far away from one another that they no
longer overlap within the nonlinear material.

Critical and Non-Critical Phase Matching
An important distinction in nonlinear optics is that between critical and noncritical phase

matching. We can understand this distinction by means of the example of infrared upconversion.
Because infrared detectors tend to be much noisier than visible detectors, an infrared signal
can sometimes be better detected by first converting it to a visible frequency by means of a
nonlinear optical interaction (Boyd and Townes, 1977b; Vandevender and Kwiat, 2004). In
the situation described in Fig. 2.12.4, a weak infrared signal beam of frequency ω2 and wave
vector k2 that one wants to detect is combined with a strong pump beam of frequency ω1 and
wave vector k1 in a second-order nonlinear optical crystal. The sum-frequency radiation at
frequency ω1 + ω2 is then at an optical frequency. Oftentimes the signal to be detected has a
broad angular extent. One wants to determine how large a divergence angle δθ can be used
and still produce good conversion efficiency. Several possibilities exist. This interaction can
be phase matched using standard angular phase matching, as shown in Fig. 2.12.4(b). The
diagram is drawn for the case of type-I phase matching in a negative uniaxial crystal. In this
situation, the wavevector mismatch increases approximately linearly as the direction of k2 is
moved away from the phase-matching angle. This situation is known as that of critical phase
matching, because the phase matching relation is satisfied only for one particular direction of
the of k2 field. A more tolerant situation is that shown in part (c) of the figure. Through use of
noncollinear phase matching, the curve for the directions of k2 can be made to be tangent to the
curve for the sum frequency k3. In such a situation, the wavevector mismatch �k increases only
quadratically with the angular deviation of k2 from the phase-matching direction. This situation
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FIGURE 2.12.4: Distinction between critical and noncritical phase matching. (a) One wants to form the
sum frequency of the pump wave k1 and a signal wave k2 of wide angular extend δθ . (b) Critical phase
matching; the phase mismatch scales approximately linearly with δθ . (c) Noncritical phase matching; the
phase mismatch scales only quadratically with δθ . (d) Noncollinear phase matching at 90 degrees from
the optical axis (OA). This situation is most desirable because walk-off is eliminated because θ = 90◦
and also beam walk-off effects are eliminated.

is known as noncritical phase matching. However, this situation still suffers from beam walk-off
effects. The optimal strategy is to obtain phase matching at an angle of 90 degrees from the optic
axis, as shown in part (d). This procedure leads to noncritical phase matching while avoiding
beam walk-off effects.

Phase Matching of Spontaneous Parametric Down Conversion (SPDC)

We next consider the process of spontaneous parametric down conversion (SPDC). As illus-
trated in Fig. 2.12.5, SPDC is a process in which a single pump photon splits into two daughter
photons conventionally known as the signal and idler photons. As this process is seeded only
by the electromagnetic vacuum, it is a purely quantum process, and in fact the photons created
by this process possess strong quantum properties. A complete treatment of the SPDC process
would require us to develop a full quantum description of the electromagnetic field. While such
a description is well understood, its treatment falls outside of the scope of the present book.
We will instead rely on heuristic arguments to describe the correlations of the radiation cre-
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ated by SPDC and refer the reader to several of the excellent text books that treat the quantum
properties of nonlinear optical interactions. (Several suggestions are listed at the end of this
chapter.)

FIGURE 2.12.5: (a) Schematic illustration of the process of spontaneous parametric downconversion
(SPDC). (b) Energy-level description and (c) wavevector description of the process.

The properties of SPDC are qualitatively very different for type-I and type-II phase match-
ing. For definiteness, here we consider down-conversion in beta-barium borate (β-BBO), a neg-
ative uniaxial crystal.

We consider first the process of type-I SPDC in a negative uniaxial crystal. For simplicity,
we here consider only the case of degenerate downconversion, that is, ωi = ωs . Fig. 2.12.6
shows schematically the observed behavior as one gradually rotates the crystal to vary the
phase-matching condition. Part (a) shows the behavior when the pump angle θ in the notation
of Fig. 2.12.5 is too small and the collinear wavevector mismatch �k = k1 + k2 − k3 = n1ω1 +
n2ω2 − n3ω3 is negative. No downconverted light is observed. Part (b) shows the behavior at
the exact collinear phase matching angle. In this case, the downconverted light is observed only
on the axis defined by the pump beam. Parts (c)–(e) show what happens when the pump angle is
successively increased still further. In this case, phase matching is observed under noncollinear
conditions. The generated light is now emitted in a cone surrounding the transmitted pump
beam. The emitted light has strong quantum properties. Regions diametrically opposite on the
emission cone are found to contain the same number of photons, to an accuracy much better
than the inherent fluctuation in the number in either region. The sort of behavior has been
observed experimentally in the high gain limit (Souto Ribeiro et al., 1997; Jedrkiewicz et al.,
2006).

We next turn to the process of type-II SPDC, again for the case of a negative uniaxial crystal.
Detailed analysis (Kwiat et al., 1995) shows that each of the signal and idler photons can again
be emitted in the form of a ring pattern, but because they experience different refractive indices
the two rings are centered on different propagation directions. The geometry of the SPDC
process is illustrated in Fig. 2.12.7.
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FIGURE 2.12.6: Behavior of spontaneous parametric downconversion in a type-I, negative uniaxial crys-
tal as a function of the wave vector mismatch.

FIGURE 2.12.7: Geometry of spontaneous parametric downconversion in a negative uniaxial crystal for
a type-II interaction.

Crucially, under certain phase matching conditions these two rings intersect at two locations.
This sort of behavior is illustrated in Fig. 2.12.8. At these locations, the two photons are found to
be entangled in their state of polarization. Entanglement in the present context has the following
meaning. Although a photon detected in one of these regions has a 50/50 chance of having either
the ordinary (o) of extraordinary (e) polarization, nonetheless, whenever the photon from one
of the regions is found to be o polarized, the photon from the other region is found to be e
polarized and vice versa.

Other geometries can also be used to produce polarization entanglement. One particularly
useful procedure is the two-crystal procedure of Kwiat et al. (1999). This procedure uses two
relatively thin crystals in close contact, each fabricated for type-I phase matching. The two
crystals are rotated by 90 degrees with respect to one another, and the pump beam is polarized
at 45 degrees to the principal axes of the two crystals. Each crystal produces light by SPDC,
and the polarization of the light from each crystal is orthogonal to that of the other. Because
the crystals are very thin, there is no way to know which crystal produced the light. The down-
converted photons are thus entangled in their states of polarization. Specifically, if the light from
one crystal has H (for horizontal) polarization and the light from the other has V (for vertical)
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polarization, the quantum state of the polarization of the emitted light can be represented by

� = HH + V V√
2

(2.12.2)

Polarization entanglement of this sort is found to have myriad applications in quantum infor-
mation. Some examples are given in Giovannetti et al. (2004).

FIGURE 2.12.8: Behavior of spontaneous parametric downconversion in a type-I, negative uniaxial crys-
tal as a function of the crystal rotation angle. For the two panels on the bottom right the two rings intersect
at two locations. Polarization entanglement occurs under these circumstances. (Kurtsiefer et al., 2001).

Tilted-Pulse-Front Method for the Generation of THz Radiation

We next describe some of the special considerations that occur for the phase-matched gen-
eration of THz radiation. THz radiation is often generated by illuminating a second-order
nonlinear optical material such as lithium niobate with a short, intense near-infrared (NIR)
light pulse often generated by a Ti:sapph laser operating at 800 nm. The generation process
is often referred to as optical rectification, although it is perhaps better described as a form of
difference-frequency generation involving the process χ(2)(ωTHz;ωNIR + ωTHz,−ωNIR). Here
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ωTHz is the THz frequency to be generated and ωNIR is the nominal frequency of the near-
infrared pump laser. We assume that both ωNIR and ωNIR + ωTHz lie within the spectrum of the
pump pulse.

A wavelength of 800 nm corresponds to a frequency of 375 THz, which is very much
larger than that of the radiation to be generated at approximately 1 THz. It is because of this
great frequency difference that phase matching can become qualitatively different from that of
visible-frequency nonlinear optics.

The phase matching condition for such a process, assumed for the present to be collinear, is
given by

�k = k(ωNIR + ωTHz) − k(ωNIR) − k(ωTHz) = 0. (2.12.3)

This equation can be written in terms of refractive indices as

�k = 1

c
[n(ωNIR + ωTHz)(ωNIR + ωTHz) − n(ωNIR)ωNIR − n(ωTHz)ωTHz] = 0 (2.12.4)

We now simplify this equation by expressing n(ωNIR + ωTHz) as a power series in ωTHz to
obtain n(ωNIR) + (dn(ωNIR)/dωNIR)ωTHz = ng(ωNIR)ωTHz where in the last form we have
introduced the standard expression for the group index ng . In addition, we drop the resulting
term ng(ωNIR)ωTHz ωTHz because it is much smaller than the term ng(ωNIR)ωTHz ωNIR. With
these substitutions the phase-matching condition becomes simply

ng(ωNIR) = n(ωTHz) (2.12.5)

This result was first obtained by Nahata et al. (1996) who also demonstrated phase matching
by this method using ZnTe as their nonlinear material. This result seems at first sight surpris-
ing, because one might think that a phase matching condition should depend only on phase
velocities and not on a group velocity. This result can be understood intuitively by noting that a
nonlinear optical processes driven by an intense short pulse can be thought of as impulsive pro-
cesses. The short pulse excites each molecule which then “rings” and emits its own radiation.
The nature of constructive interference for the emitted radiation depends on its phase velocity.
However, the moment of time at which the impulsive excitation occurs depends on the group
velocity.

The phase matching condition of Eq. (2.12.5) was derive under the assumption of collinear
propagation. If the waves are not collinear, it is to be replaced by

ng(ωNIR) cosγ = n(ωTHz), (2.12.6)

where γ is the angle between the two beams. One obtains this result by taking the projection
of the group velocity of the excitation beam onto the direction of the phase velocity of the
generated beam.
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THz generation under noncollinear conditions often takes the form of emission in a
Cherenkov cone. The basic mechanism is illustrated in Fig. 2.12.9(a). A short intense pulse of
near-infrared radiation propagates through a second-order nonlinear crystal with group velocity
vg(ωNIR). Secondary waves are generated at each point along its trajectory, which interfere to
form the cone-shaped radiation pattern. The condition for the constructive interference of the
individual wavelets is that

cos θC = vp(ωTHz)

vg(ωNIR)
, (2.12.7)

where θC is defined in the figure and is known as the Cherenkov angle and vp(ωTHz) is the
phase velocity at the THz frequency. Note by comparison of Eq. (2.12.6) and Eq. (2.12.7) that
the THz emission process is automatically phase matched for γ = θC.

FIGURE 2.12.9: Methods for producing THz radiation through nonlinear optical interactions.
(a) Cherenkov-cone generation. In time T , a short pulse of near-infrared radiation will travel a distance
vg(ωNIR)T . In this time, the THz wavefront generated by the earliest-arriving part of the pulse will have
traveled a distance vp(ωTHz)T . The Cherenkov angle is thus given by θC = cos−1[vp(ωTHz)/vg(ωNIR)].
(b) Tilted-pulse-front method. When the incident plane-wave pump beam diffracts off a grating, the phase
front and the pulse front are no longer parallel. By setting the pulse-front angle γ equal to the Cherenkov
angle θC, one can ensure that there is no spatial walk-off between the pump pulse and the generated THz
wave. For simplicity, the refraction of the pulse front at the entrance to the nonlinear crystal is ignored.
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A limitation to the efficiency of THz generation based on the use of the interaction of
Fig. 2.12.8(a) is the spatial walk-off of the two interacting beams. As illustrated in the fig-
ure, the THz radiation is emitted at nearly right angles to the propagation direction of the pump
beam. As an example, for lithium niobate the NIR group index is given by ng(ωNIR) = 2.25
and the THz phase index is given by n(ωTHz) = 4.96 so that the Cherenkov angle is equal to
64 degrees (Hebling et al., 2008).

A solution to the problem of low conversion efficiency because of beam walk-off is the tilted
pulse-front method, which has been described and implemented by Hebling et al. (2002, 2008).
For a short optical pulse, the spatial extent of the pulse in the longitudinal direction is much
smaller than that in the transverse directions. (One sometimes hears that ultrashort laser pulses
are “flying pancakes.”) The pulse front describes the instantaneous spatial distribution of pulse
energy. The tilted pulse-front method is illustrated in Fig. 2.12.9(b). The near-infrared pump
pulse is first diffracted from a grating, and as a result the wavefronts and pulse fronts are no
longer parallel. The pump pulse then enters the nonlinear crystal, which is cut and oriented as
shown in the figure. THz radiation is generated in the phase matched (Cherenkov) direction.
The pulse fronts are oriented so that they coincide with the THz wave fronts, and as a result
there is no spatial walk-off between the pump and generated THz radiation.

Problems

1. Infrared upconversion. One means of detecting infrared radiation is to first convert the
infrared radiation to the visible by the process of sum-frequency generation. Assume that
infrared radiation of frequency ω1 is mixed with an intense laser beam of frequency ω2 to
form the upconverted signal at frequency ω3 = ω1 +ω2. Derive a formula that shows how
the quantum efficiency for converting infrared photons to visible photons depends on the
length L and nonlinear coefficient deff of the mixing crystal, and on the phase mismatch
�k. Estimate numerically the value of the quantum efficiency for upconversion of 10-µm
infrared radiation using a 1-cm-long proustite crystal, 1 W of laser power at a wavelength
of 0.65 µm, and the case of perfect phase matching and optimum focusing.
[Ans.: ηQ = 2%.]

2. Sum-frequency generation. Solve the coupled-wave equations describing sum-frequency
generation (Eqs. (2.2.10) through (2.2.12b)) for the case of perfect phase matching
(�k = 0) but without making the approximation of Section 2.6 that the amplitude of the
ω2 wave can be taken to be constant.
[Hint: This problem is very challenging. For help, see Armstrong et al. (1962).]

3. Systems of units. Rewrite each of the displayed equations in Sections 2.1 through 2.5 in
the Gaussian system of units.
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4. Difference-frequency generation. Solve the coupled-amplitude equations describing
difference-frequency generation in the constant-pump limit, and thereby verify Eqs. (2.9.2)
of the text. Assume that ω1 + ω2 = ω3, where the amplitude A3 of the ω3 pump wave is
constant, that the medium is lossless at each of the optical frequencies, that the momentum
mismatch �k is arbitrary, and that in general there can be an input signal at each of the
frequencies ω1, ω2, and ω3. Interpret your results by sketching representative cases of the
solution and by taking special limiting cases such as that of perfect phase matching and
of only two input fields.

5. Second-harmonic generation. Verify that Eq. (2.7.29) possesses solutions of the sort
shown in Fig. 2.7.2.

6. Second-harmonic generation. Solve the coupled-amplitude equations for the case of
second-harmonic generation with the initial conditions A2 = 0 but A1 arbitrary at z = 0.
Assume that �k is arbitrary. Sketch how |A(2ω)|2 varies with z for several values of �k,
and thus verify the results shown in Fig. 2.7.2.

7. Mode structure of an optical cavity. Verify Eq. (2.9.11).
[Ans.: Assume that the refractive index n is a function of ν and require that an integral
number m of half wavelengths fit within the cavity of length Lc. Thus mλ/2 = Lc or,
since λ = c/nν, we obtain nν = cm/2Lc. We want to determine the frequency separa-
tion of adjacent modes. Thus, �(nν) = �(cm/2Lc) where � refers to the change in the
indicated quantity between adjacent modes. Note that �(nν) = n�ν + ν�n = n�ν +
ν(dn/dν)�ν = [n + ν(dn/dν)]�ν and that �(cm/2Lc) = c/2Lc�(m) = c/2Lc. Thus,

�ν = c

2Lc(n + ν dn/dν)
= vg

2Lc

= c

2ngLc

,

where vg = c/[n + ν(dn/dν)] is the usual expression for the group velocity and where
ng = n + ν(dn/dν) is the group index.]

8. Mode structure of an optical cavity. Generalize the result of the previous problem to the
situation in which the cavity length is L but the material medium has length Lc < L.

9. Quasi-phase-matching. Generalize the discussion of the text leading from Eq. (2.4.1) to
Eq. (2.4.6) by allowing the lengths of the inverted and noninverted sections of nonlinear
optical material to be different. Let 	 be the period of the structure and l be the length
of the inverted region. Show how each of the equations in this range is modified by this
different assumption, and comment explicitly on the resulting modification to the value of
dQ and to the condition for the establishment of quasi-phase-matching.

10. Gaussian laser beams. Verify that Eqs. (2.10.4a) and (2.10.5a) are equivalent descriptions
of a Gaussian laser beam, and verify that they satisfy the paraxial wave Eq. (2.10.3).

11. Gaussian laser beams. Verify the statement made in the text that the trial solution given by
Eq. (2.10.9) satisfies the paraxial wave equation in the form of Eq. (2.10.7) if the amplitude
Aq(z) satisfies the ordinary differential equation (2.10.10).
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12. Phase matching with focused beams. Evaluate the integral appearing in Eq. (2.10.13a) and
thereby verify Eq. (2.10.13b).

13. Third-harmonic generation. Assuming the condition of perfect phase matching, derive
and solve exactly the coupled-amplitude equations describing third-harmonic generation.
You may assume that the nonlinear optical material is lossless. Include in your anal-
ysis the processes described by the two susceptibility elements χ(3)(3ω;ω,ω,ω) and
χ(3)(ω;3ω,−ω,−ω). Calculate the intensity of the third harmonic wave as a function
of the length of the interaction region for the following two situations: (a) In the limit in
which the undepleted pump approximation is valid. (b) For the general case in which the
pump intensity cannot be assumed to remain constant.

14. Poynting’s theorem. Derive the form of Poynting’s theorem valid for a nonlinear optical
material for which D̃ = ε0Ẽ + P̃ with P̃ = ε0[χ(1)Ẽ + χ(2)Ẽ2 + χ(3)Ẽ3]. Assume that the
material is nonmagnetic in the sense that B̃ = μ0H̃.

15. Backward second-harmonic generation. Part (c) of Fig. 2.1.1 implies that second-
harmonic generation is radiated in the forward but is not appreciably radiated in the
backward direction. Verify that this conclusion is in fact correct by deriving the coupled-
amplitude equation for a second-harmonic field propagating in the backward direction,
and show that the amplitude of this wave can never become appreciable. (Note that a more
rigorous calculation that reaches the same conclusion is presented in Section 2.11.)

16. Second-harmonic generation. Consider the process of second-harmonic generation both
with �k = 0 and �k �= 0 in a lossless material. State the conditions under which the
following types of behavior occur: (i) The fundamental and second-harmonic fields pe-
riodically exchange energy. (ii) The second-harmonic field asymptotically acquires all of
the energy. (iii) The fundamental field asymptotically acquires all of the energy. (iv) Part
of the energy resides in each component, and this fraction does not vary with z.

17. Manley–Rowe relations. Derive the Manley–Rowe relations for the process of second-
harmonic generation. The derivation is analogous to that presented in Section 2.5 for the
process of sum-frequency generation.

18. Phase-matching requirements. Explain why processes such as second-harmonic genera-
tion can be efficient only if the phase-matching relation �k = 0 is satisfied, whereas no
such requirement occurs for the case of two-photon absorption.

19. Elementary treatment of second-harmonic generation. The treatment of second-harmonic
generation presented in the text is in many ways too mathematically complicated to allow
for a simple conceptual understanding of the process. As an alternative, simpler approach,
carry through the suggestion presented the sentence that follows Eq. (2.7.12). In particular,
solve Eq. (2.7.11) in the undepleted pump limit and then use this result to express the
intensity of the generated field in terms of the intensity of the fundamental field, the length
L of the interaction region, and the value �k of the wavevector mismatch.
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20. Cascaded optical nonlinearities. The intent of this problem is to develop an understanding
of the phenomenon known as cascaded optical nonlinearities. By cascaded optical non-
linearities, one means that, through propagation, a second-order nonlinearity can mimic
a third-order nonlinearity. In particular, in this problem you are to calculate the phase
shift acquired by an optical wave in propagating through a second-order nonlinear optical
material under conditions of nearly phase-matched second-harmonic generation, and to
determine the conditions under which the phase shift acquired by the fundamental wave
is approximately proportional to the product of the path length and the intensity.
To proceed, start for example with Eqs. (2.7.10) and (2.7.11), and show that one can
eliminate A2 to obtain the equation

d2A1

dz2
+ i�k

dA1

dz
− �2(1 − 2|A1/A0|2

)
A1 = 0,

where � is a constant (give an expression for it) and A0 is the incident value of the fun-
damental field. Show that under proper conditions (give specifics) the solution to this
equation corresponds to a wave whose phase increases linearly with the length L of the
nonlinear material and with the intensity I of the incident wave.

21. Optimum focusing and second-harmonic generation. Explain why it is that under optimum
focusing conditions the power generated at the second harmonic frequency scales linearly
rather than quadratically with the length L of the nonlinear crystal. (See Eq. (2.10.14).)

22. Harmonic generation with focused Gaussian beams. Develop and elucidate a conceptual
understanding of why the intensity of the generated harmonic signal vanishes whenever
the phase mismatch factor �kL is negative or zero. (See Fig. 2.10.3.)

23. Magnetic response. Explain why it is that for most optical interactions, whether linear or
nonlinear, the interaction results primarily from the electric field E and not the magnetic
field B of the incident radiation.

24. Efficiency of Second-Harmonic Generation. Equation (2.10.14) gives the predicted effi-
ciency for second-harmonic generation of Gaussian beams under conditions of optimum
focusing. This equation was derived by Boyd and Kleinman (1968) in a calculation based
on the Gaussian system of units. Repeat this calculation using the SI system of units. (Of
course, the final result is necessarily the same, but the details of the calculation may seem
to be quite different.)

25. Size of a Gaussian laser beam. Show that the fraction of the power of a Gaussian laser
beam that is contained in an area of radius w(z) centered on the beam axis is given by
1 − 1/e2 = 0.865.

26. Coupled-amplitude equations for quasi phase matching. Derive Eqs. (2.4.4). Note that the
form of these equations at first sight may appear strange, but it is straightforward to show
that they are correct.
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Chapter 3

Quantum-Mechanical Theory of the
Nonlinear Optical Susceptibility

3.1 Introduction

In this chapter, we use the laws of quantum mechanics to derive explicit expressions for the
nonlinear optical susceptibility. The motivation for obtaining these expressions is at least three-
fold: (1) these expressions display the functional form of the nonlinear optical susceptibility
and hence show how the susceptibility depends on material parameters such as dipole transi-
tion moments and atomic energy levels, (2) these expressions display the internal symmetries
of the susceptibility, and (3) these expressions can be used to make predictions of the numeri-
cal values of the nonlinear susceptibilities. These numerical predictions are particularly reliable
for the case of atomic vapors, because the atomic parameters (such as atomic energy levels and
dipole transition moments) that appear in the quantum-mechanical expressions are often known
with high accuracy. In addition, since the energy levels of free atoms are very sharp (as opposed
to the case of most solids, where allowed energies have the form of broad bands), it is possible
to obtain very large values of the nonlinear susceptibility through the technique of resonance
enhancement. The idea behind resonance enhancement of the nonlinear optical susceptibility is
shown schematically in Fig. 3.1.1 for the case of third-harmonic generation. In part (a) of this
figure, we show the process of third-harmonic generation in terms of the virtual levels intro-
duced in Chapter 1. In part (b) we also show real atomic levels, indicated by solid horizontal
lines. If one of the real atomic levels is nearly coincident with one of the virtual levels of the
indicated process, the coupling between the radiation and the atom becomes particularly strong
and the nonlinear optical susceptibility becomes large.

Three possible strategies for enhancing the efficiency of third-harmonic generation through
the technique of resonance enhancement are illustrated in Fig. 3.1.2. In part (a), the one-photon
transition is nearly resonant, in part (b) the two-photon transition is nearly resonant, and in
part (c) the three-photon transition is nearly resonant. The formulas derived later in this chapter
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FIGURE 3.1.1: Third-harmonic generation described in terms of virtual levels (a) and with real atomic
levels indicated (b).

FIGURE 3.1.2: Three strategies for enhancing the process of third-harmonic generation.

demonstrate that all three procedures are equally effective at increasing the value of the third-
order nonlinear susceptibility. However, the method shown in part (b) is usually the preferred
way in which to generate the third-harmonic field with high efficiency, for the following reason.
For the case of a one-photon resonance (part a), the incident field experiences linear absorption
and is rapidly attenuated as it propagates through the medium. Similarly, for the case of the
three-photon resonance (part c), the generated field experiences linear absorption. However, for
the case of a two-photon resonance (part b), there is no linear absorption to limit the efficiency
of the process.

3.2 Schrödinger Equation Calculation of the Nonlinear Optical
Susceptibility

In this section, we present a derivation of the nonlinear optical susceptibility based on quantum-
mechanical perturbation theory of the atomic wave function. The expressions that we derive
using this formalism can be used to make accurate predictions of the nonresonant response
of atomic and molecular systems. Relaxation processes, which are important for the case of
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near-resonant excitation, cannot be adequately described by this formalism. Relaxation pro-
cesses are discussed later in this chapter in connection with the density matrix formulation of
quantum mechanics. Even though the density matrix formalism provides results that are more
generally valid, the calculation of the nonlinear susceptibility is much more complicated when
performed using this method. For this reason, we first present a calculation of the nonlinear sus-
ceptibility based on the properties of the atomic wavefunction, since this method is somewhat
simpler and for this reason gives a clearer picture of the underlying physics of the nonlinear
interaction.

One of the fundamental assumptions of quantum mechanics is that all of the properties of
the atomic system can be described in terms of the atomic wavefunction ψ(r, t), which is the
solution to the time-dependent Schrödinger equation

i�
∂ψ

∂t
= Ĥψ. (3.2.1)

Here Ĥ is the Hamiltonian operator∗

Ĥ = Ĥ0 + V̂ (t), (3.2.2)

which is written as the sum of the Hamiltonian Ĥ0 for a free atom and an interaction Hamil-
tonian, V̂ (t), which describes the interaction of the atom with the electromagnetic field. We
usually take the interaction Hamiltonian to be of the form

V̂ (t) = −μ̂ · Ẽ(t), (3.2.3)

where μ̂ = −er̂ is the electric-dipole moment operator and −e is the charge of the electron.

3.2.1 Energy Eigenstates

For the case in which no external field is applied to the atom, the Hamiltonian Ĥ is simply equal
to Ĥ0, and Schrödinger’s equation (3.2.1) possesses solutions in the form of energy eigenstates.
These states are also known as stationary states, because the time of evolution of these states is
given by a simple exponential phase factor. These states have the form

ψn(r, t) = un(r)e−iωnt . (3.2.4a)

∗ We use a caret above a quantity to indicate that the quantity such as Ĥ is a quantum-mechanical operator. For the
most part, in this book we work in the coordinate representation, in which case quantum-mechanical operators
are represented by ordinary numbers for positions and by differential operators for momenta.
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By substituting this form into the Schrödinger equation (3.2.1), we find that the spatially
varying part of the wavefunction un(r) must satisfy the eigenvalue equation (known as the
time-independent Schrödinger equation)

Ĥ0un(r) = Enun(r), (3.2.4b)

where En = �ωn. Here n is a label used to distinguish the various solutions. For future con-
venience, we assume that these solutions are chosen in such a manner that they constitute a
complete, orthonormal set satisfying the condition∫

u∗
mun d3r = δmn. (3.2.5)

3.2.2 Perturbation Solution to Schrödinger’s Equation

For the general case in which the atom is exposed to an electromagnetic field, Schrödinger’s
equation (3.2.1) usually cannot be solved exactly. In such cases, it is often adequate to solve
Schrödinger’s equation through the use of perturbation theory. In order to solve Eq. (3.2.1)
systematically in terms of a perturbation expansion, we replace the Hamiltonian (3.2.2) by

Ĥ = Ĥ0 + λV̂ (t), (3.2.6)

where λ is a continuously varying parameter ranging from zero to unity that characterizes the
strength of the interaction; the value λ = 1 corresponds to the actual physical situation. We now
seek a solution to Schrödinger’s equation in the form of a power series in λ:

ψ(r, t) = ψ(0)(r, t) + λψ(1)(r, t) + λ2ψ(2)(r, t) + · · · . (3.2.7)

By requiring that the solution be of this form for any value of λ, we assure that ψ(N) will be
that part of the solution which is of order N in the interaction energy V . We now introduce
Eq. (3.2.7) into Eq. (3.2.1) and require that all terms proportional to λN satisfy the equality
separately. We thereby obtain the set of equations

i�
∂ψ(0)

∂t
= Ĥ0ψ

(0), (3.2.8a)

i�
∂ψ(N)

∂t
= Ĥ0ψ

(N) + V̂ ψ(N−1), N = 1,2,3 . . . . (3.2.8b)

Eq. (3.2.8a) is simply Schrödinger’s equation for the atom in the absence of its interaction with
the applied field; we assume for definiteness that initially the atom is in state g (typically the
ground state) so that the solution to this equation can be represented as

ψ(0)(r, t) = ug(r)e−iEgt/�. (3.2.9)
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The remaining equations in the perturbation expansion (Eq. (3.2.8b)) are readily solved by
making use of the fact that the energy eigenfunctions for the free atom constitute a complete set
of basis functions, in terms of which any function can be expanded. In particular, we represent
the N th-order contribution to the wavefunction ψ(N)(r, t) as the sum

ψ(N)(r, t) =
∑

l

a
(N)
l (t)ul(r)e−iωl t . (3.2.10)

Here a
(N)
l (t) gives the probability amplitude that, to N th order in the perturbation, the atom is

in energy eigenstate l at time t . If Eq. (3.2.10) is substituted into Eq. (3.2.8b), we find that the
probability amplitudes obey the system of equations

i�
∑

l

ȧ
(N)
l ul(r)e−iωl t =

∑
l

a
(N−1)
l V̂ ul(r)e−iωl t , (3.2.11)

where the dot denotes a total time derivative. This equation relates all of the probability am-
plitudes of order N (the left-hand side) to all of the amplitudes of order N − 1 (the right-hand
side). To simplify this equation, we multiply each side from the left by u∗

m and integrate the
resulting equation over all space. Then through use of the orthonormality condition (3.2.5), we
obtain the equation

ȧ(N)
m (t) = (i�)−1

∑
l

a
(N−1)
l (t)Vml(t)e

iωmlt , (3.2.12)

where we have introduced the frequency difference ωml ≡ ωm − ωl and where we have intro-
duced the matrix elements of the perturbing Hamiltonian, which are defined by

Vml ≡ 〈
m

∣∣V̂ ∣∣l〉 = ∫
u∗

mV̂ ul d
3r. (3.2.13)

The form of Eq. (3.2.12) demonstrates the usefulness of the perturbation technique; once
the probability amplitudes of order N − 1 are determined, the amplitudes of the next higher
order (N) can be obtained by straightforward time integration. In this manner a simple con-
structive procedure can be used to obtain correction terms to the wave function of arbitrarily
high order. In particular, we find that

a(N)
m (t) = (i�)−1

∑
l

∫ t

−∞
dt ′Vml(t

′)a(N−1)
l (t ′)eiωmlt

′
. (3.2.14)

We shall eventually be interested in determining the linear, second-order, and third-order
optical susceptibilities. To do so, we shall require explicit expressions for the probability am-
plitudes up to third order in the perturbation expansion. We now determine the form of these
amplitudes.
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To determine the first-order amplitudes a
(1)
m (t), we set a

(0)
l in Eq. (3.2.14) equal to δlg ,

corresponding to an atom known to be in state g in zeroth order. We represent the optical field
Ẽ(t) as a discrete sum of (positive and negative) frequency components as

Ẽ(t) =
∑
p

E(ωp)e−iωpt . (3.2.15)

Through use of Eqs. (3.2.3) and (3.2.15), we can then replace Vml(t
′) by −∑

p μml ·
E(ωp) exp(−iωpt ′), where μml = ∫

u∗
mμ̂ul d

3r is known as the electric-dipole transition mo-
ment. We next evaluate the integral appearing in Eq. (3.2.14) and assume that the contribution
from the lower limit of integration vanishes∗; we thereby find that

a(1)
m (t) = 1

�

∑
p

μmg · E(ωp)

ωmg − ωp

ei(ωmg−ωp)t . (3.2.16)

We next determine the second-order correction to the probability amplitudes by using
Eq. (3.2.14) once again, but with N set equal to 2. We introduce Eq. (3.2.16) for a

(1)
m into

the right-hand side of this equation and perform the integration to find that

a(2)
n (t) = 1

�2

∑
pq

∑
m

[μnm · E(ωq)][μmg · E(ωp)]
(ωng − ωp − ωq)(ωmg − ωp)

ei(ωng−ωp−ωq)t . (3.2.17)

Analogously, through an additional use of Eq. (3.2.14), we find that the third-order correc-
tion to the probability amplitude is given by

a(3)
ν (t) = 1

�3

∑
pqr

∑
mn

[μνn · E(ωr)][μnm · E(ωq)][μmg · E(ωp)]
(ωνg − ωp − ωq − ωr)(ωng − ωp − ωq)(ωmg − ωp)

× ei(ωνg−ωp−ωq−ωr)t . (3.2.18)

3.2.3 Linear Susceptibility

Let us use the results just obtained to describe the linear optical properties of a material sys-
tem. According to the rules of quantum mechanics, the expectation value of the electric-dipole
moment is given by

〈p̃〉 = 〈ψ |μ̂|ψ〉, (3.2.19)

∗ We note that there is no mathematical justification for ignoring the lower limit of integration. This mathemat-
ical difficulty does not occur within the context of the density-matrix formalism of quantum mechanics, to be
developed later in this chapter.
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where ψ is given by the perturbation expansion (3.2.7) with λ set equal to one. We thus find that
the lowest-order contribution to 〈p̃〉 (i.e., the contribution linear in the applied field amplitude)
is given by 〈

p̃(1)
〉 = 〈

ψ(0)
∣∣μ̂∣∣ψ(1)

〉 + 〈
ψ(1)

∣∣μ̂∣∣ψ(0)
〉
, (3.2.20)

where ψ(0) is given by Eq. (3.2.9) and ψ(1) is given by Eqs. (3.2.10) and (3.2.16). By substi-
tuting these forms into Eq. (3.2.20) we find that

〈
p̃(1)

〉 = 1

�

∑
p

∑
m

(
μgm[μmg ·E(ωp)]

ωmg − ωp

e−iωpt + [μmg ·E(ωp)]∗μmg

ω∗
mg − ωp

eiωpt

)
. (3.2.21)

In writing Eq. (3.2.21) in the form shown, we have formally allowed for the possibility that
the transition frequency ωmg is a complex quantity. We have done this because a crude way of
incorporating damping phenomena into the theory is to take ωmg to be the complex quantity
ωmg = (Em − Eg)/� − i�m/2, where �m is the population decay rate of the upper level m.
This procedure is not totally acceptable, because it cannot describe the cascade of population
among the excited states nor can it describe dephasing processes that are not accompanied by
the transfer of population. Nonetheless, for the remainder of the present section, we shall allow
the transition frequency ωmg to be a complex quantity in order to provide an indication of how
damping effects could be incorporated into the present theory.

Eq. (3.2.21) is written as a summation over all positive and negative field frequencies ωp.
This result is easier to interpret if we formally replace ωp by −ωp in the second term, in which
case the expression becomes

〈
p̃(1)

〉 = 1

�

∑
p

∑
m

(
μgm[μmg ·E(ωp)]

ωmg − ωp

+ [μgm ·E(ωp)]μmg

ω∗
mg + ωp

)
e−iωpt . (3.2.22)

We now use this result to calculate the form of the linear susceptibility. We take the linear
polarization to be P̃(1) = N〈p̃(1)〉, where N is the number density of atoms. We next express the
polarization in terms of its complex amplitude as P̃(1) = ∑

p P(1)(ωp) exp(−iωpt). Finally, we

introduce the linear susceptibility defined through the relation P
(1)
i (ωp) = ε0

∑
j χ

(1)
ij Ej (ωp).

We thereby find that

χ
(1)
ij (ωp) = N

ε0�

∑
m

(
μi

gmμ
j
mg

ωmg − ωp

+ μ
j
gmμi

mg

ω∗
mg + ωp

)
. (3.2.23)

The first and second terms in Eq. (3.2.23) can be interpreted as the resonant and antiresonant
contributions to the susceptibility, as illustrated in Fig. 3.2.1. In this figure we have indicated
where level m would have to be located in order for the corresponding term to become resonant.
Note that if g denotes the ground state, it is impossible for the second term to become resonant,
which is why it is called the antiresonant contribution.



144 Chapter 3

FIGURE 3.2.1: The resonant (a) and antiresonant (b) contributions to the linear susceptibility of
Eq. (3.2.23).

3.2.4 Second-Order Susceptibility

The expression for the second-order susceptibility is derived in a manner analogous to that used
for the linear susceptibility. The second-order contribution (i.e., the contribution second order
in V̂ ) to the induced dipole moment per atom is given by〈

p̃(2)
〉 = 〈

ψ(0)
∣∣μ̂∣∣ψ(2)

〉 + 〈
ψ(1)

∣∣μ̂∣∣ψ(1)
〉 + 〈

ψ(2)
∣∣μ̂∣∣ψ(0)

〉
, (3.2.24)

where ψ(0) is given by Eq. (3.2.9), and ψ(1) and ψ(2) are given by Eqs. (3.2.10), (3.2.16), and
(3.2.17). We find that 〈p̃(2)〉 is given explicitly by

〈
p̃(2)

〉 = 1

�2

∑
pq

∑
mn

(
μgn[μnm ·E(ωq)][μmg ·E(ωp)]
(ωng − ωp − ωq)(ωmg − ωp)

e−i(ωp+ωq)t

+ [μng ·E(ωq)]∗μnm[μmg ·E(ωp)]
(ω∗

ng − ωq)(ωmg − ωp)
e−i(ωp−ωq)t

+ [μng ·E(ωq)]∗[μnm ·E(ωp)]∗μmg

(ω∗
ng − ωq)(ω∗

mg − ωq − ωq)
ei(ωp+ωq)t

)
. (3.2.25)

As in the case of the linear susceptibility, this equation can be rendered more transparent by
replacing ωq by −ωq in the second term and by replacing ωq by −ωq and ωp by −ωp in the
third term; these substitutions are permissible because the expression is to be summed over
frequencies ωp and ωq . We thereby obtain an expression in which each term has the same
frequency dependence:

〈
p̃(2)

〉 = 1

�2

∑
pq

∑
mn

(
μgn[μnm ·E(ωq)][μmg ·E(ωp)]
(ωng − ωp − ωq)(ωmg − ωp)

+ [μgn ·E(ωq)]μnm[μmg ·E(ωp)]
(ω∗

ng + ωq)(ωmg − ωp)

+ [μgn ·E(ωq)][μnm ·E(ωp)]μmg

(ω∗
ng + ωq)(ω∗

mg + ωq + ωq)

)
e−i(ωp+ωqt). (3.2.26)
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FIGURE 3.2.2: Resonance structure of the three terms of the second-order susceptibility of Eq. (3.2.27).

We next take the second-order polarization to be P̃(2) = N〈p̃(2)〉 and represent it in terms of
its frequency components as P̃(2) = ∑

r P(2)(ωr) exp(−iωr t). We also introduce the standard
definition of the second-order susceptibility (see also Eq. (1.3.13)):

P
(2)
i = ε0

∑
jk

∑
(pq)

χ
(2)
ijk (ωp + ωq,ωq,ωp)Ej (ωq)Ek(ωp)

and find that the second-order susceptibility is given by

χ
(2)
ijk (ωp + ωq,ωq,ωp) = N

ε0�
2
PI

∑
mn

(
μi

gnμ
j
nmμk

mg

(ωng − ωp − ωq)(ωmg − ωp)

+ μ
j
gnμ

i
nmμk

mg

(ω∗
ng + ωq)(ωmg − ωp)

+ μ
j
gnμ

k
nmμi

mg

(ω∗
ng + ωq)(ω∗

mg + ωp + ωq)

)
. (3.2.27)

In this expression, the symbol PI denotes the intrinsic permutation operator. This operator tells
us to average the expression that follows it over both permutations of the frequencies ωp and
ωq of the applied fields. The Cartesian indices j and k are to be permuted simultaneously. We
introduce the intrinsic permutation operator into Eq. (3.2.27) to ensure that the resulting ex-
pression obeys the condition of intrinsic permutation symmetry, as described in the discussion
of Eqs. (1.4.52) and (1.5.6). The nature of the expression (3.2.27) for the second-order suscep-
tibility can be understood in terms of the energy level diagrams depicted in Fig. 3.2.2, which
show where the levels m and n would have to be located in order for each term in the expression
to become resonant.

The quantum-mechanical expression for the second-order susceptibility given by Eq. (3.2.27)
is sometimes called a sum-over-states expression because it involves a sum over all of the ex-
cited states of the atom. This expression actually is comprised of six terms; through use of
the intrinsic permutation operator PI , we have been able to express the susceptibility in the
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form (3.2.27), in which only three terms are displayed explicitly. For the case of highly non-
resonant excitation, such that the resonance frequencies ωmg and ωng can be taken to be real
quantities, the expression for χ(2) can be simplified still further. In particular, under such cir-
cumstances Eq. (3.2.27) can be expressed as

χ
(2)
ijk (ωσ ,ωq,ωp) = N

ε0�
2
PF

∑
mn

μi
gnμ

j
nmμk

mg

(ωng − ωσ )(ωmg − ωp)
, (3.2.28)

where ωσ = ωp +ωq . Here we have introduced the full permutation operator, PF , defined such
that the expression that follows it is to be summed over all permutations of the frequencies
ωp, ωq , and −ωσ —that is, over all input and output frequencies. The Cartesian indices are to
be permuted along with the frequencies. The final result is then to be divided by the number
of permutations of the input frequencies. The equivalence of Eqs. (3.2.27) and (3.2.28) can be
verified by explicitly expanding the right-hand side of each equation into all six terms. The six
permutations denoted by the operator PF are

(−ωσ ,ωq,ωp) → (−ωσ ,ωp,ωq), (ωq,−ωσ ,ωp), (ωq,ωp,−ωσ ),

(ωp,−ωσ ,ωq), (ωp,ωq,−ωσ ).

Since we can express the nonlinear susceptibility in the form of Eq. (3.2.28), we have proven
the statement made in Section 1.5 that the second-order susceptibility of a lossless medium
possesses full permutation symmetry.

3.2.5 Third-Order Susceptibility

We now calculate the third-order susceptibility. The dipole moment per atom, correct to third
order in perturbation theory, is given by〈

p̃(3)
〉 = 〈

ψ(0)
∣∣μ̂∣∣ψ(3)

〉 + 〈
ψ(1)

∣∣μ̂∣∣ψ(2)
〉 + 〈

ψ(2)
∣∣μ̂∣∣ψ(1)

〉 + 〈
ψ(3)

∣∣μ̂∣∣ψ(0)
〉
. (3.2.29)

Formulas for ψ(0),ψ(1),ψ(2),ψ(3), are given by Eqs. (3.2.9), (3.2.10), (3.2.16), (3.2.17), and
(3.2.18). We thus find that

〈
p̃(3)

〉 = 1

�3

∑
pqr

∑
mnν

×
(

μgν[μνn ·E(ωr)][μnm ·E(ωq)][μmg ·E(ωp)]
(ωνg − ωr − ωq − ωp)(ωng − ωq − ωp)(ωmg − ωp)

e−i(ωp+ωq+ωr)t

+ [μνg ·E(ωr)]∗μνn[μnm ·E(ωq)][μmg ·E(ωp)]
(ω∗

νg − ωr)(ωng − ωq − ωp)(ωmg − ωp)
e−i(ωp+ωq−ωr)t
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+ [μνg ·E(ωr)]∗[μnν ·E(ωq)]∗μnm[μmg ·E(ωp)]
(ω∗

νg − ωr)(ω∗
ng − ωr − ωq)(ωmg − ωp)

e−i(ωp−ωq−ωr)t

+ [μνg ·E(ωr)]∗[μnν ·E(ωq)]∗[μmn ·E(ωp)]∗μmg

(ω∗
νg − ωr)(ω∗

ng − ωr − ωq)(ω∗
mg − ωr − ωq − ωp)

e+i(ωp+ωq+ωr)t

)
.

(3.2.30)

Since the expression is summed over all positive and negative values of ωp,ωq , and ωr , we can
replace these quantities by their negatives in those expressions where the complex conjugate of
a field amplitude appears. We thereby obtain the expression

〈
p̃(3)

〉 = 1

�3

∑
pqr

∑
mnν

×
(

μgν[μνn ·E(ωr)][μnm ·E(ωq)][μmg ·E(ωp)]
(ωνg − ωr − ωq − ωp)(ωng − ωq − ωp)(ωmg − ωp)

+ [μgν ·E(ωr)]μνn[μnm ·E(ωq)][μmg ·E(ωp)]
(ω∗

νg + ωr)(ωng − ωq − ωp)(ωmg − ωp)

+ [μgν ·E(ωr)][μνn ·E(ωq)]μnm[μmg ·E(ωp)]
(ω∗

νg + ωr)(ω∗
ng + ωr + ωq)(ωmg − ωp)

+ [μgν ·E(ωr)][μνn ·E(ωq)][μnm ·E(ωp)]μmg

(ω∗
νg + ωr)(ω∗

ng + ωr + ωq)(ω∗
mg + ωr + ωq + ωp)

)

× e−i(ωp+ωq+ωr)t . (3.2.31)

We now use this result to calculate the third-order susceptibility: We let P̃(3) = N〈p̃(3)〉 =∑
s P(3)(ωs) exp(−iωst) and introduce the definition (1.3.21) of the third-order susceptibility:

Pk(ωp + ωq + ωr) = ε0

∑
hij

∑
(pqr)

χ
(3)
kj ih(ωσ ,ωr,ωq,ωp)Ej (ωr)Ei(ωq)Eh(ωp).

We thereby obtain the result

χ
(3)
kj ih(ωσ ,ωr,ωq,ωp)

= N

ε0�
3
PI

∑
mnν

[
μk

gνμ
j
νnμ

i
nmμh

mg

(ωνg − ωr − ωq − ωp)(ωng − ωq − ωp)(ωmg − ωp)

+ μ
j
gνμ

k
νnμ

i
nmμh

mg

(ω∗
νg + ωr)(ωng − ωq − ωp)(ωmg − ωp)
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+ μ
j
gνμ

i
νnμ

k
nmμh

mg

(ω∗
νg + ωr)(ω∗

ng + ωr + ωq)(ωmg − ωp)

+ μ
j
gνμ

i
νnμ

h
nmμk

mg

(ω∗
νg + ωr)(ω∗

ng + ωr + ωq)(ω∗
mg + ωr + ωq + ωp)

]
. (3.2.32)

Here we have again made use of the intrinsic permutation operator PI defined following
Eq. (3.2.27). The complete expression for the third-order susceptibility actually contains 24
terms, of which only four are displayed explicitly in Eq. (3.2.33); the others can be obtained
through permutations of the frequencies (and Cartesian indices) of the applied fields. The loca-
tions of the resonances in the displayed terms of this expression are illustrated in Fig. 3.2.3.

FIGURE 3.2.3: Locations of the resonances of each term in the expression (3.2.32) for the third-order
susceptibility.

As in the case of the second-order susceptibility, the expression for χ(3) can be written very
compactly for the case of highly nonresonant excitation such that the imaginary parts of the
resonance frequencies (recall that ωlg = (El − Eg)/�− i�l/2) can be ignored. In this case, the
expression for χ(3) can be written as

χ
(3)
kj ih(ωσ ,ωr,ωq,ωp)

= N

ε0�
3
PF

∑
mnν

μk
gνμ

j
νnμ

i
nmμh

mg

(ωνg − ωσ )(ωng − ωq − ωp)(ωmg − ωp)
, (3.2.33)

where ωσ = ωp + ωq + ωr and where we have made use of the full permutation operator PF

defined following Eq. (3.2.28).

3.2.6 Third-Harmonic Generation in Alkali Metal Vapors

As an example of the use of Eq. (3.2.33), we next calculate the nonlinear optical susceptibility
describing third-harmonic generation in a vapor of sodium atoms. Except for minor changes
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in notation, our treatment follows that of the original treatment of Miles and Harris (1973).
We assume that the incident radiation is linearly polarized in the z direction. Consequently, the
nonlinear polarization will have only a z component, and we can suppress the tensor nature of
the nonlinear interaction. If we represent the applied field as

Ẽ(r, t) = E1(r)e−iωt + c.c., (3.2.34)

we find that the nonlinear polarization can be represented as

P̃ (r, t) = P3(r)e−i3ωt + c.c., (3.2.35)

where

P3(r) = ε0χ
(3)(3ω)E3

1 . (3.2.36)

Here χ(3)(3ω) is an abbreviated notation for the quantity χ(3)(3ω = ω +ω +ω). The nonlinear
susceptibility describing third-harmonic generation is given, ignoring damping effects, by

χ(3)(3ω) = N

ε0�
3

∑
mnν

μgνμνnμnmμmg

×
[

1

(ωνg − 3ω)(ωng − 2ω)(ωmg − ω)

+ 1

(ωνg + ω)(ωng − 2ω)(ωmg − ω)

+ 1

(ωνg + ω)(ωng + 2ω)(ωmg − ω)

+ 1

(ωνg + ω)(ωng + 2ω)(ωmg + 3ω)

]
. (3.2.37)

Eq. (3.2.37) can be readily evaluated through use of the known energy-level structure and
dipole transition moments of the sodium atom. Fig. 3.2.4 shows an energy-level diagram of
the low-lying states of the sodium atom and a photon energy-level diagram describing the
process of third-harmonic generation. We see that only the first contribution to Eq. (3.2.37)
can become fully resonant. This term becomes fully resonant when ω is nearly equal to ωmg ,
2ω is nearly equal to ωng , and 3ω is nearly equal to ωνg . In performing the summation over
excited levels m, n, and ν, the only levels that contribute are those that obey the selection rule
�l = ±1 for electric-dipole transitions. In particular, since the ground state is an s state, the
matrix element μmg will be nonzero only if m denotes a p state. Similarly, since m denotes a
p state, the matrix element μnm will be nonzero only if n denotes an s or a d state. In either
case, ν must denote a p state, since only in this case can both μνn and μgν be nonzero. The two
types of coupling schemes that contribute to χ(3) are shown in Fig. 3.2.5.
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FIGURE 3.2.4: (a) Energy-level diagram of the sodium atom. (b) The third-harmonic generation process.

FIGURE 3.2.5: Two coupling schemes that contribute to the third-order susceptibility.

Through use of tabulated values of the matrix elements for the sodium atom, Miles and
Harris (1973) calculated numerically the value of χ(3) as a function of the vacuum wavelength
λ = 2πc/ω of the incident laser field. The results of this calculation are shown in Fig. 3.2.6.
A number of strong resonances in the nonlinear susceptibility are evident. Each such resonance
is labeled by the quantum number of the level and the type of resonance that leads to the reso-
nance enhancement. The peak labeled 3p(3ω), for example, is due to a three-photon resonance
with the 3p level of sodium. Miles and Harris also presented experimental results that confirm
predictions of their theory.

Because atomic vapors are centrosymmetric, they cannot produce a second-order response.
Nonetheless, the presence of a static electric field can break the inversion symmetry of the
material medium, allowing processes such as sum-frequency generation to occur. These effects
can be particularly large if the optical fields excite the high-lying Rydberg levels of an atomic
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FIGURE 3.2.6: The nonlinear susceptibility describing third-harmonic generation in atomic sodium va-
por plotted versus the vacuum wavelength of the fundamental radiation (after Miles and Harris, 1973).

system. The details of this process have been described theoretically by Boyd and Xiang (1982),
with experimental confirmation presented by Gauthier et al. (1983) and Boyd et al. (1984).

3.3 Density Matrix Formulation of Quantum Mechanics

In the present section through Section 3.7, we calculate the nonlinear optical susceptibility
through use of the density matrix formulation of quantum mechanics. We use this formalism
because it is capable of treating effects, such as collisional broadening of the atomic resonances,
that cannot be treated by the simple theoretical formalism based on the atomic wave function.
We need to be able to treat such effects for a number of related reasons. We saw in the previous
section that nonlinear effects become particularly large when one of the frequencies of the inci-
dent laser field, or when sums or differences of these frequencies, becomes equal to a transition
frequency of the atomic system. But the formalism of the previous section does not allow us to
describe the width of these resonances, and thus it cannot tell us how accurately we need to set
the laser frequency to that of the atomic resonance. The wavefunction formalism also does not
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tell us how strongly the response is modified when the laser frequency lies within the width of
the resonance.

Let us begin by reviewing how the density matrix formalism follows from the basic laws
of quantum mechanics.∗ If a quantum-mechanical system (such as an atom) is known to be in
a particular quantum-mechanical state that we designate s, we can describe all of the physical
properties of the system in terms of the wavefunction ψs(r, t) appropriate to this state. This
wavefunction obeys the Schrödinger equation

i�
∂ψs(r, t)

∂t
= Ĥψs(r, t), (3.3.1)

where Ĥ denotes the Hamiltonian operator of the system. We assume that Ĥ can be represented
as

Ĥ = Ĥ0 + V̂ (t), (3.3.2)

where Ĥ0 is the Hamiltonian for a free atom and V̂ (t) represents the interaction energy. In order
to determine how the wavefunction evolves in time, it is often helpful to make explicit use of
the fact that the energy eigenstates of the free-atom Hamiltonian Ĥ0 form a complete set of
basis functions. We can hence represent the wavefunction of state s as

ψs(r, t) =
∑
n

Cs
n(t)un(r), (3.3.3)

where, as we noted in Section 3.2, the functions un(r) are the energy eigensolutions to the
time-independent Schrödinger equation

Ĥ0un(r) = Enun(r), (3.3.4)

which are assumed to be orthonormal in that they obey the relation∫
u∗

m(r)un(r) d3r = δmn. (3.3.5)

The expansion coefficient Cs
n(t) gives the probability amplitude that the atom, which is known

to be in state s, is in energy eigenstate n at time t . The time evolution of ψs(r, t) can be
specified in terms of the time evolution of each of the expansion coefficient Cs

n(t). To determine
how these coefficients evolve in time, we introduce the expansion (3.3.3) into Schrödinger’s
equation (3.3.1) to obtain

i�
∑
n

dCs
n(t)

dt
un(r) =

∑
n

Cs
n(t)Ĥun(r). (3.3.6)

∗ The reader who is already familiar with the density matrix formalism can skip directly to Section 3.4.
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Each side of this equation involves a summation over all of the energy eigenstates of the system.
In order to simplify this equation, we multiply each side from the left by u∗

m(r) and integrate
over all space. The summation on the left-hand side of the resulting equation reduces to a single
term through use of the orthogonality condition of Eq. (3.3.5). The right-hand side is simplified
by introducing the matrix elements of the Hamiltonian operator Ĥ , defined through

Hmn =
∫

u∗
m(r)Ĥun(r) d3r. (3.3.7)

We thereby obtain the result

i�
d

dt
Cs

m(t) =
∑
n

HmnC
s
n(t). (3.3.8)

This equation is entirely equivalent to the Schrödinger equation (3.3.1), but it is written in terms
of the probability amplitudes Cs

n(t).
The expectation value of any observable quantity can be calculated in terms of the wave-

function of the system. A basic postulate of quantum mechanics states that any observable
quantity A is associated with a Hermitian operator Â. The expectation value of A is then ob-
tained according to the prescription

〈A〉 =
∫

ψ∗
s Âψs d3r. (3.3.9)

Here the angular brackets denote a quantum-mechanical average. This relationship can alterna-
tively be written in Dirac notation as

〈A〉 = 〈
ψs

∣∣Â∣∣ψs

〉 = 〈
s
∣∣Â∣∣s〉, (3.3.10)

where we shall use either |ψs〉 or |s〉 to denote the state s. The expectation value 〈A〉 can be ex-
pressed in terms of the probability amplitudes Cs

n(t) by introducing Eq. (3.3.3) into Eq. (3.3.9)
to obtain

〈A〉 =
∑
mn

Cs∗
m Cs

nAmn, (3.3.11)

where we have introduced the matrix elements Amn of the operator Â, defined through

Amn = 〈
um

∣∣Â∣∣un

〉 = ∫
u∗

mÂun d3r. (3.3.12)

As long as the initial state and the Hamiltonian operator Ĥ for the system are known, the
formalism described by Eqs. (3.3.1) through (3.3.12) is capable of providing a complete de-
scription of the time evolution of the system and of all of its observable properties. However,
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there are circumstances under which the state of the system is not known in a precise manner.
An example is a collection of atoms in an atomic vapor, where the atoms can interact with one
another by means of collisions. Each time a collision occurs, the wave function of each inter-
acting atom is modified. If the collisions are sufficiently weak, the modification may involve
only an overall change in the phase of the wave function. However, since it is computationally
infeasible to keep track of the phase of each atom within the atomic vapor, from a practical
point of view the state of each atom is not known.

Under such circumstances, where the precise state of the system is unknown, the density
matrix formalism can be used to describe the system in a statistical sense. Let us denote by p(s)

the probability that the system is in the state s. The quantity p(s) is to be understood as a
classical rather than a quantum-mechanical probability. Hence p(s) simply reflects our lack of
knowledge of the actual quantum-mechanical state of the system; it is not a consequence of any
sort of quantum-mechanical uncertainty relation. In terms of p(s), we define the elements of
the density matrix of the system by

ρnm =
∑

s

p(s)Cs∗
m Cs

n. (3.3.13)

This relation can also be written symbolically as

ρnm = C∗
mCn, (3.3.14)

where the overbar denotes an ensemble average, that is, an average over all of the possible
states of the system. In either form, the indices n and m are understood to run over all of the
energy eigenstates of the system.

The elements of the density matrix have the following physical interpretation: The diagonal
elements ρnn give the probability that the system is in energy eigenstate n. The off-diagonal
elements have a somewhat more abstract interpretation: ρnm gives the “coherence” between
levels n and m, in the sense that ρnm will be nonzero only if the system is in a coherent su-
perposition of energy eigenstate n and m. We show below that the off-diagonal elements of the
density matrix are, in certain circumstances, proportional to the induced electric dipole moment
of the atom.

The density matrix is useful because it can be used to calculate the expectation value of
any observable quantity. Since the expectation value of an observable quantity A for a system
known to be in the quantum state s is given according to Eq. (3.3.11) by 〈A〉 = ∑

mn Cs∗
m Cs

nAmn,
the expectation value for the case in which the exact state of the system is not known is obtained
by averaging Eq. (3.3.11) over all possible states of the system, to yield

〈A〉 =
∑

s

p(s)
∑
nm

Cs∗
m Cs

nAmn. (3.3.15)
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The notation used on the left-hand side of this equation means that we are calculating the
ensemble average of the quantum-mechanical expectation value of the observable quantity A.∗
Through use of Eq. (3.3.13), this quantity can alternatively be expressed as

〈A〉 =
∑
nm

ρnmAmn. (3.3.16)

The double summation in the equation can be simplified as follows:

∑
nm

ρnmAmn =
∑
n

(∑
m

ρnmAmn

)
=

∑
n

(
ρ̂Â

)
nn

≡ Tr
(
ρ̂Â

)
,

where we have introduced the trace operation, which is defined for any operator M̂ by Tr M̂ =∑
n Mnn. The expectation value of A is hence given by

〈A〉 = Tr
(
ρ̂Â

)
. (3.3.17)

The notation used in these equations is that ρ̂ denotes the density operator, whose n,m matrix
component is denoted ρnm; ρ̂Â denotes the product of ρ̂ with the operator Â; and (ρ̂Â)nn

denotes the n, n component of the matrix representation of this product.
We have just seen that the expectation value of any observable quantity can be determined

straightforwardly in terms of the density matrix. In order to determine how any expectation
value evolves in time, it is thus necessary only to determine how the density matrix itself evolves
in time. By direct time differentiation of Eq. (3.3.13), we find that

ρ̇nm =
∑

s

dp(s)

dt
Cs∗

m Cs
n +

∑
s

p(s)

(
Cs∗

m

dCs
n

dt
+ dCs∗

m

dt
Cs

n

)
. (3.3.18)

For the present, let us assume that p(s) does not vary in time, so that the first term in this expres-
sion vanishes. We can then evaluate the second term straightforwardly by using Schrödinger’s
equation for the time evolution of the probability amplitudes equation (3.3.8). From this equa-
tion we obtain the expressions

Cs∗
m

dCs
n

dt
= −i

�
Cs∗

m

∑
ν

HnνC
s
ν,

Cs
n

dCs∗
m

dt
= i

�
Cs

n

∑
ν

H ∗
mνC

s∗
ν = i

�
Cs

n

∑
ν

HνmCs∗
ν .

∗ In later sections of this chapter, we shall follow conventional notation and omit the overbar from expressions such
as 〈A〉, allowing the angular brackets to denote both a quantum and a classical average.
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These results are now substituted into Eq. (3.3.18) (with the first term on the right-hand side
omitted) to obtain

ρ̇nm =
∑

s

p(s)
i

�

∑
ν

(
Cs

nC
s∗
ν Hνm − Cs∗

m Cs
νHnν

)
. (3.3.19)

The right-hand side of this equation can be written more compactly by introducing the form
(3.3.13) for the density matrix to obtain

ρ̇nm = i

�

∑
ν

(ρnνHνm − Hnνρνm). (3.3.20)

Finally, the summation over ν can be performed formally to write this result as

ρ̇nm = i

�

(
ρ̂Ĥ − Ĥ ρ̂

)
nm

= −i

�

[
Ĥ , ρ̂

]
nm

. (3.3.21)

We have written the last form in terms of the commutator, defined for any two operators Â and
B̂ by [Â, B̂] = ÂB̂ − B̂Â.

Eq. (3.3.21) describes how the density matrix evolves in time as the result of interactions that
are included in the Hamiltonian Ĥ . However, as mentioned above, there are certain interactions
(such as those resulting from collisions between atoms) that cannot conveniently be included in
a Hamiltonian description. Such interactions can lead to a change in the state of the system, and
hence to a nonvanishing value of dp(s)/dt . We include such effects in the formalism by adding
phenomenological damping terms to the equation of motion (3.3.21). There is more than one
way to model such decay processes. We shall often model such processes by taking the density
matrix equations to have the form

ρ̇nm = −i

�

[
Ĥ , ρ̂

]
nm

− γnm

(
ρnm − ρ

(eq)
nm

)
. (3.3.22)

Here the second term on the right-hand side is a phenomenological damping term, which indi-
cates that ρnm relaxes to its equilibrium value ρ

(eq)
nm at rate γnm. Since γnm is a decay rate, we

assume that γnm = γmn. In addition, we make the physical assumption that

ρ
(eq)
nm = 0 for n 	= m. (3.3.23)

We are thereby asserting that in thermal equilibrium the excited states of the system may contain
population (i.e., ρ

(eq)
nn can be nonzero) but that thermal excitation, which is expected to be an

incoherent process, cannot produce any coherent superpositions of atomic states (ρ(eq)
nm = 0 for

n 	= m).
An alternative method of describing decay phenomena is to assume that the off-diagonal

elements of the density matrix are damped in the manner described above, but to describe the
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damping of the diagonal elements by allowing population to decay from higher-lying levels to
lower-lying levels. In such a case, the density matrix equations of motion are given by

ρ̇nm = −i�−1[Ĥ , ρ̂
]
nm

− γnmρnm, n 	= m, (3.3.24a)

ρ̇nn = −i�−1[Ĥ , ρ̂
]
nn

+
∑

Em>En

�nmρmm −
∑

Em<En

�mnρnn. (3.3.24b)

Here �nm gives the rate per atom at which population decays from level m to level n, and, as
above, γnm gives the damping rate of the ρnm coherence.

The damping rates γnm for the off-diagonal elements of the density matrix are not entirely
independent of the damping rates of the diagonal elements. In fact, under quite general condi-
tions the off-diagonal elements can be represented as

γnm = 1
2(�n + �m) + γ (col)

nm . (3.3.25)

Here, �n and �m denote the total decay rates of population out of levels n and m, respectively.
In the notation of Eq. (3.3.24b), for example, �n is given by the expression

�n =
∑

n′ (En′<En)

�n′n. (3.3.26)

The quantity γ
(col)
nm in Eq. (3.3.25) is the dipole dephasing rate due to processes (such as elastic

collisions) that are not associated with the transfer of population; γ
(col)
nm is sometimes called the

proper dephasing rate. To see why Eq. (3.3.25) depends upon the population decay rates in the
manner indicated, we note that if level n has lifetime τn = 1/�n, the probability to be in level n

must decay as ∣∣Cn(t)
∣∣2 = ∣∣Cn(0)

∣∣2
e−�nt , (3.3.27)

and thus the probability amplitude must vary in time as

Cn(t) = Cn(0)e−iωnt e−�nt/2. (3.3.28)

Likewise, the probability amplitude of being in level m must vary as

Cm(t) = Cm(0)e−iωmt e−�mt/2. (3.3.29)

Thus, the coherence between the two levels must vary as

C∗
n(t)Cm(t) = C∗

n(0)Cm(0)e−iωmnt e−(�n+�m)t/2. (3.3.30)

But since the ensemble average of C∗
nCm is just ρmn, whose damping rate is denoted γmn, it

follows that

γmn = 1
2(�n + �m). (3.3.31)
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FIGURE 3.3.1: A two-level atom.

3.3.1 Example: Two-Level Atom

As an example of the use of the density matrix formalism, we apply it to the simple case
illustrated in Fig. 3.3.1, in which only the two atomic states a and b interact appreciably with
the incident optical field. The wavefunction describing state s of such an atom is given by

ψs(r, t) = Cs
a(t)ua(r) + Cs

b(t)ub(r), (3.3.32)

and thus the density matrix describing the atom is the two-by-two matrix given explicitly by

[
ρaa ρab

ρba ρbb

]
=

[
CaC∗

a CaC
∗
b

CbC∗
a CbC

∗
b

]
. (3.3.33)

The matrix representation of the electric-dipole-moment operator is

μ̂ ⇒
[

0 μab

μba 0

]
, (3.3.34)

where μij = μ∗
ji = −e〈i|ẑ|j〉, −e is the electron charge, and ẑ is the position operator for the

electron. We have set the diagonal elements of the electric-dipole-moment operator equal to
zero on the basis of the implicit assumption that states a and b have definite parity, in which
case 〈a|r̂|a〉 and 〈b|r̂|b〉 vanish identically as a consequence of symmetry considerations. The
expectation value of the dipole moment is given according to Eq. (3.3.17) by 〈μ̂〉 = Tr(ρ̂μ̂).
Explicitly, ρ̂μ̂ is represented as

ρ̂μ̂ ⇒
[
ρaa ρab

ρba ρbb

][
0 μab

μba 0

]
=

[
ρabμba ρaaμab

ρbbμba ρbaμab

]
(3.3.35)

and thus the expectation value of the induced dipole moment is given by

〈μ〉 = Tr(ρ̂μ̂) = ρabμba + ρbaμab. (3.3.36)

As stated in connection with Eq. (3.3.14), the expectation value of the dipole moment is seen
to depend upon the off-diagonal elements of the density matrix.

The density matrix treatment of the two-level atom is developed more fully in Chapter 6.
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3.4 Perturbation Solution of the Density Matrix Equation of Motion

In the last section, we saw that the density matrix equation of motion with the phenomenologi-
cal inclusion of damping is given by

ρ̇nm = −i

�

[
Ĥ , ρ̂

]
nm

− γnm

(
ρnm − ρ

(eq)
nm

)
. (3.4.1)

In general, this equation cannot be solved exactly for physical systems of interest, and for this
reason it is useful to develop a perturbative technique for solving it. This technique presupposes
that, as in Eq. (3.3.2) in the preceding section, the Hamiltonian can be split into two parts as

Ĥ = Ĥ0 + V̂ (t), (3.4.2)

where Ĥ0 represents the Hamiltonian of the free atom and V̂ (t) represents the energy of inter-
action of the atom with the externally applied radiation field. This interaction is assumed to be
weak in the sense that the expectation value and matrix elements of V̂ are much smaller than
the expectation value of Ĥ0. We usually assume that this interaction energy is given adequately
by the electric-dipole approximation as

V̂ = −μ̂ · Ẽ(t), (3.4.3)

where μ̂ = −er̂ denotes the electric-dipole moment operator of the atom. However, for gener-
ality and for compactness of notation, we shall introduce Eq. (3.4.3) only when necessary.

When Eq. (3.4.2) is introduced into Eq. (3.4.1), the commutator [Ĥ , ρ̂] splits into two terms.
We examine first the commutator of Ĥ0 with ρ̂. We assume that the states n represent the
energy eigenfunctions un of the unperturbed Hamiltonian Ĥ0 and thus satisfy the equation
Ĥ0un = Enun (see also Eq. (3.3.4)). As a consequence, the matrix representation of Ĥ0 is
diagonal—that is,

H0,nm = Enδnm. (3.4.4)

The commutator can thus be expanded as[
Ĥ0, ρ̂

]
nm

= (
Ĥ0ρ̂ − ρ̂Ĥ0

)
nm

=
∑
ν

(H0,nνρνm − ρnνH0,νm)

=
∑
ν

(Enδnνρνm − ρnνδνmEm)

= Enρnm − Emρnm = (En − Em)ρnm. (3.4.5)

For future convenience, we define the transition frequency (in angular frequency units) as

ωnm = En − Em

�
. (3.4.6)
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Through use of Eqs. (3.4.2), (3.4.5), and (3.4.6), the density matrix equation of motion (3.4.1)
thus becomes

ρ̇nm = −iωnmρnm − i

�

[
V̂ , ρ̂

]
nm

− γnm

(
ρnm − ρ

(eq)
nm

)
. (3.4.7)

We can also expand the commutator of V̂ with ρ̂ to obtain the density matrix equation of motion
in the form∗

ρ̇nm = −iωnmρnm − i

�

∑
ν

(Vnνρνm − ρnνVνm) − γnm

(
ρnm − ρ

(eq)
nm

)
. (3.4.8)

For most problems of physical interest, Eq. (3.4.8) cannot be solved analytically. We there-
fore seek a solution in the form of a perturbation expansion. In order to carry out this procedure,
we replace Vij in Eq. (3.4.8) by λVij , where λ is a parameter ranging between zero and one
that characterizes the strength of the perturbation. The value λ = 1 is taken to represent the
actual physical situation. We now seek a solution to Eq. (3.4.8) in the form of a power series
in λ—that is,

ρnm = ρ(0)
nm + λρ(1)

nm + λ2ρ(2)
nm + · · · . (3.4.9)

We require that Eq. (3.4.9) be a solution of Eq. (3.4.8) for any value of the parameter λ. In order
for this condition to hold, the coefficients of each power of λ must satisfy Eq. (3.4.8) separately.
We thereby obtain the set of equations

ρ̇(0)
nm = −iωnmρ(0)

nm − γnm

(
ρ(0)

nm − ρ
(eq)
nm

)
, (3.4.10a)

ρ̇(1)
nm = −(iωnm + γnm)ρ(1) − i�−1[V̂ , ρ̂(0)

]
nm

, (3.4.10b)

ρ̇(2)
nm = −(iωnm + γnm)ρ(2) − i�−1[V̂ , ρ̂(1)

]
nm

, (3.4.10c)

and so on. This system of equations can now be integrated directly, since, if the set of equa-
tions is solved in the order shown, each equation contains only linear homogeneous terms and
inhomogeneous terms that are already known.

∗ In this section, we are describing the time evolution of the system in the Schrödinger picture. It is sometimes
convenient to describe the time evolution instead in the interaction picture. To find the analogous equation of

motion in the interaction picture, we define new quantities σnm and σ
(eq)
nm through

ρnm = σnme−iωnmt , ρ
(eq)
nm = σ

(eq)
nm e−iωnmt .

In terms of these new quantities, Eq. (3.4.8) becomes

σ̇nm = − i

�

∑
ν

[
Vnνσνmeiωnν t − σnνeiωνmtVνm

] − γnm

(
σnm − σ

(eq)
nm

)
.
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Eq. (3.4.10a) describes the time evolution of the system in the absence of any external field.
We take the steady-state solution to this equation to be

ρ(0)
nm = ρ

(eq)
nm , (3.4.11a)

where (for reasons given earlier; see Eq. (3.3.23))

ρ
(eq)
nm = 0 for n 	= m. (3.4.11b)

Now that ρ
(0)
nm is known, Eq. (3.4.10b) can be integrated. To do so, we make a change of vari-

ables by representing ρ
(1)
nm as

ρ(1)
nm(t) = S(1)

nm(t)e−(iωnm+γnm)t . (3.4.12)

The time derivative ρ̇
(1)
nm can be represented in terms of S

(1)
nm as

ρ̇(1)
nm = −(iωnm + γnm)S(1)

nme−(iωnm+γnm)t + Ṡ(1)
nme−(iωnm+γnm)t . (3.4.13)

These forms are substituted into Eq. (3.4.10b), which then becomes

Ṡ(1)
nm = −i

�

[
V̂ , ρ̂(0)

]
nm

e(iωnm+γnm)t . (3.4.14)

This equation can be integrated to give

S(1)
nm =

∫ t

−∞
−i

�

[
V̂ (t ′), ρ̂(0)

]
nm

e(iωnm+γnm)t ′ dt ′. (3.4.15)

This expression is now substituted back into Eq. (3.4.12) to obtain

ρ(1)
nm(t) =

∫ t

−∞
−i

�

[
V̂ (t ′), ρ̂(0)

]
nm

e(iωnm+γnm)(t ′−t) dt ′. (3.4.16)

In similar way, all of the higher-order corrections to the density matrix can be obtained. These
expressions are formally identical to Eq. (3.4.16). The expression for ρ

(N)
nm , for example, is

obtained by replacing ρ̂(0) with ρ̂(N−1) on the right-hand side of Eq. (3.4.16).

3.5 Density Matrix Calculation of the Linear Susceptibility

As a first application of the perturbation solution to the density matrix equations of motion, we
calculate the linear susceptibility of an atomic system. The relevant starting equation for this
calculation is Eq. (3.4.16), which we write in the form

ρ(1)
nm(t) = e−(iωnm+γnm)t

∫ t

−∞
dt ′ −i

�

[
V̂ (t ′), ρ̂(0)

]
nm

e(iωnm+γnm)t ′ . (3.5.1)
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As before, the interaction Hamiltonian is given by Eq. (3.4.3) as

V̂ (t ′) = −μ̂ · Ẽ(t ′), (3.5.2)

and we assume that the unperturbed density matrix is given by (see also Eqs. (3.4.11))

ρ(0)
nm = 0 for n 	= m. (3.5.3)

We represent the applied field as

Ẽ(t) =
∑
p

E(ωp)e−iωpt . (3.5.4)

The first step is to obtain an explicit expression for the commutator appearing in Eq. (3.5.1):[
V̂ (t), ρ̂(0)

]
nm

=
∑
ν

[
V (t)nνρ

(0)
νm − ρ(0)

nν V (t)νm

]
= −

∑
ν

[
μnνρ

(0)
νm − ρ(0)

nν μνm

] · Ẽ(t)

= −(
ρ(0)

mm − ρ(0)
nn

)
μnm · Ẽ(t). (3.5.5)

Here the second form is obtained by introducing V̂ (t) explicitly from Eq. (3.5.2), and the third
form is obtained by performing the summation over all ν and utilizing the condition (3.5.3).
This expression for the commutator is introduced into Eq. (3.5.1) to obtain

ρ(1)
nm(t) = i

�

(
ρ(0)

mm − ρ(0)
nn

)
μnm · e−(iωnm+γnm)t

∫ t

−∞
Ẽ(t ′)e(iωnm+γnm)t ′ dt ′. (3.5.6)

We next introduce Eq. (3.5.4) for Ẽ(t) to obtain

ρ(1)
nm(t) = i

�

(
ρ(0)

mm − ρ(0)
nn

)
μnm ·

∑
p

E(ωp)

× e−(iωnm+γnm)t

∫ t

−∞
e[i(ωnm−ωp)+γnm]t ′ dt ′. (3.5.7)

The second line of this expression can be evaluated explicitly as

e−(iωnm+γnm)t

(
e[i(ωnm−ωp)+γnm]t ′

i(ωnm − ωp) + γnm

)∣∣∣∣
t

−∞
= e−iωpt

i(ωnm − ωp) + γnm

, (3.5.8)

and ρ
(1)
nm is thus seen to be given by

ρ(1)
nm = �

−1(ρ(0)
mm − ρ(0)

nn

)∑
p

μnm ·E(ωp)e−iωpt

(ωnm − ωp) − iγnm

. (3.5.9)
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We next use this result to calculate the expectation value of the induced dipole moment∗:〈
μ̃(t)

〉 = Tr
(
ρ̂(1)μ̂

) =
∑
nm

ρ(1)
nmμmn

=
∑
nm

�
−1(ρ(0)

mm − ρ(0)
nn

)∑
p

μmn[μnm ·E(ωp)]e−iωpt

(ωnm − ωp) − iγnm

. (3.5.10)

We decompose 〈μ̃(t)〉 into its frequency components according to〈
μ̃(t)

〉 = ∑
p

〈
μ(ωp)

〉
e−iωpt (3.5.11)

and define the linear susceptibility tensor χ (1)(ω) by the equation

P(ωp) = N
〈
μ(ωp)

〉 = ε0χ
(1)(ωp) ·E(ωp), (3.5.12)

where N denotes the atomic number density. By comparing this equation with Eq. (3.5.10), we
find that the linear susceptibility is given by

χ (1)(ωp) = N

ε0�

∑
nm

(
ρ(0)

mm − ρ(0)
nn

) μmnμnm

(ωnm − ωp) − iγnm

. (3.5.13)

The result given by Eqs. (3.5.12) and (3.5.13) can be written in Cartesian component form as

Pi(ωp) = N
〈
μi(ωp)

〉 = ∑
j

ε0χ
(1)
ij (ωp)Ej (ωp) (3.5.14)

with

χ
(1)
ij (ωp) = N

ε0�

∑
nm

(
ρ(0)

mm − ρ(0)
nn

) μi
mnμ

j
nm

(ωnm − ωp) − iγnm

. (3.5.15)

We see that the linear susceptibility is proportional to the population difference ρ
(0)
mm − ρ

(0)
nn ;

thus, if levels m and n contain equal populations, the m → n transition does not contribute to
the linear susceptibility.

Eq. (3.5.15) is an extremely compact way of representing the linear susceptibility. At times it
is more intuitive to express the susceptibility in an expanded form. We first rewrite Eq. (3.5.15)
as

χ
(1)
ij (ωp) = N

ε0�

∑
nm

ρ(0)
mm

μi
mnμ

j
nm

(ωnm − ωp) − iγnm

− N

ε0�

∑
nm

ρ(0)
nn

μi
mnμ

j
nm

(ωnm − ωp) − iγnm

. (3.5.16)

∗ Here and throughout the remainder of this chapter we are omitting the bar over quantities such as 〈μ〉 for sim-
plicity of notation. Hence, the angular brackets are meant to imply both a quantum and an ensemble average.
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We next interchange the dummy indices n and m in the second summation so that the two
summations can be recombined as

χ
(1)
ij (ωp) = N

ε0�

∑
nm

ρ(0)
mm

[
μi

mnμ
j
nm

(ωnm − ωp) − iγnm

− μi
nmμ

j
mn

(ωmn − ωp) − iγmn

]
. (3.5.17)

We now use the fact that ωmn = −ωnm and γnm = γmn to write this result as

χ
(1)
ij (ωp) = N

ε0�

∑
nm

ρ(0)
mm

[
μi

mnμ
j
nm

(ωnm − ωp) − iγnm

+ μi
nmμ

j
mn

(ωnm + ωp) + iγnm

]
. (3.5.18)

In order to interpret this result, let us first make the simplifying assumption that all of the
population is in one level (typically the ground state), which we denote as level a. Mathemati-
cally, this assumption can be stated as

ρ(0)
aa = 1, ρ(0)

mm = 0 for m 	= a. (3.5.19)

We now perform the summation over m in Eq. (3.5.18) to obtain

χ
(1)
ij (ωp) = N

ε0�

∑
n

[
μi

anμ
j
na

(ωna − ωp) − iγna

+ μi
naμ

j
an

(ωna + ωp) + iγna

]
. (3.5.20)

We see that for positive frequencies (i.e., for ωp > 0), only the first term can become resonant.
The second term is known as the antiresonant or counterrotating term. We can often drop the
second term, especially when ωp is close to one of the resonance frequencies of the atom.
Let us assume that ωp is nearly resonant with the transition frequency ωna . Then to good
approximation the linear susceptibility is given by

χ
(1)
ij (ωp) = N

ε0�

μi
anμ

j
na

(ωna − ωp) − iγna

= N

ε0�
μi

anμ
j
na

(ωna − ωp) + iγna

(ωna − ωp)2 + γ 2
na

. (3.5.21)

The real and imaginary parts of this expression are shown in Fig. 3.5.1. We see that the imag-
inary part of χij has the form of a Lorentzian line shape with a linewidth (full width at half
maximum) equal to 2γna .

3.5.1 Linear Response Theory

Linear response theory plays a key role in the understanding of many optical phenomena,
and for this reason we devote the remainder of this section to the interpretation of the re-
sults just derived. Let us first specialize our results to the case of an isotropic material. As a
consequence of symmetry considerations, P must be parallel to E in such a medium, and we



Quantum-Mechanical Theory of the Nonlinear Optical Susceptibility 165

FIGURE 3.5.1: Resonance nature of the linear susceptibility.

can therefore express the linear susceptibility as the scalar quantity χ(1)(ω) defined through
P(ω) = ε0χ

(1)(ω)E(ω) and given by

χ(1)(ω) = N

ε0�

∑
n

1
3 |μna|2

[
1

(ωna − ω) − iγna

+ 1

(ωna + ω) + iγna

]
. (3.5.22)

For simplicity we are assuming the case of a J = 0 (nondegenerate) ground state and J = 1
excited states. We have included the factor of 1

3 for the following reason: The summation over n

includes all of the magnetic sublevels of the atomic excited states. However, on average only
one-third of the a → n transitions will have their dipole transition moments parallel to the
polarization vector of the incident field, and hence only one-third of these transitions contribute
effectively to the susceptibility.

It is useful to introduce the oscillator strength of the a → n transition. This quantity is
defined by

fna = 2mωna|μna|2
3�e2

. (3.5.23)

Standard books on quantum mechanics (see, for example, Bethe and Salpeter, 1977) show that
this quantity obeys the oscillator strength sum rule—that is,∑

n

fna = 1. (3.5.24)
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If a is the atomic ground state, the frequency ωna is necessarily positive, and the sum rule hence
shows that the oscillator strength is a positive quantity bounded by unity—that is, 0 ≤ fna ≤ 1.
The expression (3.5.22) for the linear susceptibility can be written in terms of the oscillator
strength as

χ(1)(ω) =
∑
n

Nfnae
2

2ε0mωna

[
1

(ωna − ω) − iγna

+ 1

(ωna + ω) + iγna

]

�
∑
n

fna

[
Ne2/ε0m

ω2
na − ω2 − 2iωγna

]
. (3.5.25)

In the latter form, the expression in square brackets is formally identical to the expression for the
linear susceptibility predicted by the classical Lorentz model of the atom (see also Eq. (1.4.17)).
We see that the quantum-mechanical prediction differs from that of the Lorentz model only in
that in the quantum-mechanical theory there can be more than one resonance frequency ωna .
The strength of each such transition is given by the value of the oscillator strength.

Let us next see how to calculate the refractive index and absorption coefficient. The re-
fractive index n(ω) is related to the linear dielectric constant ε(1)(ω) and linear susceptibility
χ(1)(ω) through

n(ω) =
√

ε(1)(ω) =
√

1 + χ(1)(ω) � 1 + 1
2χ(1)(ω). (3.5.26)

In obtaining the last expression, we have assumed that the medium is sufficiently dilute (i.e.,
N sufficiently small) that χ(1)  1. For the remainder of the present section, we shall assume
that this assumption is valid, both so that we can use Eq. (3.5.26) as written and also so that we
can ignore local-field corrections (cf. Section 3.9). The significance of the refractive index n(ω)

is that the propagation of a plane wave through the material system is described by

Ẽ(z, t) = E0e
i(kz−ωt) + c.c., (3.5.27)

where the propagation constant k is given by

k = n(ω)ω/c. (3.5.28)

Hence, the intensity I = ncε0〈Ẽ(z, t)2〉 of this wave varies with position in the medium ac-
cording to

I (z) = I0e
−αz, (3.5.29)

where the absorption coefficient α is given by

α = 2n′′ω/c, (3.5.30)
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and where we have defined the real and imaginary parts of the refractive index as n(ω) =
n′ + in′′. Alternatively, through use of Eq. (3.5.26), we can represent the absorption coefficient
in terms of the susceptibility as

α = χ(1)′′ω/c, (3.5.31a)

where χ(1)(ω) = χ(1)′ + iχ(1)′′. Through use of Eq. (3.5.25), we find that the absorption coef-
ficient of the material system is given by

α ≈
∑
n

fnaNe2

2mε0cγna

[
γ 2
na

(ωna − ω)2 + γ 2
na

]
. (3.5.31b)

In obtaining this result, we have replaced ω in Eq. (3.5.31a) by ωna , which is valid for a narrow
resonance.

It is often useful to describe the response of a material system to an applied field in terms of
microscopic rather than macroscopic quantities. We define the atomic polarizability γ (1)(ω) as
the coefficient relating the induced dipole moment 〈μ(ω)〉 and the applied field E(ω)∗:〈

μ(ω)
〉 = γ (1)(ω)E(ω). (3.5.32)

The susceptibility and polarizability are related (when local-field corrections can be ignored)
through

χ(1)(ω) = Nγ (1)(ω), (3.5.33)

and we thus find from Eq. (3.5.22) that the polarizability is given by

γ (1)(ω) = 1

ε0�

∑
n

1
3 |μna|2

[
1

(ωna − ω) − iγna

+ 1

(ωna + ω) + iγna

]
. (3.5.34)

Another microscopic quantity that is often encountered is the absorption cross section σ , which
is defined through the relation

α = Nσ. (3.5.35)

The cross section can hence be interpreted as the effective area of an atom for removing ra-
diation from an incident beam of light. By comparison with Eqs. (3.5.31a) and (3.5.33), we
see that the absorption cross section is related to the atomic polarizability γ (1) = γ (1)′ + iγ (1)′′
through

σ = γ (1)′′ω/c. (3.5.36)

∗ Note that many authors use the symbol α to denote the polarizability. We use the present notation to avoid
confusion with the absorption coefficient.



168 Chapter 3

Eq. (3.5.34) shows how the polarizability can be calculated in terms of the transition fre-
quencies ωna , the dipole transition moments μna , and the dipole dephasing rates γna . The
transition frequencies and dipole moments are inherent properties of any atomic system and
can be obtained either by solving Schrödinger’s equation for the atom or through laboratory
measurement. The dipole dephasing rate, however, depends not only on the inherent atomic
properties but also on the local environment. We saw in Eq. (3.3.25) that the dipole dephasing
rate γmn can be represented as

γnm = 1
2(�n + �m) + γ (col)

nm . (3.5.37)

Next we calculate the maximum values that the polarizability and absorption cross section
can attain. We consider the case of resonant excitation (ω = ωna) of some excited level n. We
find, through use of Eq. (3.5.34) and dropping the nonresonant contribution, that the polariz-
ability is purely imaginary and is given by

γ (1)
res = i|μn′a|2

ε0�γn′a
. (3.5.38)

We have let n′ designate the state associated with level n that is excited by the incident light.
Note that the factor of 1

3 no longer appears in Eq. (3.5.38), because we are now considering a
particular state of the upper level and are no longer summing over n. The polarizability will take
on its maximum possible value if γn′a is as small as possible, which according to Eq. (3.5.37)
occurs when γ

(col)
n′a = 0. If a is the atomic ground state, as we have been assuming, its decay

rate �a must vanish, and thus the minimum possible value of γn′a is 1
2�n′ .

The population decay rate out of state n′ is usually dominated by spontaneous emission. If
state n′ can decay only to the ground state, this decay rate is equal to the Einstein A coefficient
and is given by

�n′ = ω3
na|μn′a|2

3πε0�c3
. (3.5.39)

If γn′a = 1
2�n′ is inserted into Eq. (3.5.38), we find that the maximum possible value that the

polarizability can possess is

γ (1)
max = i6π

(
λ

2π

)3

. (3.5.40)

We find the value of the absorption cross section associated with this value of the polarizability
through use of Eq. (3.5.36):

σmax = 3λ2

2π
. (3.5.41)
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These results show that under resonant excitation an atomic system possesses an effective linear
dimension approximately equal to an optical wavelength.

Recall that the treatment given in this subsection assumes the case of a J = 0 lower level
and a J = 1 upper level. More generally, when Ja is the total angular momentum quantum
number of the lower level and Jb is that of the upper level, the maximum on-resonance cross
section can be shown to have the form

σmax = gb

ga

λ2

2π
, (3.5.42)

where gb = 2Jb + 1 is the degeneracy of the upper level and ga = 2Ja + 1 is that of the lower
level. Furthermore, we have implicitly assumed in the treatment given above that the lower-level
sublevels are equally populated, as they would be in thermal equilibrium. If the ground level
sublevels are not equally populated, due for instance to optical pumping effects, the result of
Eq. (3.5.42) needs to be modified further. To account for these effects, this equation is to be
multiplied by a numerical factor that lies between 0 and 3. The cross section vanishes, for
example, for an atom that is optically pumped so that the direction of the dipole transition
moment is perpendicular to that of the electric field vector of the incident radiation, and it attains
its maximum value when these directions are parallel. These considerations are described in
greater detail by Siegman (1986).

3.6 Density Matrix Calculation of the Second-Order Susceptibility

In this section we calculate the second-order (i.e., χ(2)) susceptibility of an atomic system. We
present the calculation in considerable detail, for the following two reasons: (1) the second-
order susceptibility is intrinsically important for many applications; and (2) the calculation of
the third-order susceptibility proceeds along lines that are analogous to those followed in the
present derivation. However, the expression for the third-order susceptibility χ(3) is so com-
plicated (it contains 48 terms) that it is not feasible to show all of the steps in the calculation
of χ(3). Thus the present development serves as a template for the calculation of higher-order
susceptibilities.

From the perturbation expansion (3.4.16), the general result for the second-order correction
to ρ̂ is given by

ρ(2)
nm = e−(iωnm+γnm)t

∫ t

−∞
−i

�

[
V̂ , ρ̂(1)

]
nm

e(iωnm+γnm)t ′ dt ′, (3.6.1)

where the commutator can be expressed (by analogy with Eq. (3.5.5)) as[
V̂ , ρ̂(1)

]
nm

= −
∑
ν

(
μnνρ

(1)
νm − ρ(1)

nν μνm

) · Ẽ(t). (3.6.2)
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In order to evaluate this commutator, the first-order solution given by Eq. (3.5.9) is written with
changes in the dummy indices as

ρ(1)
νm = �

−1(ρ(0)
mm − ρ(0)

νν

)∑
p

μνm ·E(ωp)

(ωνm − ωp) − iγνm

e−iωpt (3.6.3)

and as

ρ(1)
nν = �

−1(ρ(0)
νν − ρ(0)

nn

)∑
p

μnν ·E(ωp)(ωp)

(ωnν − ωp) − iγnν

e−iωpt . (3.6.4)

The applied optical field Ẽ(t) is expressed as

Ẽ(t) =
∑
q

E(ωq)e−iωq t . (3.6.5)

The commutator of Eq. (3.6.2) thus becomes[
V̂ , ρ̂(1)

]
nm

= −�
−1

∑
ν

(
ρ(0)

mm − ρ(0)
νν

)

×
∑
pq

[μnν ·E(ωq)][μνm ·E(ωp)]
(ωνm − ωq) − iγνm

e−i(ωp+ωq)t

+ �
−1

∑
ν

(
ρ(0)

νν − ρ(0)
nn

)

×
∑
pq

[μnν ·E(ωp)][μνm ·E(ωq)]
(ωnν − ωp) − iγnν

e−i(ωp+ωq)t . (3.6.6)

This expression is now inserted into Eq. (3.6.1), and the integration is performed to obtain

ρ(2)
nm =

∑
ν

∑
pq

e−i(ωp+ωq)t

×
{

ρ
(0)
mm − ρ

(0)
νν

�2

[μnν ·E(ωq)][μνm ·E(ωp)]
[(ωnm − ωp − ωq) − iγnm][(ωνm − ωp) − iγνm]

− ρ
(0)
νν − ρ

(0)
nn

�2

[μnν ·E(ωq)][μνm ·E(ωq)]
[(ωnm − ωp − ωq) − iγnm][(ωnν − ωp) − iγnν]

}

≡
∑
ν

∑
pq

Knmνe
−i(ωp+ωq)t . (3.6.7)

We have given the complicated expression in curly braces the label Knmν because it appears in
many subsequent equations.
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We next calculate the expectation value of the atomic dipole moment, which (according to
Eq. (3.3.16)) is given by

〈μ̃〉 =
∑
nm

ρnmμmn. (3.6.8)

We are interested in the various frequency components of 〈μ̃〉, whose complex amplitudes
〈μ(ωr)〉 are defined through

〈μ̃〉 =
∑

r

〈
μ(ωr)

〉
e−iωr t . (3.6.9)

Then, in particular, the complex amplitude of the component of the atomic dipole moment
oscillating at frequency ωp + ωq is given by

〈
μ(ωp + ωq)

〉 = ∑
nmν

∑
(pq)

Knmνμmn, (3.6.10)

and consequently the complex amplitude of the component of the nonlinear polarization oscil-
lating at frequency ωp + ωq is given by

P(2)(ωp + ωq) = N
〈
μ(ωp + ωq)

〉 = N
∑
nmν

∑
(pq)

Knmνμmn. (3.6.11)

We define the nonlinear susceptibility through the equation

P
(2)
i (ωp + ωq) = ε0

∑
jk

∑
(pq)

χ
(2)
ijk (ωp + ωq,ωq,ωp)Ej (ωq)Ek(ωp), (3.6.12)

using the same notation as that used earlier (see also Eq. (1.3.13)). By comparison of
Eqs. (3.6.7), (3.6.11), and (3.6.12), we obtain a tentative expression for the susceptibility tensor
given by

χ
(2)[tent]
ijk (ωp + ωq,ωq,ωp) = N

ε0�
2

×
∑
mnν

{(
ρ(0)

mm − ρ(0)
νν

) μi
mnμ

j
nνμ

k
νm

[(ωnm − ωp − ωq) − iγnm][(ωνm − ωp) − iγνm] (a)

− (
ρ(0)

νν − ρ(0)
nn

) μi
mnμ

j
νmμk

nν

[(ωnm − ωp − ωq) − iγnm][(ωnν − ωp) − iγnν]
}
. (b)

(3.6.13)
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We have labeled the two terms that appear in this expression (a) and (b) so that we can keep
track of how these terms contribute to our final expression for the second-order susceptibil-
ity.

Eq. (3.6.13) can be used in conjunction with Eq. (3.6.12) to make proper predictions of
the nonlinear polarization, which is a physically meaningful quantity. However, Eq. (3.6.13)
does not possess intrinsic permutation symmetry (cf. Section 1.5), which we require the sus-
ceptibility to possess. We therefore define the nonlinear susceptibility to be one-half the sum
of the right-hand side of Eq. (3.6.13) with an analogous expression obtained by simultaneously
interchanging ωp with ωq and j with k. We thereby obtain the result

χ
(2)
ijk (ωp + ωq,ωq,ωp) = N

2 ε0�
2

×
∑
mnν

{(
ρ(0)

mm − ρ(0)
νν

)[ μi
mnμ

j
nνμ

k
νm

[(ωnm − ωp − ωq) − iγnm][(ωνm − ωp) − iγνm] (a1)

+ μi
mnμ

k
nνμ

j
νm

[(ωnm − ωp − ωq) − iγnm][(ωνm − ωq) − iγνm]
]

(a2)

− (
ρ(0)

νν − ρ(0)
nn

)[ μi
mnμ

j
νmμk

nν

[(ωnm − ωp − ωq) − iγnm][(ωnν − ωp) − iγnν]
(b1)

+ μi
mnμ

k
νmμ

j
nν

[(ωnm − ωp − ωq) − iγnm][(ωnν − ωq) − iγnν]
]}

. (b2)

(3.6.14)

This expression displays intrinsic permutation symmetry and gives the nonlinear susceptibility
in a reasonably compact fashion. It is clear from its form that certain contributions to the suscep-
tibility vanish when two of the levels associated with the contribution contain equal populations.
We shall examine the nature of this cancellation in greater detail below (see Eq. (3.6.17)). Note
that the population differences that appear in this expression are always associated with the two
levels separated by a one-photon resonance, as we can see by inspection of the detuning factors
that appear in the denominator.

The expression for the second-order nonlinear susceptibility can be rewritten in several
different forms, all of which are equivalent but provide different insights in to the resonant
nature of the nonlinear coupling. Since the indices m, n, and ν are summed over, they consti-
tute dummy indices. We can therefore replace the indices ν, n, and m in the last two terms
of Eq. (3.6.14) by m, ν, and n, respectively, so that the population difference term is the
same as that of the first two terms. We thereby recast the second-order susceptibility into
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the form

χ
(2)
ijk (ωp + ωq,ωq,ωp) = N

2ε0�
2

∑
mnν

(
ρ(0)

mm − ρ(0)
νν

)

×
{

μi
mnμ

j
nνμ

k
νm

[(ωnm − ωp − ωq) − iγnm][(ωνm − ωp) − iγνm] (a1)

+ μi
mnμ

k
nνμ

j
νm

[(ωnm − ωp − ωq) − iγnm][(ωνm − ωq) − iγνm] (a2)

− μi
nνμ

j
mnμ

k
νm

[(ωνn − ωp − ωq) − iγνn][(ωνm − ωp) − iγνm] (b1)

− μi
nνμ

k
mnμ

j
νm

[(ωνn − ωp − ωq) − iγνn][(ωνm − ωq) − iγνm]
}
. (b2) (3.6.15)

We can make this result more transparent by making another change in dummy indices: we
replace indices m, ν, and n by l, m, and n, respectively. In addition, we replace ωlm, ωln, and
ωmn by −ωml , −ωnl , and −ωnm, respectively, whenever one of them appears. Also, we reorder
the product of matrix elements in the numerator so that the subscripts n, m, and l are “chained”
in the sense shown and thereby obtain the result

χ
(2)
ijk (ωp + ωq,ωq,ωp) = N

2 ε0�
2

∑
lmn

(
ρ

(0)
ll − ρ(0)

mm

)

×
{

μi
lnμ

j
nmμk

ml

[(ωnl − ωp − ωq) − iγnl][(ωml − ωp) − iγml] (a1)

+ μi
lnμ

k
nmμ

j
ml

[(ωnl − ωp − ωq) − iγnl][(ωml − ωq) − iγml] (a2)

+ μ
j
lnμ

i
nmμk

ml

[(ωnm + ωp + ωq) + iγnm][(ωml − ωp) − iγml] (b1)

+ μk
lnμ

i
nmμ

j
ml

[(ωnm + ωp + ωq) + iγnm][(ωml − ωq) − iγml]
}
. (b2) (3.6.16)

One way of interpreting this result is to consider where levels l, m, and n would have to be
located in order for each of the terms to become resonant. The positions of these energies are
illustrated in Fig. 3.6.1. For definiteness, we have drawn the figure with ωp and ωq positive. In
each case the magnitude of the contribution to the nonlinear susceptibility is proportional to the
population difference between levels l and m.

In order to illustrate how to make use of Eq. (3.6.16) and to examine the nature of the cancel-
lation that can occur when more than one of the atomic levels contains population, we consider
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FIGURE 3.6.1: The resonance structure of Eq. (3.6.16).

FIGURE 3.6.2: Three-level atomic system.

the simple three-level atomic system illustrated in Fig. 3.6.2. We assume that only levels a, b,
and c interact appreciably with the optical fields and that the applied field at frequency ω1 is
nearly resonant with the a → b transition, the applied field at frequency ω2 is nearly resonant
with the b → c transition, and the generated field frequency ω3 = ω1 + ω2 is nearly resonant
with the c → a transition. If we now perform the summation over the dummy indices l, m,
and n in Eq. (3.6.16) and retain only those terms in which both factors in the denominator are
resonant, we find that the nonlinear susceptibility is given by

χ
(2)
ijk (ω3,ω2,ω1)

= N

2ε0�
2

{(
ρ(0)

aa − ρ
(0)
bb

)[ μi
acμ

j
cbμ

k
ba

[(ωca − ω3) − iγca][(ωba − ω1) − iγba]
]

+ (
ρ(0)

cc − ρ
(0)
bb

)[ μi
acμ

j
cbμ

k
ba

[(ωca − ω3) − iγca][(ωcb − ω2) − iγcb]
]}

. (3.6.17)

Here the first term comes from the first term in Eq. (3.6.16), and the second term comes from
the last (fourth) term in Eq. (3.6.16). Note that the first term vanishes if ρ

(0)
aa = ρ

(0)
bb and that the
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second term vanishes if ρ
(0)
bb = ρ

(0)
cc . If all three populations are equal, the resonant contribution

vanishes identically.
For some purposes it is useful to express the general result (3.6.16) for the second-order

susceptibility in terms of a summation over populations rather than a summation over popu-
lation differences. In order to cast the susceptibility in such a form, we change the dummy
indices l, m, and n to n, l, and m in the summation containing ρ

(0)
mm but leave them unchanged

in the summation containing ρ
(0)
ll . We thereby obtain the result

χ
(2)
ijk (ωp + ωq,ωq,ωp)

= N

2 ε0�
2

∑
lmn

ρ
(0)
ll

{
μi

lnμ
j
nmμk

ml

[(ωnl − ωp − ωq) − iγnl][(ωml − ωp) − iγml] (a1)

+ μi
lnμ

k
nmμ

j
ml

[(ωnl − ωp − ωq) − iγnl][(ωml − ωq) − iγml] (a2)

+ μk
lnμ

i
nmμ

j
ml

[(ωmn − ωp − ωq) − iγmn][(ωnl + ωp) + iγnl] (a′
1)

+ μ
j
lnμ

i
nmμk

ml

[(ωmn − ωp − ωq) − iγmn][(ωnl + ωq) + iγnl] (a′
2)

+ μ
j
lnμ

i
nmμk

ml

[(ωnm + ωp + ωq) + iγnm][(ωml − ωp) − iγml] (b1)

+ μk
lnμ

i
nmμ

j
ml

[(ωnm + ωp + ωq) + iγnm][(ωml − ωq) − iγml] (b2)

+ μk
lnμ

j
nmμi

ml

[(ωml + ωp + ωq) + iγml][(ωnl + ωp) + iγnl] (b′
1)

+ μ
j
lnμ

k
nmμi

ml

[(ωml + ωp + ωq) + iγml][(ωnl + ωq) + iγnl]
}
. (b′

2)

(3.6.18)

As before, we can interpret this result by considering the conditions under which each term
of the equation can become resonant. Fig. 3.6.3 shows where the energy levels l, m, and n would
have to be located in order for each term to become resonant, under the assumption the ωp and
ωq are both positive. Note that the unprimed diagrams are the same as those of Fig. 3.6.1 (which
represents Eq. (3.6.16)), but that diagrams b′

1 and b′
2 represent new resonances not present in

Fig. 3.6.1.
Another way of making sense of the general eight-term expression for χ(2) Eq. (3.6.18) is to

keep track of how the density matrix is modified in each order of perturbation theory. Through
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FIGURE 3.6.3: The resonances of Eq. (3.6.18).

examination of Eqs. (3.6.1) through (3.6.7), we find that the terms of type a, a′, b, b′ occur as

the result of the following perturbation expansion:

(a): ρ
(0)
mm → ρ

(1)
νm → ρ

(2)
nm, (a′): ρ

(0)
νν → ρ

(1)
νm → ρ

(2)
nm,

(b): ρ
(0)
νν → ρ

(1)
nν → ρ

(2)
nm, (b′): ρ

(0)
nn → ρ

(1)
nν → ρ

(2)
nm.

However, in writing Eq. (3.6.18) in the displayed form, we have changed the dummy indices
appearing in it. In terms of these new indices, the perturbation expansion is

(a): ρ
(0)
ll → ρ

(1)
ml → ρ

(2)
nl , (a′): ρ

(0)
ll → ρ

(1)
ln → ρ

(2)
mn,

(b): ρ
(0)
ll → ρ

(1)
ml → ρ

(2)
mn, (b′): ρ

(0)
ll → ρ

(1)
ln → ρ

(2)
lm .

(3.6.19)

Note that the various terms differ in whether it is the left or right index that is changed by each

elementary interaction and by the order in which such a modification occurs.
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FIGURE 3.6.4: Double-sided Feynman diagrams.

A convenient way of keeping track of the order in which the elementary interactions occur

is by means of double-sided Feynman diagrams. These diagrams represent the way in which

the density operator is modified by the interaction of the atom with the laser field. We represent

the density operator as

ρ̂ = |ψ〉〈ψ |, (3.6.20)

where |ψ〉 represents the key vector for some state of the system, 〈ψ | (the bar vector) represents

the Hermitian adjoint of 〈ψ |, and the overbar represents an ensemble average. The elements of

the density matrix are related to the density operator ρ̂ through the equation

ρnm = 〈
n
∣∣ρ̂∣∣m〉

. (3.6.21)

Fig. 3.6.4 gives a pictorial description of the modification of the density matrix as indicated

by the expressions (3.6.19). The left-hand side of each diagram indicates the time evolution

of |ψ〉, and the right-hand side indicates the time evolution of 〈ψ |, with time increasing verti-
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cally upward. Each interaction with the applied field is indicated by a solid arrow labeled by

the field frequency. The trace operation, which corresponds to calculating the output field, is

indicated by the wavy arrow.∗ It should be noted that there are several different conventions

concerning the rules for drawing double-sided Feynman diagrams (Boyd and Mukamel, 1984;

Prior, 1984; Yee and Gustafson, 1978).

3.6.1 χ(2) in the Limit of Nonresonant Excitation

When all of the frequencies ωp, ωq , and ωp + ωq differ significantly from any resonance fre-

quency of the atomic system, the imaginary contributions to the denominators in Eq. (3.6.18)

can be ignored. In this case, the expression for χ(2) can be simplified. In particular, terms (a′
2)

and (b1) can be combined into a single term, and similarly for terms (a′
1) and (b2). We note that

the numerators of terms (a′
2) and (b1) are identical and that their denominators can be combined

as follows:

1

(ωmn − ωp − ωq)(ωnl + ωq)
+ 1

(−ωmn + ωp + ωq)(ωml − ωp)

= 1

(ωmn − ωp − ωq)

[
1

ωnl + ωq

− 1

ωml − ωp

]

= 1

(ωmn − ωp − ωq)

[
ωml − ωp − ωnl − ωq

(ωnl + ωq)(ωml − ωp)

]

= 1

(ωmn − ωp − ωq)

[
ωmn − ωp − ωq

(ωnl + ωq)(ωml − ωp)

]

= 1

(ωnl + ωq)(ωml − ωp)
. (3.6.22)

The same procedure can be performed on terms (a′
1) and (b2); the only difference between this

case and the one treated in Eq. (3.6.22) is that ωp and ωq have switched roles. The frequency

dependence is thus

1

(ωnl + ωp)(ωml − ωq)
. (3.6.23)

∗ In drawing Fig. 3.6.4, we have implicitly assumed that all of the applied field frequencies are positive, which
corresponds to the absorption of an incident photon. The interaction with a negative field frequency which cor-
responds to the emission of a photon, is sometimes indicated by a solid arrow pointing diagonally upward and
away from (rather than toward) the central double line.
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The expression for χ(2) in the off-resonance case thus becomes

χ
(2)
ijk (ωp + ωq,ωq,ωp)

= N

2ε0�
2

∑
lmn

ρ
(0)
ll

{
μi

lnμ
j
nmμk

ml

(ωnl − ωp − ωq)(ωml − ωp)
(a1)

+ μi
lnμ

k
nmμ

j
ml

(ωnl − ωp − ωq)(ωml − ωq)
(a2)

+ μ
j
lnμ

i
nmμk

ml

(ωnl + ωq)(ωml − ωp)
(b1), (a′

2)

+ μk
lnμ

i
nmμ

j
ml

(ωnl + ωp)(ωml − ωq)
(b2), (a′

1)

+ μk
lnμ

j
nmμi

ml

(ωml + ωp + ωq)(ωnl + ωp)
(b′

1)

+ μ
j
lnμ

k
nmμi

ml

(ωml + ωp + ωq)(ωnl + ωq)

}
. (b′

2) (3.6.24)

Note that only six terms appear in this expression for the off-resonance susceptibility,
whereas eight terms appear in the general expression of Eq. (3.6.18). One can verify by ex-
plicit calculation that Eq. (3.6.24) satisfies the condition of full permutation symmetry (see also
Eq. (1.5.7)). In addition, one can see by inspection that Eq. (3.6.24) is identical to the result
obtained above (Eq. (3.2.27)) based on perturbation theory of the atomic wavefunction.

There are several diagrammatic methods that can be used to interpret this expression. One
of the simplest is to plot the photon energies on an atomic energy-level diagram. This method
displays the conditions under which each contribution can become resonant. The results of such
an analysis gives exactly the same diagrams displayed in Fig. 3.6.3. Eq. (3.6.24) can also be
understood in terms of a diagrammatic approach introduced by Ward (1965).

3.7 Density Matrix Calculation of the Third-Order Susceptibility

We now turn to the calculation of the third-order susceptibility. The third-order correction to
the density matrix is given by the perturbation expansion of Eq. (3.4.16) as

ρ(3)
nm = e−(iωnm+γnm)t

∫ t

−∞
−i

�

[
V̂ , ρ̂(2)

]
nm

e(iωnm+γnm)t ′ dt ′, (3.7.1)
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where the commutator can be represented explicitly as[
V̂ , ρ̂(2)

]
nm

= −
∑
ν

(
μnνρ

(2)
νm − ρ(2)

nν μνm

) · Ẽ(t). (3.7.2)

Expressions for ρ
(2)
νm and ρ

(2)
nν are available from Eq. (3.6.7). Since these expressions are very

complicated, we use the abbreviated notation introduced there:

ρ(2)
νm =

∑
l

∑
pq

Kνmle
−i(ωp+ωq)t , (3.7.3)

where Kνml has been displayed explicitly. We also represent the electric field as

Ẽ(t) =
∑

r

E(ωr)e
−iωr t . (3.7.4)

The commutator thus becomes[
V̂ , ρ̂(2)

]
nm

= −
∑
νl

∑
pqr

[
μnν ·E(ωr)

]
Kνmle

−i(ωp+ωq+ωr)t

+
∑
νl

∑
pqr

[
μνm ·E(ωr)

]
Knνle

−i(ωp+ωq+ωr)t . (3.7.5)

The integration of Eq. (3.7.1) with the commutator given by Eq. (3.7.5) can now be per-
formed. We obtain

ρ(3)
nm = 1

�

∑
νl

∑
pqr

{ [μnν ·E(ωr)]Kνml

(ωnm − ωp − ωq − ωr) − iγnm

− [μνm ·E(ωr)]Knνl

(ωnm − ωp − ωq − ωr) − iγnm

}
e−i(ωp+ωq+ωr)t . (3.7.6)

The nonlinear polarization oscillating at frequency ωp + ωq + ωr is given by

P(ωp + ωq + ωr) = N
〈
μ(ωp + ωq + ωr)

〉
, (3.7.7)

where

〈μ̃〉 =
∑
nm

ρnmμmn ≡
∑

s

〈
μ(ωs)

〉
e−iωs t . (3.7.8)

We express the nonlinear polarization in terms of the third-order susceptibility defined by (see
also Eq. (1.3.21))

Pk(ωp + ωq + ωr) = ε0

∑
hij

∑
pqr

χ
(3)
kj ih(ωp + ωq + ωr,ωr,ωq,ωp)

× Ej(ωr)Ei(ωq)Eh(ωp). (3.7.9)
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By combining Eqs. (3.7.6) through (3.7.9), we find that the third-order susceptibility is given
by

χ
(3)
kj ih(ωp + ωq + ωr,ωr,ωq,ωp) = N

ε0�
3
PI

∑
nmνl{

(ρ
(0)
mm − ρ

(0)
ll )μk

mnμ
j
nνμ

i
νlμ

h
lm

[(ωnm − ωp − ωq − ωr) − iγnm][(ωνm − ωp − ωq) − iγνm][(ωlm − ωp) − iγlm] (a)

− (ρ
(0)
ll − ρ

(0)
νν )μk

mnμ
j
nνμ

i
lmμh

νl

[(ωnm − ωp − ωq − ωr) − iγnm][(ωνm − ωp − ωq) − iγνm][(ωνl − ωp) − iγνl] (b)

− (ρ
(0)
νν − ρ

(0)
ll )μk

mnμ
j
νmμi

nlμ
h
lν

[(ωnm − ωp − ωq − ωr) − iγnm][(ωnν − ωp − ωq) − iγnν][(ωlν − ωp) − iγlν] (c)

+ (ρ
(0)
ll − ρ

(0)
nn )μk

mnμ
j
νmμi

lνμ
h
nl

[(ωnm − ωp − ωq − ωr) − iγnm][(ωnν − ωp − ωq) − iγnν][(ωnl − ωp) − iγnl]
}
. (d)

(3.7.10)

Here we have again made use of the intrinsic permutation operator PI , whose meaning is
that everything to the right of it is to be averaged over all possible permutations of the input
frequencies ωp, ωq , and ωr , with the cartesian indices h, i, j permuted simultaneously. Next,
we rewrite this equation as eight separate terms by changing the dummy indices so that l is
always the index of ρ

(0)
ii . We also require that only positive resonance frequencies appear if the

energies are ordered so that Eν > En > Em > El , and we arrange the matrix elements so that
they appear in “natural” order, l → m → n → ν (reading right to left). We obtain

χ
(3)
kj ih(ωp + ωq + ωr,ωr,ωq,ωp) = N

ε0�
3
PI

∑
νnml

ρ
(0)
ll

×
{

μk
lνμ

j
νnμ

i
nmμh

ml

[(ωνl − ωp − ωq − ωr) − iγνl][(ωnl − ωp − ωq) − iγnl][(ωml − ωp) − iγml] (a1)

+ μh
lνμ

k
νnμ

j
nmμi

ml

[(ωnν − ωp − ωq − ωr) − iγnν][(ωmν − ωp − ωq) − iγmν][(ωνl + ωp) + iγνl] (a2)

+ μi
lνμ

k
νnμ

j
nmμh

ml

[(ωnν − ωp − ωq − ωr) − iγnν][(ωνm + ωp + ωq) + iγνm][(ωml − ωp) − iγml] (b1)

+ μh
lνμ

i
νnμ

k
nmμ

j
ml

[(ωmn − ωp − ωq − ωr) − iγmn][(ωnl + ωp + ωq) + iγnl][(ωνl + ωp) + iγνl] (b2)

+ μ
j
lνμ

k
νnμ

i
nmμh

ml

[(ωνn + ωp + ωq + ωr) + iγνn][(ωnl − ωp − ωq) − iγnl][(ωml − ωp) − iγml] (c1)
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+ μh
lνμ

j
νnμ

k
nmμi

ml

[(ωnm + ωp + ωq + ωr) + iγnm][(ωmν − ωp − ωq) − iγmν][(ωνl + ωp) + iγνl] (c2)

+ μi
lνμ

j
νnμ

k
nmμh

ml

[(ωnm + ωp + ωq + ωr) + iγnm][(ωνm + ωp + ωq) + iγmν][(ωml − ωp) − iγml] (d1)

+ μh
lνμ

i
νnμ

j
nmμk

ml

[(ωml + ωp + ωq + ωr) + iγml][(ωnl + ωp + ωq) + iγnl][(ωνl + ωp) + iγνl]
}
. (d2)

(3.7.11)

For the general case in which ωp, ωq , and ωr are distinct, six permutations of the field frequen-

cies occur, and thus the expression for χ(3) consists of 48 different terms once the permutation

operator PI is expanded. The resonance structure of this expression can be understood in terms

of the energy level diagrams shown in Fig. 3.7.1. Furthermore, the nature of the perturbation

FIGURE 3.7.1: The resonance structure of the expression (3.7.11) for the third-order nonlinear suscep-
tibility.
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FIGURE 3.7.2: Double-sided Feynman diagrams associated with the various terms in Eq. (3.7.11).

expansion leading to Eq. (3.7.11) can be understood in terms of the double-sided Feynman
diagrams shown in Fig. 3.7.2.

We saw in Section 3.2 that the general expression for the third-order susceptibility calculated
using perturbation theory applied to the atomic wavefunction contained 24 terms. Eq. (3.2.33)
shows four of these terms explicitly; the other terms are obtained from the six permutations of
the frequencies of the applied field. It can be shown that Eq. (3.7.11) reduces to Eq. (3.2.33)
in the limit of nonresonant excitation, where the imaginary contributions (iγαβ) appearing in
Eq. (3.7.11) can be ignored. One can demonstrate this fact by means of a calculation similar
to that used to derive Eq. (3.6.23), which applies to the case of the second-order susceptibility
(see Problem 5 at the end of this chapter).

In fact, even in the general case in which the imaginary contributions iγαβ appearing in
Eq. (3.7.11) are retained, it is possible to rewrite the 48-term expression (3.7.11) in the form
of the 24-term expression (3.2.33) by allowing the coefficient of each of the 24 terms to be
weakly frequency-dependent. These frequency-dependent coefficients usually display reso-
nances at frequencies other than those that appear in Fig. 3.7.1, and these new resonances
occur only if the line-broadening mechanism is collisional (rather than radiative). The nature
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of these collision-induced resonances has been discussed by Bloembergen et al. (1978), Prior
(1984), and Rothberg (1987).

3.8 Electromagnetically Induced Transparency

Electromagnetically induced transparency (EIT) is a powerful technique that can be used to
render a material system transparent to resonant laser radiation while retaining the large and
desirable nonlinear optical properties associated with the resonant response of a material sys-
tem. EIT was first described theoretically by Harris et al. (1990), although EIT shares some
features with processes described earlier by Gray et al. (1978) and by Tewari and Agarwal
(1986). EIT also shares some similarity with the process known as lasing without inversion
(Harris, 1989; Kocharovskaya and Khanis, 1988; Scully et al., 1989). EIT has been observed
both in atomic systems (Boller et al., 1991; Field et al., 1991) and in solids (Ham et al., 1997;
Zhao et al., 1997). Laboratory studies have confirmed that EIT can be used to enhance the
efficiency of nonlinear optical processes including nonlinear frequency conversion (Hakuta et
al., 1991; Jain et al., 1996) and optical phase conjugation (Hemmer et al., 1995; Li and Xiao,
1996). Moreover, EIT plays a key role in the generation of “slow light” (Budker et al., 1999;
Boyd and Gauthier, 2002; Hau et al., 1999; Inouye et al., 2000; Kash et al., 1999). In addition,
it has been predicted that EIT can enhance the properties of a much broader range of processes,
including squeezed-light generation (Lukin et al., 1999) and low-light-level photonic switch-
ing (Harris and Yamomoto, 1998; Imamoğlu et al., 1997). More information about EIT can be
found in the review articles on EIT cited at the end of this chapter.

Let us analyze a prototypical example of EIT. The situation is illustrated in part (a) of
Fig. 3.8.1. Laser fields at frequencies ω and ωs are applied to an atomic system with the intent of
generating radiation at the sum frequency ω4 = 2ω+ωs . One would normally expect that strong
absorption of light at frequency ω4 would severely limit the efficiency of the sum-frequency
generation process. However, we shall see that by allowing the field at frequency ωs to be a
strong saturating field one is able to eliminate absorption at the a → d transition frequency
while maintaining a large four-wave-mixing susceptibility.

Our goal is to treat the sum-frequency generation process illustrated in part (a) of Fig. 3.8.1
and to show how it can be excited more efficiently through use of EIT techniques. As a first step,
we examine how absorption at a specified frequency can be essentially eliminated by means of
the EIT process. Later in this section we shall return to the study of sum-frequency generation
and show that the nonlinear response leading to this process can remain large even when linear
absorption at the output frequency is eliminated.

We thus first examine how linear absorption at frequency ω4 is modified by an intense
saturating field of amplitude Es at frequency ωs , as illustrated in part (b) of Fig. 3.8.1. To treat
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FIGURE 3.8.1: Typical situation for observing electromagnetically induced transparency.

this problem, we need to include states a, d, and c in the atomic wavefunction. Common sense
might suggest that we thus express the wavefunction as

ψ(r, t) = C′
a(t)ua(r)e−iωat + C′

d(t)ud(r)e−iωd t + C′
c(t)uc(r)e−iωct , (3.8.1)

where �ωj is the energy of level j , and solve Schrödinger’s equation to determine the time
evolution of the expansion coefficients C ′

a(t), C′
d(t), and C′

c(t). But in fact the calculation
proceeds much more simply if instead we work in the interaction picture and represent the
wavefunction as

ψ(r, t) = Ca(t)ua(r) + Cd(t)ud(r)e−iω4t + Cc(t)uc(r)e−i(ω4−ωs)t . (3.8.2)

In fact, this representation makes sense because in a driven system the coefficients are expected
to oscillate at the driving frequency, not at the resonance frequency. We require that ψ(r, t)
obey Schrödinger’s equation in the form

i�
∂ψ

∂t
= Ĥψ with Ĥ = Ĥ0 + V̂ , (3.8.3)

where in the rotating-wave and electric-dipole approximations we can express the interaction
energy as

V̂ = −μ̂(E4e
−iω4t + E∗

s eiωs t ). (3.8.4)

We next proceed to derive equations of motion for the coefficients Cj . We begin by intro-
ducing the wave function (3.8.2) into Schrödinger’s equation (3.8.3) to obtain

i�
[
Ċaua + Ċdude−iω4t − iω4Cdude−iω4t + Ċcuce

−i(ω4−ωs)t

− i(ω4 − ωs)Ccuce
−i(ω4−ωs)t

]
= Ca�ωaua + Cd�ωdude−iω4t + Cc�ωcuce

−i(ω4−ωs)t

+ V̂
[
Caua + Cdude−iω4t + Ccuce

−i(ω4−ωs)t
]
. (3.8.5)
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We turn this result into three separate equations by the usual procedure of multiplying suc-
cessively by ua

∗, ud
∗, and uc

∗ and integrating the resulting equation over all space. Assuming
the quantities uj to be orthonormal, we obtain

i�Ċa = �ωaCa + VadCde−iω4t ,

i�
[
Ċde−iω4t − iω4Cde−iω4t

] = �ωdCde−iω4t + VdaCa + VdcCce
−i(ω4−ωs)t ,

i�
[
Ċce

−i(ω4−ωs)t − i(ω4 − ωs)Cce
−i(ω4−ωs)t

] = �ωcCce
−i(ω4−ωs)t + VcdCde−iω4t .

(3.8.6)

We next introduce the explicit forms of the matrix elements of V :

V ∗
ad = Vda = −μdaE4e

−iω4t ,

V ∗
dc = Vcd = −μcdE∗

s eiωs t . (3.8.7)

Also, we measure energies relative to that of the ground state a so that

�ωa → �ωaa = 0, �ωd → �ωda, �ωc → �ωca. (3.8.8)

In addition, we introduce the Rabi frequencies

� = μdaE4/� and �∗
s = μcdE∗

s /�. (3.8.9)

Eqs. (3.8.6) thus become

Ċa = iCd�∗,
Ċd − iδCd = iCa� + iCc�s,

Ċc − i(δ − �)Cc = iCd�∗
s , (3.8.10)

where

δ ≡ ω4 − ωda and � ≡ ωs − ωdc. (3.8.11)

We want to solve these equations correct to all orders in �s and to lowest order in �. One
might guess that one can do so by ignoring the first equation and replacing Ca by unity in the
second equation. But to proceed more rigorously, we perform a formal perturbation expansion
in the field amplitude �. We introduce a strength parameter λ, which we assume to be real, and
we replace � by λ�. We also expand Cj as a power series in λ as

Cj = C
(0)
j + λC

(1)
j + λ2C

(2)
j + · · · (3.8.12)
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where j = a, c, or d. By introducing these forms into each of the three equations of expres-
sion (3.8.10), we obtain

Ċ
(0)
a + λĊ

(1)
a = iC

(0)
d λ�∗ + iC

(1)
d λ2�∗,(

Ċ
(0)
d − iδC

(0)
d

) + λ
(
Ċ

(1)
d − iδC

(1)
d

) = iC
(0)
a �λ + iC

(1)
a �λ2 + iC

(0)
c �sλ + iC

(1)
c �sλ

2,[
Ċ

(0)
c − i(δ − �)C

(0)
c

] + λ
[
Ċ

(1)
c − i(δ − �)C

(1)
c

] = iC
(0)
d λ�∗

s + iC
(1)
d λ2�∗

s .

(3.8.13)

We next note that because these equations must be valid for arbitrary values of the parameter λ,
the coefficients of each power of λ must satisfy the equations separately. In particular, the
portions of Eqs. (3.8.13) that are independent of λ are given by:

Ċ
(0)
a = 0,

Ċ
(0)
d − iδC

(0)
d = iC0

a� + iC
(0)
c �s,

Ċ
(0)
c − i(δ − �)C

(0)
c = iC

(0)
d �∗

s . (3.8.14)

We take the solution to these equations to be the one corresponding to the assumed initial
conditions—that is,

C(0)
a = 1 and C

(0)
d = C(0)

c = 0, (3.8.15)

for all times. Next, we note that the portions of Eqs. (3.8.13) that are linear in λ are given by:

Ċ
(1)
a = 0,

Ċ
(1)
d − iδC

(1)
d = i� + iC

(0)
c �s,

Ċ
(1)
c − i(δ − �)C

(1)
c = iC

(0)
d �∗

s . (3.8.16)

We take the solution to the first equation as C
(1)
a = 0 for all times. We now drop the superscript

(1) on the remaining equations for notational simplicity. We thus need to solve the equations

Ċd − iδCd = i� + i�sCc,

Ċc − i(δ − �)Cc = i�∗
sCd. (3.8.17)

Note that these equations are consistent with the “guess” that we made earlier in connection
with Eqs. (3.8.10). Note also that there are no time-dependent coefficients on the right-hand
sides of Eqs. (3.8.17). (This is in fact why we chose to work in the interaction picture.) We can
thus find the steady state solution to these equations by setting the time derivatives to zero:

0 = � + δCd + �sCc,

0 = �2
sCd + (δ − �)Cc. (3.8.18)
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We solve these equations algebraically to find that

Cd = �(δ − �)

|�s |2 − δ(δ − �)
. (3.8.19)

The physical quantity of primary interest is the induced dipole moment, which can be de-
termined as follows:

p̃ = 〈ψ |μ̂|ψ〉 = 〈
ψ(0)

∣∣μ̂∣∣ψ(1)
〉 + 〈

ψ(1)
∣∣μ̂∣∣ψ(0)

〉
= 〈a|μ̂|d〉Cde−iω4t + c.c. = μadCde−iω4t + c.c. (3.8.20)

We thus find that the dipole moment amplitude is given by

p = μad�(δ + �)

|�s |2 − (δ + �)δ
(3.8.21)

and consequently that the polarization is given by

P = Np ≡ ε0χ
(1)
eff E, (3.8.22)

which implies that

χ
(1)
eff = N |μda|2

ε0�

(δ + �)

|�s |2 − (δ + �)δ
. (3.8.23)

Note that we have called χ
(1)
eff an effective linear susceptibility because it depends on the inten-

sity of the ωs field.
Next, we add damping, using a phenomenological description. We let γd and γc be the

decay rates of the probability amplitudes to be in levels d and e respectively. By examination
of Eqs. (3.8.17) we see that we can model the effects of damping by replacing δ by δ + iγd and
� by � + i(γc − γd). We thus find that Eq. (3.8.21) becomes

p = μad�(δ + � + iγc)

|�s |2 − (δ + iγd)(δ + � + iγc)
(3.8.24)

and that the form of χ
(1)
eff is given by

χ
(1)
eff = N

ε0�

|μda|2(δ + � + iγc)

|�s |2 − (δ + iγd)(δ + � + iγc)
. (3.8.25)

Note that when both fields are turned to the exact resonance (δ = � = 0), the susceptibility
becomes simply

χ
(1)
eff = N

ε0�

|μda|2iγc

|�s |2 + γcγd

, (3.8.26)
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FIGURE 3.8.2: (a) and (b) Illustration of reduced optical absorption based on EIT. In the examples
shown, � = ωs − ωdc is set equal to 0 and the ratio γc/γd is set equal to 0.01. The absorption spectrum
is shown in the presence of a strongly saturating field (a) and a weakly saturating field (b). In each case
the absorption nearly vanishes at line center, and the absorption spectrum in the complete absence of the
saturating field (labeled �s = 0) is shown for comparison. (c) and (d) The magnitude of the nonlinear
response leading to sum-frequency generation is shown. In each case the nonlinear response remains
appreciable at the frequency of nearly complete transparency.

which is purely imaginary. In this case, the absorption experienced by the field at frequency ω4

can be rendered arbitrarily small by choosing the field �s to be saturating. The nature of the
modification of the absorption spectrum is illustrated in parts (a) and (b) of Fig. 3.8.2. In part (a),
we see that in the presence of a strongly saturating field the absorption feature splits into two
components, with each component separated from the center of the feature by the Rabi fre-
quency |�s | associated with the strong field. In part (b), we see that in the presence of a weakly
saturating field a pronounced dip is induced in the absorption profile. In each case the absorp-
tion drops to nearly zero at the position of the resonance.

We now calculate the response leading to sum-frequency generation. We express the wave-
function in the interaction picture as

ψ(r, t) = Ca(t)ua(r) + Cb(t)ub(r)e−iωt

+ Cc(t)uc(r)e−i2ωt + Cd(t)ud(r)e−i(2ω+ωc)t . (3.8.27)
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As before, this wavefunction must satisfy the Schrödinger equation (3.8.3). We thereby find
that

i�
[
Ċaua + Ċbube

−iωt − iωCbube
−iωt + Ċcuce

−i2ωt − 2iωCcuce
−i2ωt

+ Ċdude−i(2ω+ωc)t − i
(
2ω + ωc

)
Cdude−i(2ω+ωc)t

]
= �wbaCbube

−iωt + �ωcaCcuce
−i2ωt + �ωdaCdude−i(2ω+ωc)t

+ V̂
[
Caua + Cbube

−iωt + Ccuce
−i2ωt + Cdude−i(2ω+ωc)t

]
. (3.8.28)

We now separate this expression into four equations by the usual method of multiplying
successively by ua

∗, ub
∗, uc

∗, and ud
∗ and integrating over all space. Recalling from Eq. (3.8.8)

that �ωaa = 0, we find that

i�Ċa = VabCbe
−iωt ,

i�(Ċb − iωCb)e
−iωt = �ωbaCbe

−iωt + VbaCa + VbcCce
−i2ωt ,

i�(Ċc − i2ωCc)e
−i2ωt = �ωcaCce

−i2ωt + VcbCbe
−iωt + VcdCde−i(2ω+ωs)t ,

i�
[
Ċd − i(2ω + ωc)Cd

]
e−(2ω+ωs)t = �ωdaCde−(2ω+ωs)t + VdcCce

−i2ωt . (3.8.29)

We next represent the matrix elements of the interaction Hamiltonian as

Vba = Vab
∗ = −μbaEe−iωt = −��bae

−iωt ,

Vcb = Vbc
∗ = −μcbEe−iωt = −��cbe

−iωt ,

Vdc = Vcd
∗ = −μdcEse

−iωs t = −��dce
−iωs t , (3.8.30)

and introduce the detuning factors as

δ1 = ω − ωba, δ2 = 2ω − ωca and � = ωs − ωdc. (3.8.31)

We thus find that

Ċa = iCb�
∗
ba, (3.8.32a)

Ċb − iCbδ1 = iCa�ba + iCc�
∗
cb, (3.8.32b)

Ċc − iCcδ2 = iCb�cb + iCd�∗
dc, (3.8.32c)

Ċd − iCd(δ2 + �) = iCc�dc. (3.8.32d)

We wish to solve these equations perturbatively in �ba and �cb but to all orders in �dc. We first
note that consistent with this assumption we can ignore Eq. (3.8.32a) altogether, as |Cb|  |Ca|
and therefore Ca ≈ 1. In solving Eq. (3.8.32b), we can drop the last term because |Cc|  |Cb|.
Then setting Ca = 1 and taking Ċb = 0 for the steady-state solution, we find that

Cb = −�ba/δ1. (3.8.33)
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We next need to find the simultaneous, steady-state solutions to Eqs. (3.8.32c) and (3.8.32d).
We set the time derivatives to zero to obtain

−Cc = Cb�cb

δ2
+ Cd�∗

dc

δ2
,

Cd = −Cc�dc

(δ2 + �)
. (3.8.34)

We now introduce the first of these equations into the second and make use of Eq. (3.8.33) to
obtain

Cd = −�ba�cb�dc

δ1δ2(δ2 + �)
+ Cd

|�dc|2
(δ2 + �)δ2

(3.8.35)

and thus to find that

Cd = − �dc�cb�ba

δ1δ2(δ2 + �)

[
1 − |�dc|2

δ2(δ2 + �)

]−1

(3.8.36)

= − �dc�cb�ba

δ1[δ2(δ2 + �) − |�dc|2] . (3.8.37)

The induced electric dipole moment at the sum frequency is now calculated as

p̃ = 〈ψ |μ̂|ψ〉 = 〈ua|μ̂|Cdud〉 + c.c. = μadCd + c.c. (3.8.38)

We thus find that the complex amplitude of the induced dipole moment is given by

p = −μad�dc�cb�ba

δ1[δ2(δ2 + �) − |�dc|2] = −μadμdcμcbμbaE
2Es

�3δ1[δ2(δ2 + �) − |�dc|2] ≡ 3ε0χ
(3)E2Ec

N
.

(3.8.39)

We thus find that

χ(3) = −Nμadμdcμcbμba

3ε0�δ1[δ2(δ2 + �) − |�dc|2] . (3.8.40)

As in Eq. (3.8.25), we can add the effects of damping to this result by replacing δ2 with δ2 + iγc

and replacing δ2 + � with δ2 + � + iγd . We thus find that

χ(3) = −Nμadμdcμcbμba

3ε0�δ1[(δ2 + iγc)(δ2 + � + iγd) − |�dc|2] . (3.8.41)

Note that in the limit |�dc| → 0 this result reduces to the usual expression for the reso-
nant contribution to the third-order susceptibility. Some of the numerical predictions given
by Eq. (3.8.41) are shown in Fig. 3.8.2(c) and (d). We see that in each case the nonlinear re-
sponse remains appreciable at the position of the initial resonance, and even shows a peak for
the conditions of panel (d).
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3.9 Local-Field Effects in the Nonlinear Optics

The treatment of the nonlinear optical susceptibility presented thus far has made the implicit
assumption that the electric field acting on each atom or molecule is the macroscopic elec-
tric field that appears in Maxwell’s equations. In general, one has to distinguish between the
macroscopic electric field and the effective electric field that each atom experiences, which is
also known as the Lorentz local field. The distinction between these two fields is important
except for the case of a medium that is so dilute that its linear dielectric constant is nearly equal
to unity.

3.9.1 Local-Field Effects in Linear Optics

Let us first review the theory of local field effects in linear optics. The electric field Ẽ that
appears in Maxwell’s equations in the form of Eqs. (2.1.1) through (2.1.8) is known as the
macroscopic or Maxwell field. This field is obtained by performing a spatial average of the
actual (that is, microscopic) electric field over a region of space whose linear dimensions are
of the order of at least several atomic diameters. It is useful to perform such an average to
smooth out the wild variations in the electric field that occur in the immediate vicinity of the
atomic nuclei and electrons. The macroscopic electric field thus has contributions from sources
external to the material system and from the charges of all of the molecules that constitute the
system.

Let us now see how to calculate the dipole moment induced in a representative molecule
contained within the material system. We assume for simplicity that the medium is lossless and
dispersionless, so that we can conveniently represent the fields as time-varying quantities. We
let Ẽ represent the macroscopic field and P̃ the polarization within the bulk of the material.
Furthermore, we represent the electric-dipole moment induced in a typical molecule as

p̃ = ε0γ
(1)Ẽloc, (3.9.1)

where γ (1) is the usual linear polarizability∗ and where Ẽloc is the local field—that is, the
effective electric field that acts on the molecule. The local field is the field resulting from all
external sources and from all molecules within the sample except the one under consideration.

We calculate this field through use of a procedure described by Lorentz (1952). We imagine
drawing a small sphere centered on the molecule under consideration, as shown in Fig. 3.9.1.
This sphere is assumed to be sufficiently large that it contains many molecules. The electric field
produced at the center of the sphere by molecules contained within the sphere (not including the
molecule at the center) will tend to cancel, and for the case of a liquid, gas, or cubic crystal, this

∗ Many authors use the symbol α to represent the linear polarizability. We use the symbol γ (1) to avoid confusion
over the use of α for the absorption coefficient.
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FIGURE 3.9.1: Calculation of the Lorentz local field.

cancellation can be shown to be exact. We can then imagine removing these molecules from the
sphere, leaving only the molecule under consideration, which is then located at the center of an
evacuated sphere within an otherwise uniformly polarized medium. It is then a simple problem
in electrostatics to calculate the value of the field at the center of the sphere. The field, which
we identify as the Lorentz local field, is given by (see also Born and Wolf, 1975, Section 2.3,
or Jackson, 1975, Section 4.5)

Ẽloc = Ẽ + 1

3ε0
P̃. (3.9.2)

By definition, the polarization of the material is given by

P̃ = N p̃, (3.9.3)

where N is the number density of molecules and p̃ is the dipole moment per molecule, which
under the present circumstances is given by Eq. (3.9.1). By combining Eqs. (3.9.1) through
(3.9.3), we find that the polarization and macroscopic field are related by

P̃ = Nε0γ
(1)

(
Ẽ + 1

3ε0
P̃
)

. (3.9.4)

It is useful to express this result in terms of the linear susceptibility χ(1), defined by

P̃ = ε0χ
(1)Ẽ. (3.9.5)

If we substitute this expression for P̃ into Eq. (3.9.4) and solve the resulting equation for χ(1),
we find that

χ(1) = Nγ (1)

1 − 1
3Nγ (1)

. (3.9.6)

For the usual case in which the polarizability γ (1) is positive, we see that the susceptibility
is larger than the value Nγ (1) predicted if we ignore local-field effects. We also see that the
susceptibility increases with N more rapidly than linearly.
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Alternatively, we can express the result given by Eq. (3.9.6) in terms of the linear dielectric
constant

ε(1) = 1 + χ(1). (3.9.7)

If the left-hand side of Eq. (3.9.6) is replaced by χ(1) = (ε(1) − 1) and the resulting equation
is rearranged so that its right-hand side is linear in γ (1), we find that the dielectric constant is
given by the expression

ε(1) − 1

ε(1) + 2
= 1

3Nγ (1). (3.9.8a)

This equation (often with ε(1) replaced by n2) is known as the Lorentz–Lorenz law. Note that,
through rearrangement, Eq. (3.9.8a) can be written as

ε(1) + 2

3
= 1

1 − 1
3Nγ (1)

. (3.9.8b)

Eq. (3.9.6) can thus be expressed as

χ(1) = ε(1) + 2

3
Nγ (1). (3.9.8c)

This result shows that χ(1) is larger than Nγ (1) by the factor (ε(1)+2)/3. The factor (ε(1)+2)/3
can thus be interpreted as the local-field enhancement factor for the linear susceptibility.

3.9.2 Local-Field Effects in Nonlinear Optics

In the nonlinear-optical case, the Lorentz local field is still given by Eq. (3.9.2), but the polar-
ization now has both linear and nonlinear contributions:

P̃ = P̃L + P̃NL. (3.9.9)

We represent the linear contribution as

P̃L = Nε0γ
(1)Ẽloc. (3.9.10)

Note that this contribution is “linear” in the sense that it is linear in the strength of the local
field. In general it is not linear in the strength of the macroscopic field. We next introduce
Eqs. (3.9.2) and (3.9.9) into this equation to obtain

P̃L = Nε0γ
(1)

(
Ẽ + 1

3ε0
P̃L + 1

3ε0
P̃NL

)
. (3.9.11)
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We now solve this equation for P̃L and use Eqs. (3.9.6) and (3.9.7) to express the factor
Nγ (1) that appears in the resulting expression in terms of the linear dielectric constant. We
thereby obtain

P̃L = [
ε(1) − 1

](
ε0Ẽ + 1

3 P̃NL)
. (3.9.12)

Next we consider the displacement vector

D̃ = ε0Ẽ + P̃ = ε0Ẽ + P̃L + P̃NL. (3.9.13)

If the expression (3.9.12) for the linear polarization is substituted into this expression, we obtain

D̃ = ε0ε
(1)Ẽ +

(
ε(1) + 2

3

)
P̃NL. (3.9.14)

We see that the second term is not simply P̃NL, as might have been expected, but rather that
the nonlinear polarization appears multiplied by the factor (ε(1) + 2)/3. We recall that in the
derivation of the polarization-driven wave equation of nonlinear optics, a nonlinear source term
appears when the second time derivative of D̃ is calculated (see, for example, Eq. (2.1.9a)). As
a consequence of Eq. (3.9.14), we see that the nonlinear source term is actually the nonlinear
polarization P̃NL multiplied by the factor (ε(1) + 2)/3. To emphasize this point, Bloembergen
(1965) introduces the nonlinear source polarization defined by

P̃NLS =
(

ε(1) + 2

3

)
P̃NL (3.9.15)

so that Eq. (3.9.14) can be expressed as

D̃ = ε0ε
(1)Ẽ + P̃NLS. (3.9.16)

When the derivation of the wave equation is carried out as in Section 2.1 using this expression
for D̃, we obtain the result

∇ × ∇ × Ẽ + ε(1)

c2

∂2Ẽ
∂t2

= − 1

ε0c2

∂2P̃NLS

∂t2
. (3.9.17)

This result shows how local-field effects are incorporated into the wave equation.
The distinction between the local and macroscopic fields also arises in that the field that

induces a dipole moment in each atom is the local field, whereas by definition the nonlinear
susceptibility relates the nonlinear source polarization to the macroscopic field. To good ap-
proximation, we can relate the local and macroscopic fields by replacing P̃ by P̃L in Eq. (3.9.2)
to obtain

Ẽloc = Ẽ + 1
3χ(1)Ẽ = [

1 + 1
3

(
ε(1) − 1

)]
Ẽ,
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or

Ẽloc =
(

ε(1) + 2

3

)
Ẽ. (3.9.18)

We now apply the results given by Eqs. (3.9.17) and (3.9.18) to the case of second-order
nonlinear interactions. We define the nonlinear susceptibility by means of the equation (see also
Eq. (1.3.13))

P NLS
i (ωm + ωn) = ε0

∑
jk

∑
(mn)

χ
(2)
ijk (ωm + ωn,ωm,ωn)Ej (ωm)Ek(ωn), (3.9.19)

where

P NLS
i (ωm + ωn) =

(
ε(1)(ωm + ωn) + 2

3

)
P NL

i (ωm + ωn) (3.9.20)

and where the quantities Ej(ωm) represent macroscopic fields. The nonlinear polarization (i.e.,
the second-order contribution to the dipole moment per unit volume) can be represented as

P NL
i (ωm + ωn) = Nε0

∑
jk

∑
(mn)

βijk(ωm + ωn,ωm,ωn)E
loc
j (ωm)Eloc

k (ωn), (3.9.21)

where the proportionality constant βijk is known as the second-order hyperpolarizability. The
local fields appearing in this expression are related to the macroscopic fields according to
Eq. (3.9.18), which we now rewrite as

Eloc
j (ωm) =

(
ε(1)(ωm) + 2

3

)
Ej(ωm). (3.9.22)

By combining Eqs. (3.9.19) through (3.9.22), we find that the nonlinear susceptibility can be
represented as

χ
(2)
ijk (ωm + ωn,ωm,ωn)

= L(2)(ωm + ωn,ωm,ωn)Nβijk(ωm + ωn,ωm,ωn), (3.9.23)

where

L(2)(ωm + ωn,ωm,ωn)

=
(

ε(1)(ωm + ωn) + 2

3

)(
ε(1)(ωm) + 2

3

)(
ε(1)(ωn) + 2

3

)
(3.9.24)

gives the local-field enhancement factor for the second-order susceptibility. For example,
Eq. (3.6.18) for χ(2) should be multiplied by this factor to obtain the correct expression in-
cluding local-field effects.



Quantum-Mechanical Theory of the Nonlinear Optical Susceptibility 197

This result is readily generalized to higher-order nonlinear interaction. For example, the
expression for χ(3) obtained ignoring local-field effects should be multiplied by the factor

L(3)(ωl + ωm + ωn,ωl,ωm,ωn)

=
(

ε(1)(ωl + ωm + ωn) + 2

3

)(
ε(1)(ωl) + 2

3

)

×
(

ε(1)(ωm) + 2

3

)(
ε(1)(ωn) + 2

3

)
. (3.9.25)

Our derivation of the form of the local-field enhancement factor has essentially followed
the procedure of Bloembergen (1965). The nature of local-field effects in nonlinear optics can
be understood from a very different point of view introduced by Mizrahi and Sipe (1986).
This method has the desirable feature that, unlike the procedure just described, it does not
require that we introduce the somewhat arbitrary distinction between the nonlinear polarization
and the nonlinear source polarization. For simplicity, we describe this procedure only for the
case of third-harmonic generation in the scalar field approximation. We assume that the total
polarization (including both linear and nonlinear contributions) at the third-harmonic frequency
is given by

P(3ω) = Nε0 γ (1)(3ω)Eloc(3ω) + Nε0γ
(3)(3ω,ω,ω,ω)E3

loc(ω), (3.9.26)

where γ (1)(3ω) is the linear polarizability for radiation at frequency 3ω and where
γ (3)(3ω,ω,ω,ω) is the hyperpolarizability leading to third-harmonic generation. We next use
Eqs. (3.9.2) and (3.9.18) to rewrite Eq. (3.9.26) as

P(3ω) = Nε0γ
(1)(3ω)

[
E(3ω) + 1

3ε0
P(3ω)

]

+ Nε0γ
(3)(3ω,ω,ω,ω)

(
ε(1)(ω) + 2

3

)3

E(ω)3. (3.9.27)

This equation is now solved algebraically for P(3ω) to obtain

P(3ω) = Nγ (1)(3ω)E(3ω)

1 − 1
3Nγ (1)(3ω)

+ Nγ (3)(3ω,ω,ω,ω)

1 − 1
3 Nγ (1)(3ω)

(
ε(1)(ω) + 2

3

)3

E(ω)3. (3.9.28)

We can identify the first and second terms of this expression as the linear and third-order polar-
izations, which we represent as

P(3ω) = ε0χ
(1)(3ω)E(3ω) + ε0χ

(3)(3ω,ω,ω,ω)E(ω)3, (3.9.29)
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where (in agreement with the unusual Lorentz–Lorenz law) the linear susceptibility is given by

χ(1)(3ω) = Nγ (1)(3ω)

1 − 1
3 Nγ (1)(3ω)

, (3.9.30)

and where the third-order susceptibility is given by

χ(3)(3ω,ω,ω,ω) =
(

ε(1)(ω) + 2

3

)3(
ε(1)(3ω) + 2

3

)
Nγ (3)(3ω,ω,ω,ω). (3.9.31)

We have made use of Eq. (3.9.8b) in writing Eq. (3.9.31) in the form shown. Note that the
result (3.9.31) agrees with the previous result described by Eq. (3.9.25). Experimental results
demonstrating the influence of local-field effects on the linear and nonlinear optical response
have been presented by Maki et al. (1991).

Throughout this section, we have made the implicit assumption that the material under con-
sideration is chemically homogeneous. Different considerations come into play for the case of
molecules of one chemical species embedded in a host material of a different species. This sit-
uation has been treated by Glauber and Lewenstein (1991). They find that in this case the local
field factor is given by 3ε(1)/(2ε(1) + 1) rather than by (ε(1) + 2)/3 as given in Eq. (3.9.8c).
Dolgaleva et al. (2007) verified this type of dependence for the radiative lifetime of emitting
nanoparticles embedded in a host material. The analysis of local-field effects in composite
materials comprised of two or more constituents is an area of active current research. In a com-
posite material, the local electric field can vary considerably in space, and this effect can lead
to an overall enhancement of the nonlinear optical response. These effects have been described
by Fischer et al. (1995) and by Nelson and Boyd (1999).

Problems

1. Estimate of the refractive index of an atomic vapor. Starting (for instance) from Eq. (3.5.20),
perform an estimate of the magnitude of the on-resonance absorption coefficient of a dense
atomic vapor assuming that the atomic number density is N = 1017 cm−3, that μ = 2.5ea0,
that the transition vacuum wavelength is 0.6 µm, and that the transition is homogeneously
broadened with a linewidth (FWHM) of 10 GHz. Under the same conditions, calculate the
maximum value of the real part of the refractive index near the peak of the absorption line.
(These values are realistic under laboratory conditions. See for instance Maki et al., 1991.)

[Ans.: α = 8 × 104 cm−1, n(max) = 1.2.]
2. Estimate of the refractive index of glass. Starting (for instance) from Eq. (3.5.20), perform

an estimate of the magnitude of the real part of the refractive index of glass at visible wave-
lengths. Choose realistic values for the atomic number density, dipole transition moment,
and detuning from resonance.
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3. Maximum value of the on-resonance cross section. Verify Eq. (3.5.42).
4. Permutation symmetry of the nonlinear susceptibility. Show that Eq. (3.6.24) possesses full

permutation symmetry.
5. Resonant nonlinear optical response. Derive, using the density matrix formalism, an ex-

pression for the resonant contribution to the third-order susceptibility χ(3) describing third-
harmonic generation as illustrated below.

Assume that, in thermal equilibrium, all of the population resides in the ground state. Note
that since all input frequencies are equal and since only the resonant contribution is re-
quired, the answer will consist of one term and not 48 terms, which occur for the most
general case of χ(3). Work this problem by starting with the perturbation expansion (3.4.16)
derived in the text and specializing the ensuing derivation to the interaction shown in the
figure. [

Ans.: χ
(3)
kj ih(3ω,ω,ω,ω)

= N

ε0�
3

μk
adμ

j
dcμ

i
cbμ

h
ba

[(ωda − 3ω) − iγda][(ωca − 2ω) − iγca][(ωba − ω) − iγba] .
]

6. Model calculation of the nonlinear susceptibility. Consider the mutual interaction of four
optical fields as illustrated in the following figure. Assume that all of the fields have the
same linear polarization and that in thermal equilibrium all of the population is contained
in level a. Assume that the waves are tuned sufficiently closely to the indicated resonances
that only these contributions to the nonlinear interaction need be taken into account.
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You may work this problem either by specializing the general result of Eq. (3.7.11) to
the interaction shown in the figure or by repeating the derivation given in the text and
specializing at each step to this interaction.
(a) Calculate the four nonlinear susceptibilities

χ(3)(ω4 = ω1 + ω2 − ω3), χ(3)(ω3 = ω1 + ω2 − ω4),

χ(3)(ω1 = ω3 + ω4 − ω2), χ(3)(ω2 = ω3 + ω4 − ω1)

that describe the four-wave mixing process, and determine the conditions under which these
quantities are equal.
(b) In addition, calculate the nonlinear susceptibilities

χ(3)(ω1 = ω1 + ω2 − ω2), χ(3)(ω2 = ω2 + ω−ω1)

that describe two-photon absorption of the ω1 and ω2 fields, and determine the conditions
under which they are equal. [Experimental investigation of some of the effects described
by these quantities is reported by Malcuit et al., 1985.]

7. Generalization of Problems 4 and 5. Repeat the calculation of the resonant contributions
to χ(3) for the cases studied in Problems 4 and 5 for the more general situation in which
each of the levels can contain population in thermal equilibrium. Interpret your results.
[Note: The solution to this problem is very lengthy.]

8. Pressure-induced resonances in nonlinear optics. Verify the statement made in the text
that Eq. (3.7.11) reduces to Eq. (3.2.33) in the limit in which damping effects are negligi-
ble. Show also that, even when damping is not negligible, the general 48-term expression
for χ(3) can be cast into an expression containing 24 terms, 12 of which contain “pressure-
induced” resonances.

9. Electromagnetically induced transparency. The goal of this problem is to determine how
the linear susceptibility χ(1)(2ω1 +ωs) and the nonlinear optical susceptibility χ(3)(ωsum =
ω1 + ω1 + ωs) are modified when the field at frequency ωs is a strong saturating field. We
shall find that under appropriate circumstances the presence of the strong field can signif-
icantly decrease the (unwanted) linear absorption experienced by the sum frequency field
while leaving the magnitude of the nonlinear response relatively unaffected. This problem
was worked out in the body of the text using the wavefunction formalism. For this prob-
lem, you are to treat this problem using the density-matrix formalism, using the coupling
scheme shown in the accompanying figure. Note that level b is appreciably detuned from
a one-photon resonance but that all other excited states are excited at a near resonance
frequency.
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Harris, S.E., Field, J.E., Imamoğlu, A., 1990. Phys. Rev. Lett. 64, 1107.
Hau, L.V., Harris, S.E., Dutton, Z., Behroozi, C.H., 1999. Nature 397, 594.
Hemmer, P.R., Katz, D.P., Donoghue, J., Cronin-Golomb, M., Shahriar, M.S., Kumar, P., 1995. Opt. Lett. 20, 982.
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Fleischhauer, M., Imamoğlu, A., Marangos, J.P., 2005. Rev. Mod. Phys. 77, 633.
Harris, S.E., 1997. Physics Today, July 1997, p. 36.
Harris, S.E., Yin, G.Y., Jain, M., Xia, H., Merriam, A.J., 1997. Philos. Trans. R. Soc. Lond. A 355, 2291.
Joshi, A., Xiao, M., 2006. In: Wolf, E. (Ed.), Progress in Optics, vol. 49. Elsevier.
Lukin, M.D., Hemmer, P., Scully, M.O., 2000. Adv. At. Mol. Opt. Phys. 42, 347.
Matsko, A.B., Kocharovskaya, O., Rostovtsev, Y., Welch, G.R., Scully, M.O., 2001. Adv. At. Mol. Opt. Phys. 46,

191.
Scully, M.O., 1992. Phys. Rep. 219, 191.
Xiao, M., 2003. IEEE J. Sel. Top. Quantum Electron. 9, 86.

Local-Field Effects in Nonlinear Optics
Born, M., Wolf, E., 1975. Principles of Optics. Pergamon Press, Oxford.
Dolgaleva, K., Boyd, R.W., Milonni, P.W., 2007. J. Opt. Soc. Am. B 24.
Fischer, G.L., Boyd, R.W., Gehr, R.J., Jenekhe, S.A., Osaheni, J.A., Sipe, J.E., Weller-Brophy, L.A., 1995. Phys.

Rev. Lett. 74, 1871.
Glauber, R.J., Lewenstein, M., 1991. Quantum optics of dielectric media. Phys. Rev. A 43, 467–491.
Jackson, J.D., 1975. Classical Electrodynamics. Wiley, New York.
Lorentz, H.A., 1952. The Theory of Electrons. Dover, New York.
Maki, J.J., Malcuit, M.S., Sipe, J.E., Boyd, R.W., 1991. Phys. Rev. Lett. 68, 972.
Malcuit, M.S, et al., 1985. Phys. Rev. Lett. 55, 1086.
Mizrahi, V., Sipe, J.E., 1986. Phys. Rev. B 34, 3700.
Nelson, R.L., Boyd, R.W., 1999. Appl. Phys. Lett. 74, 2417.



Chapter 4

The Intensity-Dependent Refractive Index

The refractive index of many optical materials depends on the intensity of the light used to mea-
sure the refractive index. In this chapter, we examine some of the mathematical descriptions of
the nonlinear refractive index and examine some of the physical processes that give rise to
this effect. In the following chapter, we study the origin of optical nonlinearities in molecular
systems, in Chapter 6 we study the intensity-dependent refractive index resulting from the res-
onance response of an atomic system, and in Chapter 7 we study some physical processes that
result from the nonlinear refractive index.

4.1 Descriptions of the Intensity-Dependent Refractive Index

The refractive index of many materials can be described by the relation

n = n0 + n̄2
〈
Ẽ2〉, (4.1.1)

where n0 represents the usual, weak-field refractive index and n̄2 is a new optical constant
(sometimes called the second-order index of refraction) that gives the rate at which the refrac-
tive index increases with increasing optical intensity.∗ The angular brackets surrounding the
quantity Ẽ2 represent a time average. Thus, if the optical field is of the form

Ẽ(t) = E(ω)e−iωt + c.c. (4.1.2)

so that 〈
Ẽ(t)2〉 = 2E(ω)E(ω)∗ = 2

∣∣E(ω)
∣∣2

, (4.1.3)

∗ We place a bar over the symbol n2 to prevent confusion with a different definition of n2, which is introduced in
Eq. (4.1.15).

Nonlinear Optics. https://doi.org/10.1016/B978-0-12-811002-7.00013-8
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we find that

n = n0 + 2n̄2
∣∣E(ω)

∣∣2
. (4.1.4)

The change in refractive index described by Eq. (4.1.1) or (4.1.4) is sometimes called the optical

Kerr effect, by analogy with the traditional Kerr electrooptic effect, in which the refractive

index of a material changes by an amount that is proportional to the square of the strength of

an applied static electric field.

Of course, the interaction of a beam of light with a nonlinear optical medium can also be

described in terms of the nonlinear polarization. The part of the nonlinear polarization that

influences the propagation of a beam of frequency ω is

P NL(ω) = 3ε0χ
(3)(ω = ω + ω − ω)

∣∣E(ω)
∣∣2

E(ω). (4.1.5)

For simplicity we are assuming here that the light is linearly polarized and are suppressing the

tensor indices of χ(3); the tensor nature of χ(3) is addressed explicitly in the following sections.

The total polarization of the material system is then described by

P TOT(ω) = ε0χ
(1)E(ω) + 3ε0χ

(3)
∣∣E(ω)

∣∣2
E(ω) ≡ ε0χeffE(ω), (4.1.6)

where we have introduced the effective susceptibility

χeff = χ(1) + 3χ(3)
∣∣E(ω)

∣∣2
. (4.1.7)

In order to relate the nonlinear susceptibility χ(3) to the nonlinear refractive index n2, we note

that it is generally true that

n2 = 1 + χeff, (4.1.8)

and by introducing Eq. (4.1.4) on the left-hand side and Eq. (4.1.7) on the right-hand side of

this equation, we find that

[
n0 + 2n̄2

∣∣E(ω)
∣∣2]2 = 1 + χ(1) + 3χ(3)

∣∣E(ω)
∣∣2

. (4.1.9)

Correct to terms of order |E(ω)|2, this expression when expanded becomes n2
0 +

4n0n̄2|E(ω)|2 = (1 + χ(1)) + [3χ(3)|E(ω)|2], which shows that the linear and nonlinear re-
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FIGURE 4.1.1: Two ways of measuring the intensity-dependent refractive index. In part (a), a strong
beam of light modifies its own propagation, whereas in part (b), a strong beam of light influences the
propagation of a weak beam.

fractive indices are related to the linear and nonlinear susceptibilities by

n0 = (
1 + χ(1)

)1/2 (4.1.10)

and

n̄2 = 3χ(3)

4n0
. (4.1.11)

The discussion just given has implicitly assumed that the refractive index is measured using
a single laser beam, as shown in part (a) of Fig. 4.1.1. Another way of measuring the intensity-
dependent refractive index is to use two separate beams, as illustrated in part (b) of the figure.
Here the presence of the strong beam of amplitude E(ω) leads to a modification of the refrac-
tive index experienced by a weak probe wave of amplitude E(ω′). The nonlinear polarization
affecting the probe wave is given by

P NL(ω′) = 6ε0χ
(3)(ω′ = ω′ + ω − ω)

∣∣E(ω)
∣∣2

E(ω′). (4.1.12)

Note that the degeneracy factor (6) for this case is twice as large as that for the single-beam
case of Eq. (4.1.5). In fact, for the two-beam case the degeneracy factor is equal to 6 even if ω′
is equal to ω, because the probe beam is physically distinguishable from the strong pump beam
owing to its different direction of propagation. The probe wave hence experiences a refractive
index given by

n = n0 + 2n̄
(cross)
2

∣∣E(ω)
∣∣2

, (4.1.13)
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where

n̄
(cross)
2 = 3χ(3)

2n0
. (4.1.14)

Note that the nonlinear coefficient n̄
(cross)
2 describing cross-coupling effects is twice as large

as the coefficient n̄2 of Eq. (4.1.11) which describes self-action effects. Hence, a strong wave
affects the refractive index of a weak wave of the same frequency twice as much as it affects its
own refractive index. This effect, for the case in which n2 is positive, is known as weak-wave
retardation (Chiao et al., 1966).

The quantity n̄2 is helpful for the conceptual understanding of nonlinear optical phenomena.
However, in practice it is usually more convenient to use an alternative method for describing
the intensity-dependent refractive index∗ by means of the quantity n2 defined by the equation

n = n0 + n2I, (4.1.15)

where I denotes the time-averaged intensity of the optical field, given by

I = 2n′
0ε0c

∣∣E(ω)
∣∣2

. (4.1.16)

Here we have expressed the refractive index in terms of its real and imaginary parts as n =
n′ + in′′ and similarly for n0 and n2. Since the total refractive index n must be the same using
either description of the nonlinear contribution, we see by comparing Eqs. (4.1.4) and (4.1.15)
that

2n̄2
∣∣E(ω)

∣∣2 = n2I, (4.1.17)

and thus that n̄2 and n2 are related by

n2 = n̄2

n′
0ε0c

, (4.1.18)

where we have made use of Eq. (4.1.16). If Eq. (4.1.11) is introduced into this expression, we
find that n2 is related to χ(3) by

n2 = 3

4n0n
′
0ε0c

χ(3). (4.1.19)

This relation can be expressed numerically as

n2

(
m2

W

)
= 283

n0n
′
0
χ(3)

(
m2

V2

)
. (4.1.20)

∗ For definiteness, we are treating the single-beam case of part (a) of Fig. 4.1.1. The extension to the two-beam
case is straightforward.
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TABLE 4.1.1: Typical values of the nonlinear refractive indexa.

Mechanism n2
(cm2/W)

χ
(3)
1111

(m2/V2)

Response time
(sec)

Electronic polarization 10−16 10−22 10−15

Molecular orientation 10−14 10−20 10−12

Electrostriction 10−14 10−20 10−9

Saturated atomic absorption 10−10 10−16 10−8

Thermal effects 10−6 10−12 10−3

Photorefractive effectb (large) (large) (intensity-dependent)

a For linearly polarized light.
b The photorefractive effect often leads to a very strong nonlinear response. This response usually cannot be described in terms of
a χ(3) (or an n2) nonlinear susceptibility, because the nonlinear polarization does not depend on the applied field strength in the
same manner as the other mechanisms listed.

Nonlinear susceptibilities are sometimes quoted in gaussian units. Procedures for converting
between the gaussian and SI units are presented in the appendix. One useful relation is the
following:

n2

(
cm2

W

)
= 12π2

n2
0c

107χ(3)(esu) = 0.0395

n2
0

χ(3)(esu). (4.1.21)

Some of the physical processes that can produce a nonlinear change in the refractive index
are listed in Table 4.1.1, along with typical values of n2, of χ(3), and of the characteristic
time scale for the nonlinear response to develop. Electronic polarization, molecular orientation,
and thermal effects are discussed in the present chapter, saturated absorption is discussed in
Chapter 7, electrostriction is discussed in Chapter 9, and the photorefractive effect is described
in Chapter 11.

In Table 4.1.2 the experimentally measured values of the nonlinear susceptibility are pre-
sented for several materials. Some of the methods that are used to measure the nonlinear
susceptibility have been reviewed by Hellwarth (1977). As an example of the use of Table 4.1.2,
note that for fused silica the value of n2 is approximately 3×10−16 cm2/W = 3×10−20 m2/W.
Thus, a laser beam of intensity I = 1 GW/cm2 = 10 TW/m2 can produce a refractive index
change of 3 × 10−7. Even for As2S3 glass, the resulting change in refractive index is only ap-
proximately 700 times larger. Even though the fractional change in refractive index is usually
very small, refractive index changes of this order of magnitude can lead to dramatic nonlinear
optical effects (some of which are described in Chapter 7) for the case of phase-matched non-
linear optical interactions. Very recently, material systems have been identified for which the
fractional change in refractive index can be of the order of unity. One such example is indium
tin oxide, for which the change in index is 0.7 (Alam et al., 2016).
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TABLE 4.1.2: Third-order nonlinear optical coefficients of various materialsa.

Material n0 χ(3) (m2/V2) n2 (cm2/W) Comments and referencesb

Crystals

Al2O3 1.8 3.1×10−22 2.9×10−16 1

CdS 2.34 9.8×10−20 5.1×10−14 1, 1.06 µm

Diamond 2.42 2.5×10−21 1.3×10−15 1

GaAs 3.47 1.4×10−18 3.3×10−13 15, 1.54 µm, β = 10.2 cm/GW

Ge 4.0 5.6×10−19 9.9×10−14 2, THG |χ(3)|
LiF 1.4 6.2×10−23 9.0×10−17 1

Si 3.4 2.8×10−18 2.7×10−14 15, 1.54 µm, β = 0.79 cm/GW

TiO2 2.48 2.1×10−20 9.4×10−15 1

ZnSe 2.7 6.2×10−20 3.0×10−14 1, 1.06 µm
Glasses

Fused silica 1.47 2.5×10−22 3.2×10−16 1

As2S3 glass 2.9 4.1×10−19 2.4×10−13 14

BK-7 1.52 2.8×10−22 3.4×10−16 1

BSC 1.51 5.0×10−22 6.4×10−16 1

Pb Bi gallate 2.3 2.2×10−20 1.3×10−14 4

SF-55 1.73 2.1×10−21 2.0×10−15 1

SF-59 1.953 4.3×10−21 3.3×10−15 1
Nanoparticles

CdSSe in glass 1.5 1.4×10−20 1.8×10−14 3, nonres.

CS 3-68 glass 1.5 1.8×10−16 2.3×10−10 3, res.

Gold in glass 1.5 2.1×10−16 2.6×10−10 3, res.
Polymers

Polydiacetylenes

PTS 8.4×10−18 3.×10−12 5, nonres.

PTS −5.6×10−16 −2×10−10 6, res.

9BCMU 2.7×10−18 7, |n2|, res.

4BCMU 1.56 −1.3×10−19 −1.5×10−13 8, nonres, β = 0.01 cm/MW
Liquids

Acetone 1.36 1.5×10−21 2.4×10−15 9

Benzene 1.5 9.5×10−22 1.2×10−15 9

Carbon disulfide 1.63 3.1×10−20 3.2×10−14 9, τ = 2 psec

CCl4 1.45 1.1×10−21 1.5×10−15 9

Diiodomethane 1.69 1.5×10−20 1.5×10−14 9

Ethanol 1.36 5.0×10−22 7.7×10−16 9

Methanol 1.33 4.3×10−22 6.9×10−16 9

Nitrobenzene 1.56 5.7×10−20 6.7×10−14 9

Water 1.33 2.5×10−22 4.1×10−16 9

continued on next page
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TABLE 4.1.2: (continued.)

Material n0 χ(3) (m2/V2) n2 (cm2/W) Comments and referencesb

Other materials

Air 1.0003 1.7×10−25 5.0×10−19 10

Ag 2.8×10−19 2, THG |χ(3)|
Au 7.7×10−19 2, THG |χ(3)|

7.6×10−17 3.36i ×10−14 16, 17, Z-scan, 6 ps, 630 nm

Vacuum 1 3.4×10−41 1.0×10−34 11

Cold atoms 1.0 7.1×10−8 0.2 12, (EIT BEC)

Fluorescein
dye in glass

1.5 (2.8 + 2.8i) × 10−8 0.035(1 + i) 13, τ = 0.1 s

Indium tin
oxide

0.4 1.1×10−10 18, measured under ENZ
conditions

a This table assumes the definition of the third-order susceptibility χ(3) used in this book, as given for instance by Eq. (1.1.2) or
by Eq. (1.3.21). This definition is consistent with that introduced by N. Bloembergen (Nonlinear Optics, Benjamin, New York,
1964). Some workers use an alternative definition which renders their values four times smaller. In compiling this table we have
converted the literature values when necessary to the present definition.
b References for Table 4.1.2: (1) L.L. Chase and E.W. Van Stryland, Section 8.1 of CRC Handbook of Laser Science and Technol-
ogy, CRC Press, Boca Raton, FL, 1995; (2) N. Bloembergen et al., Opt. Commun. 1, 195 (1969); (3) E.M. Vogel et al., Phys. Chem.
Glasses 32, 231 (1991); (4) D.W. Hall et al., Appl. Phys. Lett. 54, 1293 (1989); (5) B.L. Lawrence et al., Electron. Lett. 30, 447
(1994); (6) G.M. Carter et al., Appl. Phys. Lett, 47, 457 (1985); (7) S. Molyneux, A.K. Kar, B.S. Wherrett, T.L. Axon, and D. Bloor,
Opt. Lett. 18, 2093 (1993); (8) J.E. Erlich et al., J. Mod. Opt. 40, 2151 (1993); (9) R.L. Sutherland, Handbook of Nonlinear Optics,
Chapter 8, Marcel Dekker, Inc., New York, 1996; (10) D.M. Pennington et al., Phys. Rev. A 39, 3003 (1989); (11) H. Euler and B.
Kockel, Naturwiss Enschaften 23, 246 (1935); (12) L.V. Hau et al., Nature 397, 594 (1999); (13) M.A. Kramer, W.R. Tompkin, and
R.W. Boyd, Phys. Rev. A 34, 2026 (1986); (14) R.E. Slusher et al., J. Opt. Soc. Am. B 21, 1146 (2004); (15) M. Dinu et al., Appl.
Phys. Lett. 82, 2954 (2003); (16) N. Rotenberg et al., Phys. Rev. B 75, 155426 (2007); (17) the subtleties involved in determining
the nonlinear coefficients of gold are described in R.W. Boyd et al., Optics Commun. 326, 74 (2014); (18) M.Z. Alam, I. De Leon,
and R.W. Boyd, Science 352, 795 (2016).

4.2 Tensor Nature of the Third-Order Susceptibility

The third-order susceptibility χ
(3)
ijkl is a fourth-rank tensor, and thus is described in terms of

81 separate elements. For crystalline solids with low symmetry, all 81 of these elements are
independent and can be nonzero (Butcher, 1965). However, for materials possessing a higher
degree of spatial symmetry, the number of independent elements is very much reduced; as we
show below, there are only three independent elements for an isotropic material.

Let us see how to determine the tensor nature of the third-order susceptibility for the case
of an isotropic material such as a glass, a liquid, or a vapor. We begin by considering the
general case in which the applied frequencies are arbitrary, and we represent the susceptibility
as χijkl ≡ χ

(3)
ijkl(ω4 = ω1 +ω2 +ω3). Since each of the coordinate axes must be equivalent in an

isotropic material, it is clear that the susceptibility possesses the following symmetry properties:

χ1111 = χ2222 = χ3333, (4.2.1a)

χ1122 = χ1133 = χ2211 = χ2233 = χ3311 = χ3322, (4.2.1b)
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χ1212 = χ1313 = χ2323 = χ2121 = χ3131 = χ3232, (4.2.1c)

χ1221 = χ1331 = χ2112 = χ2332 = χ3113 = χ3223. (4.2.1d)

One can also see that the 21 elements listed are the only nonzero elements of χ(3), because
these are the only elements that possess the property that any cartesian index (1, 2, or 3) that
appears at least once appears an even number of times. An index cannot appear an odd number
of times, because, for example, χ1222 would give the response in the x̂1 direction due to a field
applied in the x̂2 direction. This response must vanish in an isotropic material, because there is
no reason why the response should be in the +x̂1 direction rather than in the −x̂1 direction.

The four types of nonzero elements appearing in the four equations (4.2.1) are not indepen-
dent of one another and, in fact, are related by the equation

χ1111 = χ1122 + χ1212 + χ1221. (4.2.2)

One can deduce this result by requiring that the predicted value of the nonlinear polarization
be the same when calculated in two different coordinate systems that are rotated with respect
to each other by an arbitrary amount. A rotation of 45 degrees about the x̂3 axis is a convenient
choice for deriving this relation. The results given by Eqs. (4.2.1) and (4.2.2) can be used to
express the nonlinear susceptibility in the compact form

χijkl = χ1122δij δkl + χ1212δikδjl + χ1221δilδjk. (4.2.3)

This form shows that the third-order susceptibility has three independent elements for the gen-
eral case in which the field frequencies are arbitrary.

Let us first specialize this result to the case of third-harmonic generation, where the fre-
quency dependence of the susceptibility is taken as χijkl(3ω = ω + ω + ω). As a consequence
of the intrinsic permutation symmetry of the nonlinear susceptibility, the elements of the sus-
ceptibility tensor are related by χ1122 = χ1212 = χ1221 and thus Eq. (4.2.3) becomes

χijkl(3ω = ω + ω + ω) = χ1122(3ω = ω + ω + ω)(δij δkl + δikδjl + δilδjk). (4.2.4)

Hence, there is only one independent element of the susceptibility tensor describing third-
harmonic generation.

We next apply the result given in Eq. (4.2.3) to the nonlinear refractive index, that is, we
consider the choice of frequencies given by χijkl(ω = ω + ω − ω). For this choice of frequen-
cies, the condition of intrinsic permutation symmetry requires that χ1122 be equal to χ1212, and
hence χijkl can be represented by

χijkl(ω = ω + ω − ω) = χ1122(ω = ω + ω − ω)

× (δij δkl + δikδjl) + χ1221(ω = ω + ω − ω)(δilδjk). (4.2.5)
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The nonlinear polarization leading to the nonlinear refractive index is given in terms of the
nonlinear susceptibility by (see also Eq. (1.3.21))

Pi(ω) = 3ε0

∑
jkl

χijkl(ω = ω + ω − ω)Ej (ω)Ek(ω)El(−ω). (4.2.6)

If we introduce Eq. (4.2.5) into this equation, we find that

Pi = 6ε0χ1122Ei(E · E∗) + 3ε0χ1221E
∗
i (E · E). (4.2.7)

This equation can be written entirely in vector form as

P = 6ε0χ1122(E · E∗)E + 3ε0χ1221(E · E)E∗. (4.2.8)

Following the notation of Maker and Terhune (1965) (see also Maker et al., 1964), we introduce
the coefficients

A = 6χ1122 (or A = 3χ1122 + 3χ1212) (4.2.9a)

and

B = 6χ1221, (4.2.9b)

in terms of which the nonlinear polarization of Eq. (4.2.8) can be written as

P = ε0A(E · E∗)E + 1
2ε0B(E · E)E∗. (4.2.10)

We see that the nonlinear polarization consists of two contributions. These contributions have
very different physical characters, since the first contribution has the vector nature of E, whereas
the second contribution has the vector nature of E∗. Thus, for example, for circularly polarized
light, the first contribution produces a nonlinear polarization with the same handedness as E,
whereas the second contribution produces a nonlinear polarization with the opposite hand-
edness. The consequences of this behavior on the propagation of a beam of light through a
nonlinear optical medium are described below.

The origin of the different physical characters of the two contributions to P can be un-
derstood in terms of the energy level diagrams shown in Fig. 4.2.1. Here part (a) illustrates
one-photon-resonant contributions to the nonlinear coupling. We will show in Eq. (4.3.14) that
processes of this sort contribute only to the coefficient A. Part (b) of the figure illustrates two-
photon-resonant processes, which in general contribute to both the coefficients A and B (see
Eqs. (4.3.13) and (4.3.14)). However, under certain circumstances, such as those described
later in connection with Fig. 7.2.9, two-photon-resonant processes contribute only to the coef-
ficient B.
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FIGURE 4.2.1: Diagrams (a) and (b) represent the resonant contributions to the nonlinear coefficients A

and B, respectively.

For some purposes, it is useful to describe the nonlinear polarization not by Eq. (4.2.10) but
rather in terms of an effective linear susceptibility defined by means of the relationship

Pi =
∑
j

ε0χ
(eff)
ij Ej . (4.2.11)

Then, as can be verified by direct substitution, Eqs. (4.2.10) and (4.2.11) lead to identical pre-
dictions for the nonlinear polarization if the effective linear susceptibility is given by

χ
(eff)
ij = ε0A

′(E · E∗)δij + 1
2ε0B

′(EiE
∗
j + E∗

i Ej ), (4.2.12a)

where

A′ = A − 1
2B = 6χ1122 − 3χ1221 (4.2.12b)

and

B ′ = B = 6χ1221. (4.2.12c)

The results given in Eq. (4.2.10) or in Eqs. (4.2.12) show that the nonlinear susceptibility
tensor describing the nonlinear refractive index of an isotropic material possesses only two in-
dependent elements. The relative magnitude of these two coefficients depends on the nature of
the physical process that produces the optical nonlinearity. For some of the physical mecha-
nisms leading to a nonlinear refractive index, these ratios are given by

B/A = 6, B ′/A′ = −3 for molecular orientation, (4.2.13a)

B/A = 1, B ′/A′ = 2 for nonresonant electronic response, (4.2.13b)

B/A = 0, B ′/A′ = 0 for electrostriction. (4.2.13c)

These conclusions will be justified in the discussion that follows; see especially Eq. (4.4.37)
for the case of molecular orientation, Eq. (4.3.14) for nonresonant electronic response of bound
electrons, and Eq. (9.2.15) for electrostriction. Note also that A is equal to B by definition
whenever the Kleinman symmetry condition is valid.
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The trace of the effective susceptibility is given by

Trχij ≡
∑

i

χii = (3A′ + B ′)E · E∗. (4.2.14)

Hence, Trχij vanishes for the molecular orientation mechanism. This result can be understood
from the point of view that molecular orientation does not add any “additional polarizability,”
it simply redistributes the amount that is present among different tensor components. For the
resonant response of an atomic transition, the ratio of B to A depends upon the angular mo-
mentum quantum numbers of the two atomic levels. Formulas for A and B for such a case have
been presented by Saikan and Kiguchi (1982).

4.2.1 Propagation through Isotropic Nonlinear Media

Let us next consider the propagation of a beam of light through a material whose nonlinear
optical properties are described by Eq. (4.2.10). As we show below, only linearly or circularly
polarized light is transmitted through such a medium with its state of polarization unchanged.
When elliptically polarized light propagates through such a medium, the orientation of the po-
larization ellipse rotates as a function of propagation distance as a consequence of the nonlinear
interaction.

Let us consider a beam of arbitrary polarization propagating in the positive z direction. The
electric field vector of such a beam can always be decomposed into a linear combination of left-
and right-hand circular components as

E = E+σ̂+ + E−σ̂−, (4.2.15)

where the circular-polarization unit vectors are illustrated in Fig. 4.2.2 and are defined by

σ̂± = x̂ ± iŷ√
2

. (4.2.16)

By convention, σ̂+ corresponds to left-hand circular and σ̂− to right-hand circular polarization
(for a beam propagating in the positive z direction).

We now introduce the decomposition (4.2.15) into Eq. (4.2.10). We find, using the identities

σ̂ ∗
± = σ̂∓, σ̂± · σ̂± = 0, σ̂± · σ̂∓ = 1,

that the products E∗ · E and E · E become

E∗ · E = (E∗+σ̂ ∗
+ + E∗−σ̂ ∗

−) · (E+σ̂+ + E−σ̂−) = E∗+E+ + E∗−E−
= |E+|2 + |E−|2
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FIGURE 4.2.2: The σ̂+ and σ̂− circular polarizations.

and

E · E = (E+σ̂+ + E−σ̂−) · (E+σ̂+ + E−σ̂−) = E+E− + E−E+ = 2E+E−,

so Eq. (4.2.10) can be written as

PNL = ε0A
(|E+|2 + |E−|2)E + ε0B(E+E−)E∗. (4.2.17)

If we now represent PNL in terms of its circular components as

PNL = P+σ̂+ + P−σ̂−, (4.2.18)

we find that the coefficient P+ is given by

P+ = ε0A
(|E+|2 + |E−|2)E+ + ε0B(E+E−)E∗−

= ε0A
(|E+|2 + |E−|2)E+ + ε0B|E−|2E+

= ε0A|E+|2E+ + ε0(A + B)|E−|2E+ (4.2.19a)

and similarly that

P− = ε0A|E−|2E− + ε0(A + B)|E+|2E−. (4.2.19b)

These results can be summarized as

P± ≡ ε0χ
NL± E±, (4.2.20a)

where we have introduced the effective nonlinear susceptibilities

χNL± = A|E±|2 + (A + B)|E∓|2. (4.2.20b)

The expressions (4.2.15) and (4.2.18) for the field and nonlinear polarization are now intro-
duced into the wave equation,

∇2E(z, t) = ε(1)

c2

∂2E(z, t)

∂t2
+ 1

ε0c2

∂2

∂t2
PNL, (4.2.21)
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where Ẽ(z, t) = E exp(−iωt) + c.c. and P̃(z, t) = P exp(−iωt) + c.c. We next decompose
Eq. (4.2.21) into its σ̂+ and σ̂− components. Since, according to Eq. (4.2.20a), P± is pro-
portional to E±, the two terms on the right-hand side of the resulting equation can be combined
into a single term, so the wave equation for each circular component becomes

∇2Ẽ±(z, t) = ε
(eff)
±
c2

∂2Ẽ±(z, t)

∂t2
, (4.2.22a)

where

ε
(eff)
± = ε(1) + χNL± . (4.2.22b)

This equation possesses solutions of the form of plane waves propagating with the phase ve-
locity c/n±, where n± = [ε(eff)

± ]1/2. Letting n2
0 = ε(1), we find that

n2± = n2
0 + χNL± = n2

0 + [
A|E±|2 + (A + B)|E∓|2]

= n2
0

(
1 + 1

n2
0

[
A|E±|2 + (A + B)|E∓|2]),

and thus, noting that the second term in the last expression is much smaller than the first, that

n± � n0 + 1

2n0

[
A|E±|2 + (A + B)|E∓|2]. (4.2.23)

We see that the left- and right-circular components of the beam propagate with different phase
velocities. The difference in their refractive indices is given by


n ≡ n+ − n− = B

2n0

(|E−|2 − |E+|2). (4.2.24)

Note that this difference depends upon the value of the coefficient B but not that of the co-
efficient A. Since the left- and right-hand circular components propagate with different phase
velocities, the polarization ellipse of the light will rotate as a function of propagation distance
within the medium.∗

In order to determine the angle of rotation, we express the field amplitude as

E(z) = E+σ̂+ + E−σ̂− = A+ein+ωz/cσ̂+ + A−ein−ωz/cσ̂−
= (

A+ei(1/2)
nωz/cσ̂+ + A−e−i(1/2)
nωz/cσ̂−
)
ei(1/2)(n++n−)ωz/c. (4.2.25)

We now introduce the mean propagation constant km = 1
2(n+ + n−)ω/c and the angle

θ = 1
2
n

ω

c
z, (4.2.26a)

∗ Recall that a similar effect occurs in the linear optics of optically active materials.
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in terms of which Eq. (4.2.25) becomes

E(z) = (
A+σ̂+eiθ + A−σ̂−e−iθ

)
eikmz. (4.2.26b)

FIGURE 4.2.3: Polarization ellipses of the incident and transmitted waves.

As illustrated in Fig. 4.2.3, this equation describes a wave whose polarization ellipse is the
same as that of the incident wave but rotated through the angle θ (measured clockwise in the
xy plane, in conformity with the sign convention for rotation angles in optical activity). This
conclusion can be demonstrated by noting that

σ̂±e±iθ = x̂′ ± iŷ′
√

2
, (4.2.27)

where x̂′ and ŷ′ are polarization unit vectors in a new coordinate system—that is,

x′ = x cos θ − y sin θ, (4.2.28a)

y′ = x sin θ + y cos θ. (4.2.28b)

Measurement of the rotation angle θ provides a sensitive method for determining the nonlinear
coefficient B (see also Eqs. (4.2.24) and (4.2.26a)).

As mentioned above, there are two cases in which the polarization ellipse does not rotate.
One case is that of circularly polarized light. In this case only one of the σ̂± components is
present, and we see from Eq. (4.2.23) that the change in refractive index is given by

δncircular = 1

2n0
A|E|2, (4.2.29)

which clearly depends on the coefficient A but not on the coefficient B. The other case in
which there is no rotation is that of linearly polarized light. Since linearly polarized light is a
combination of equal amounts of left- and right-hand circular components (i.e., |E−|2 = |E+|2),
we see directly from Eq. (4.2.24) that the index difference 
n vanishes. If we let E denote the
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total field amplitude of the linearly polarized radiation, so that |E|2 = 2|E+|2 = 2|E−|2, we
find from Eq. (4.2.23) that for linearly polarized light the change in refractive index is given by

δnlinear = 1

2n0

(
A + 1

2B
)|E|2. (4.2.30)

Note that this change depends on the coefficients A = 6χ1122 and B = 6χ1221 as A+ 1
2B, which

according to Eqs. (4.2.2) and (4.2.9) is equal to 3χ1111. We see from Eqs. (4.2.29) and (4.2.30)
that, for the usual case in which A and B have the same sign, linearly polarized light experiences
a larger nonlinear change in refractive index than does circularly polarized light. In general
the relative change in refractive index, δnlinear/δncircular, is equal to 1 + B/2A, which for the
mechanisms described after Eq. (4.2.10) becomes

δnlinear

δncircular
=

⎧⎪⎨
⎪⎩

4 for molecular orientation,
3
2 for nonresonant electronic nonlinearities,

1 for electrostriction.

For the case of two laser beams counterpropagating through a nonlinear material, the theoret-
ical analysis is far more complex than that just presented for the single-beam situation, and a
variety of additional phenomena can occur, including polarization bistability and polarization
instabilities including chaos. These effects have been described theoretically by Gaeta et al.
(1987) and have been observed experimentally by Gauthier et al. (1988, 1990).

4.3 Nonresonant Electronic Nonlinearities

Nonresonant electronic nonlinearities occur as the result of the nonlinear response of bound
electrons to an applied optical field. This nonlinearity usually is not particularly large (χ(3) ∼
10−22 m2/V2 is typical) but is of considerable importance because it is present in all dielectric
materials. Furthermore, recent work has shown that certain organic nonlinear optical mate-
rials (such as polydiacetylene) can have nonresonant third-order susceptibilities as large as
10−17 m2/V2 as a consequence of the response of delocalized π electrons.

Nonresonant electronic nonlinearities are extremely fast, since they involve only virtual
processes. The characteristic response time of this process is the time required for the electron
cloud to become distorted in response to an applied optical field. This response time can be
estimated as the orbital period of the electron in its motion about the nucleus, which according
to the Bohr model of the atom is given by

τ = 2πa0/v,

where a0 = 0.5 × 10−10 m is the Bohr radius of the atom and v � c/137 is a typical electronic
velocity. We hence find that τ � 10−16 s = 100 attosec.
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4.3.1 Classical, Anharmonic Oscillator Model of Electronic Nonlinearities

A simple model of electronic nonlinearities is the classical, anharmonic oscillator model pre-
sented in Section 1.4. According to this model, one assumes that the potential well binding the
electron to the atomic nucleus deviates from the parabolic potential of the usual Lorentz model.
We approximate the actual potential well as

U(r) = 1
2mω2

0|r|2 − 1
4mb|r|4, (4.3.1)

where b is a phenomenological nonlinear constant whose value is of the order of ω2
0/d

2, where
d is a typical atomic dimension. By solving the equation of motion for an electron in such a
potential well, we obtain expression (1.4.52) for the third-order susceptibility. When applied to
the case of the nonlinear refractive index, this expression becomes

χ
(3)
ijkl(ω = ω + ω − ω) = Nbe4[δij δkl + δikδjl + δilδjk]

3ε0m3D(ω)3D(−ω)
, (4.3.2)

where D(ω) = ω2
0 −ω2 −2iωγ . In the notation of Maker and Terhune (Eq. (4.2.10)), this result

implies that

A = B = 2Nbe4

ε0m3D(ω)3D(−ω)
. (4.3.3)

Hence, according to the classical, anharmonic oscillator model of electronic nonlinearities, A is
equal to B for any value of the optical field frequency (whether resonant or nonresonant). For
the case of far-off-resonant excitation (i.e., ω 
 ω0), we can replace D(ω) by ω2

0 in Eq. (4.3.2).
If in addition we set b equal to ω2

0/d
2, we find that

χ(3) � Ne4

ε0m3ω6
0d

2
. (4.3.4)

For the typical values N = 4 × 1022 cm−3, d = 3 × 10−10 m, and ω0 = 7 × 1015 rad/s, we find
that χ(3) � 3 × 10−22 m2/V2.

4.3.2 Quantum-Mechanical Model of Nonresonant Electronic Nonlinearities

Let us now see how to calculate the third-order susceptibility describing the nonlinear refractive
index using the laws of quantum mechanics. Since we are interested primarily in the case of
nonresonant excitation, we make use of the expression for the nonlinear susceptibility in the
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form given by Eq. (3.2.31)—that is,

χ
(3)
kj ih(ωσ ,ωr,ωq,ωp)

= N

ε0�
3
PF

∑
lmn

[
μk

gnμ
j
nmμi

mlμ
h
lg

(ωng − ωσ )(ωmg − ωq − ωp)(ωlg − ωp)

]
, (4.3.5)

where ωσ = ωr + ωq + ωp. We want to apply this expression to the case of the nonlinear

refractive index, with the frequencies arranged as χ
(3)
kj ih (ω,ω,ω,−ω) = χ

(3)
kj ih(ω = ω+ω−ω).

One sees that Eq. (4.3.5) appears to have divergent contributions for this choice of frequencies,
because the factor ωmg − ωq − ωp in the denominator vanishes when the dummy index m is
equal to g and when ωp = −ωq = ±ω. However, in fact this divergence exists in appearance
only (Hanna et al., 1979; Orr and Ward, 1971); one can readily rearrange Eq. (4.3.5) into a form
where no divergence appears. We first rewrite Eq. (4.3.5) as

χ
(3)
kj ih(ωσ ,ωr,ωq,ωp)

= N

ε0�
3
PF

[∑
lmn

′ μk
gnμ

j
nmμi

mlμ
h
lg

(ωng − ωσ )(ωmg − ωq − ωp)(ωlg − ωp)

−
∑
ln

μk
gnμ

j
ngμ

i
glμ

h
lg

(ωng − ωσ )(ωq + ωp)(ωlg − ωp)

]
. (4.3.6)

Here the prime on the first summation indicates that the terms corresponding to m = g are to be
omitted from the summation over m; these terms are displayed explicitly in the second summa-
tion. The second summation, which appears to be divergent for ωq = −ωp, is now rearranged.
We make use of the identity

1

XY
= 1

(X + Y)Y
+ 1

(X + Y)X
, (4.3.7)

with X = ωq + ωp and Y = ωlg − ωp, to express Eq. (4.3.6) as

χ
(3)
kj ih(ωσ ,ωr,ωq,ωp)

= N

ε0�
3
PF

[∑
lmn

′ μk
gnμ

j
nmμi

mlμ
h
lg

(ωng − ωσ )(ωmg − ωq − ωp)(ωlg − ωp)

−
∑
ln

μk
gnμ

j
ngμ

i
glμ

h
lg

(ωng − ωσ )(ωlg + ωq)(ωlg − ωp)

]
(4.3.8)
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in addition to the contribution

PF

∑
ln

μk
gnμ

j
ngμ

i
glμ

h
lg

(ωng − ωσ )(ωlg + ωq)(ωq + ωp)
. (4.3.9)

However, this additional contribution vanishes, because for every term of the form

μk
gnμ

j
ngμ

i
glμ

h
lg

(ωng − ωσ )(ωlg + ωq)(ωq + ωp)
(4.3.10a)

that appears in Eq. (4.3.9), there is another term with the dummy summation indices n and
l interchanged, with the pair (−ωσ , k) interchanged with (ωq, i), and with the pair (ωp,h)
interchanged with (ωr, j ); this term is of the form

μi
glμ

h
lgμ

k
gnμ

j
ng

(ωlg + ωq)(ωng − ωσ )(ωr − ωσ )
. (4.3.10b)

Since ωσ = ωp + ωq + ωr , it follows that (ωq + ωp) = −(ωr − ωσ ), and hence the expres-
sion (4.3.10a) and (4.3.10b) are equal in magnitude but opposite in sign. The expression (4.3.8)
for the nonlinear susceptibility is thus equivalent to Eq. (4.3.5) but is more useful for our present
purpose because no apparent divergences are present.

We now specialize Eq. (4.3.8) to the case of the nonlinear refractive index with the choice of
frequencies given by χ

(3)
kj ih(ω,ω,ω,−ω). When we expand the permutation operator PF , we

find that each displayed term in Eq. (4.3.8) actually represents 24 terms. The resonance nature
of each such term can be analyzed by means of diagrams of the sort shown in Fig. 3.2.3.∗
Rather than considering all 48 terms of the expanded version of Eq. (4.3.8), let us consider only
the nearly resonant terms, which would be expected to make the largest contributions to χ(3).
One finds, after detailed analysis of Eq. (4.3.8), that the resonant contribution to the nonlinear
susceptibility is given by

χ
(3)
kj ih(ω,ω,ω,−ω) = χ

(3)
kj ih(ω = ω + ω − ω) = N

6 ε0�
3

×
(∑

lmn

′ μk
gnμ

h
nmμi

mlμ
j
lg + μk

gnμ
h
nmμ

j
mlμ

i
lg + μh

gnμ
k
nmμi

mlμ
j
lg + μh

gnμ
k
nmμ

j
mlμ

i
lg

(ωng − ω)(ωmg − 2ω)(ωlg − ω)

−
∑
ln

μk
gnμ

j
ngμ

h
glμ

i
lg + μk

gnμ
i
ngμ

h
glμ

j
lg + μh

gnμ
i
ngμ

k
glμ

j
lg + μh

gnμ
j
ngμ

k
glμ

i
lg

(ωng − ω)(ωlg − ω)(ωlg − ω)

)
.

(4.3.11)

∗ Note, however, that Fig. 3.2.3 as drawn presupposes that the three input frequencies are all positive, whereas for
the case of the nonlinear refractive index two of the input frequencies are positive and one is negative.
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FIGURE 4.3.1: Resonance nature of the first (a) and second (b) summations of Eq. (4.3.11).

Here the first summation represents two-photon-resonant processes and the second summation
represents one-photon-resonant processes, in the sense illustrated in Fig. 4.3.1.

We can use Eq. (4.3.11) to obtain explicit expressions for the resonant contributions to the
nonvanishing elements of the nonlinear susceptibility tensor for an isotropic medium. We find,
for example, that χ1111(ω = ω + ω − ω) is given by

χ1111 = 2N

3ε0�
3

∑
lmn

′ μx
gnμ

x
nmμx

mlμ
x
lg

(ωng − ω)(ωmg − 2ω)(ωlg − ω)

− 2N

3ε0�
3

∑
ln

μx
gnμ

x
ngμ

x
glμ

x
lg

(ωng − ω)(ωlg − ω)(ωlg − ω)
. (4.3.12)

Note that both one- and two-photon-resonant terms contribute to this expression. When ω is
smaller than any resonant frequency of the material system, the two-photon contribution (the
first term) tends to be positive. This contribution is positive because, in the presence of an ap-
plied optical field, there is some nonzero probability that the atom will reside in an excited state
(state l or n as Fig. 4.3.1(a) is drawn). Since the (linear) polarizability of an atom in an excited
state tends to be larger than that of an atom in the ground state, the effective polarizability of
an atom is increased by the presence of an intense optical field; consequently this contribu-
tion to χ(3) is positive. On the other hand, the one-photon contribution to χ1111 (the second
term of Eq. (4.3.12)) is always negative when ω is smaller than any resonance frequency of the
material system, because the product of matrix elements that appears in the numerator of this
term is positive definite. We can understand this result from the point of view that the origin of
one-photon-resonant contributions to the nonlinear susceptibility is saturation of the atomic re-
sponse, which in the present case corresponds to a decrease of the positive linear susceptibility.
We can also understand this result as a consequence of the ac Stark effect, which (as we shall
see in Section 6.5) leads to an intensity-dependent increase in the separation of the lower and
upper levels and consequently to a diminished optical response, as illustrated in Fig. 4.3.2.
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FIGURE 4.3.2: For ω < ωlg the ac Stark effect leads to an increase in the energy separation of the ground
and excited states.

In a similar fashion, we find that the resonant contribution to χ1221 (or to 1
6B in the notation

of Maker and Terhune) is given by

χ1221 = 2

3

N

ε0�
3

∑
lmn

′ μx
gnμ

x
nmμ

y
mlμ

y
lg

(ωng − ω)(ωmg − 2ω)(ωlg − ω)
. (4.3.13)

The one-photon-resonant terms do not contribute to χ1221, since these terms involve the sum-
mation of the product of two matrix elements of the sort μx

glμ
y
lg, and this contribution always

vanishes.∗
We also find that the resonant contribution to χ1122 (or to 1

6A) is given by

χ1122 = N

3ε0�
3

∑
lmn

′ (μx
gnμ

y
nmμ

y
mlμ

x
lg + μx

gnμ
y
nmμx

mlμ
y
lg)

(ωng − ω)(ωmg − 2ω)(ωlg − ω)

− N

3ε0�
3

∑
ln

μx
gnμ

x
ngμ

y
glμ

y
lg

(ωng − ω)(ωmg − ω)(ωlg − ω)
. (4.3.14)

4.3.3 χ(3) in the Low-Frequency Limit

In practice, one is often interested in determining the value of the third-order susceptibility
under highly nonresonant conditions—that is, for the case in which the optical frequency is
very much smaller than any resonance frequency of the atomic system. An example would be
the nonlinear response of an insulating solid to visible radiation. In such cases, each of the terms
in the expansion of the permutation operator in Eq. (4.3.8) makes a comparable contribution
to the nonlinear susceptibility, and no simplification such as those leading to Eqs. (4.3.11)
through (4.3.14) is possible. It is an experimental fact that in the low-frequency limit both χ1122

and χ1221 (and consequently χ1111 = 2χ1122 +χ1221) are positive in sign for the vast majority of

∗ To see that this contribution vanishes, choose x to be the quantization axis. Then if μx
gl

is nonzero, μ
y
gl

must
vanish, and vice versa.
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TABLE 4.3.1: Nonlinear optical coefficient for materials showing electronic nonlinearitiesa.

Material n0 χ1111 (m2/V2) n2 (m2/W)

Diamond 2.42 21×10−22 10×10−20

Yttrium aluminum garnet 1.83 8.4×10−22 8.4×10−20

Sapphire 1.8 4.2×10−22 3.7×10−20

Borosilicate crown glass 1.5 3.5×10−22 4.4×10−20

Fused silica 1.47 2.8×10−22 3.67×10−20

CaF2 1.43 2.24×10−22 3.1×10−20

LiF 1.4 1.4×10−22 2.0×10−20

a Values are obtained from optical frequency mixing experiments and hence do not include electrostrictive contributions, since
electrostriction is a slow process that cannot respond at optical frequencies. The value of n̄2 is calculated as n̄2 = 3πχ1111/n0.
(Adapted from Hellwarth (1977), Tables 7.1 and 9.1.)

optical materials. Also, the Kleinman symmetry condition becomes relevant under conditions
of low-frequency excitation, which implies that χ1122 is equal to χ1221, or that B is equal to A

in the notation of Maker and Terhune.
We can use the results of the quantum-mechanical model to make an order-of-magnitude

prediction of the value of the nonresonant third-order susceptibility. If we assume that the opti-
cal frequency ω is much smaller than all atomic resonance frequencies, we find from Eq. (4.3.5)
that the nonresonant value of the nonlinear optical susceptibility is given by

χ(3) � 8Nμ4

ε0�
3ω3

0

, (4.3.15)

where μ is a typical value of the dipole matrix element and ω0 is a typical value of the
atomic resonance frequency. It should be noted that while the predictions of the classical model
(Eq. (4.3.4)) and the quantum-mechanical model (Eq. (4.3.15)) show different functional de-
pendences on the displayed variables, the two expressions are in fact equal if we identify d with
the Bohr radius a0 = 4πε0�

2/me2, μ with the atomic unit of electric dipole moment −ea0, and
ω0 with the Rydberg constant in angular frequency units, ω0 = me4/32π2ε2

0�
3. Hence, the

quantum-mechanical model also predicts that the third-order susceptibility is of the order of
magnitude of 3 × 10−22 m2/V2. The measured values of χ(3) and n2 for several materials that
display nonresonant electronic nonlinearities are given in Table 4.3.1.

4.4 Nonlinearities Due to Molecular Orientation

Liquids that are composed of anisotropic molecules (i.e., molecules having an anisotropic po-
larizability tensor) typically possess a large value of n2. The origin of this nonlinearity is the
tendency of molecules to become aligned in the electric field of an applied optical wave. The
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FIGURE 4.4.1: (a) A prolate spheroidal molecule, such as carbon disulfide. (b) The dipole moment p
induced by an electric field E.

optical wave then experiences a modified value of the refractive index because the average
polarizability per molecule has been changed by the molecular alignment.

Consider, for example, the case of carbon disulfide (CS2), which is illustrated in part (a)
of Fig. 4.4.1. Carbon disulfide is a cigar-shaped molecule (i.e., a prolate spheroid), and conse-
quently the polarizability α3 experienced by an optical field that is parallel to the symmetry axis
is larger than the polarizability α1 experienced by a field that is perpendicular to its symmetry
axis—that is,

α3 > α1. (4.4.1)

Consider now what happens when such a molecule is subjected to a static electric field, as
shown in part (b) of the figure. Since α3 is larger than α1, the component of the induced dipole
moment along the molecular axis will be disproportionately long. The induced dipole moment p
thus will not be parallel to E but will be offset from it in the direction of the symmetry axis.
A torque

τ = p × E (4.4.2)

will thus be exerted on the molecule. This torque is directed in such a manner as to twist the
molecule into alignment with the applied electric field.

The tendency of the molecule to become aligned in the applied electric field is counteracted
by thermal agitation, which tends to randomize the molecular orientation. The mean degree
of molecular orientation is quantified through use of the Boltzmann factor. To determine the
Boltzmann factor, we first calculate the potential energy of the molecule in the applied electric
field. If the applied field is changed by an amount dE, the orientational potential energy is
changed by the amount

dU = −p · dE = −p3 dE3 − p1 dE1, (4.4.3)
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where we have decomposed E into its components along the molecular axis (E3) and perpen-
dicular to the molecular axis (E1). Since

p3 = α3E3 (4.4.4)

and

p1 = α1E1, (4.4.5)

we find that

dU = −α3E3 dE3 − α1E1 dE1, (4.4.6)

which can be integrated to give

U = −1
2

(
α3E

2
3 + α1E

2
1

)
. (4.4.7)

If we now introduce the angle θ between E and the molecular axis (see Fig. 4.4.1(b)), we find
that the orientational potential energy is given by

U = −1
2

[
α3E

2 cos2 θ + α1E
2 sin2 θ

]
= −1

2α1E
2 − 1

2(α3 − α1)E
2 cos2 θ. (4.4.8)

Since α3 − α1 has been assumed to be positive, this result shows that the potential energy is
lower when the molecular axis is parallel to E than when it is perpendicular to E, as illustrated
in Fig. 4.4.2.

FIGURE 4.4.2: Alignment energy of a molecule.

Our discussion thus far has assumed that the applied field is static. We now allow the field to
vary in time at an optical frequency. For simplicity we assume that the light is linearly polarized;
the general case of elliptical polarization is treated at the end of the present section. We thus
replace E in Eq. (4.4.9) by the time-varying scalar quantity Ẽ(t). The square of Ẽ will contain
frequency components near zero frequency and components at approximately twice the optical
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frequency ω. Since orientational relaxation times for molecules are typically of the order of
a few picoseconds, the molecular orientation can respond to the frequency components near

zero frequency but not to those near 2ω. We can thus formally replace E2 in Eq. (4.4.9) by Ẽ2,
where the bar denotes a time average over many cycles of the optical field.

We now calculate the intensity-dependent refractive index for such a medium. For simplic-
ity, we first ignore local-field corrections, in which case the refractive index is given by

n2 = 1 + χ = 1 + N〈α〉, (4.4.9)

where N is the number density of molecules and where 〈α〉 denotes the expectation value of the
molecular polarizability experienced by the incident radiation. To obtain an expression for 〈α〉,
we note that the mean orientational potential energy is given by 〈U〉 = −1

2 |E|2〈α〉, which by
comparison with the average of Eq. (4.4.8) shows that

〈α〉 = α3
〈
cos2 θ

〉 + α1
〈
sin2 θ

〉 = α1 + (α3 − α1)
〈
cos2 θ

〉
. (4.4.10)

Here 〈cos2 θ〉 denotes the expectation value of cos2 θ in thermal equilibrium and is given in
terms of the Boltzmann distribution as

〈
cos2 θ

〉 =
∫

d� cos2 θ exp[−U(θ)/kT ]∫
d� exp[−U(θ)/kT ] , (4.4.11)

where
∫

d� denotes an integration over all solid angles. For convenience, we introduce the
intensity parameter

J = 1
2(α3 − α1)Ẽ2/kT , (4.4.12)

and let d� = 2π sin θdθ . We then find that 〈cos2 θ〉 is given by

〈
cos2 θ

〉 =
∫ π

0 cos2 θ exp(J cos2 θ) sin θ dθ∫ π

0 exp(J cos2 θ) sin θ dθ
. (4.4.13)

Eqs. (4.4.9) through (4.4.13) can be used to determine the refractive index experienced by fields

of arbitrary intensity Ẽ2.
Let us first calculate the refractive index experienced by a weak optical field, by taking the

limit J → 0. For this case we find that the average of cos2 θ is given by

〈
cos2 θ

〉
0 =

∫ π

0 cos2 θ sin θ dθ∫ π

0 sin θ dθ
= 1

3 (4.4.14)

and that according to Eq. (4.4.10), the mean polarizability is given by

〈α〉0 = 1
3α3 + 2

3α1. (4.4.15)
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Using Eq. (4.4.9), we find that the refractive index is given by

n2
0 = 1 + N

(1
3α3 + 2

3α1
)
. (4.4.16)

Note that this result makes good physical sense: in the absence of processes that tend to align
the molecules, the mean polarizability is equal to one-third of that associated with the direc-
tion of the symmetry axis of the molecule plus two-thirds of that associated with directions
perpendicular to this axis.

For the general case in which an intense optical field is applied, we find from Eqs. (4.4.9)
and (4.4.10) that the refractive index is given by

n2 = 1 + N
[
α1 + (α3 − α1)

〈
cos2 θ

〉]
, (4.4.17)

and thus by comparison with Eq. (4.4.16) that the square of the refractive index changes by the
amount

n2 − n2
0 = N

[1
3α1 + (α3 − α1)

〈
cos2 θ

〉 − 1
3α3

]
= N(α3 − α1)

(〈
cos2 θ

〉 − 1
3

)
. (4.4.18)

Since n2 − n2
0 is usually very much smaller than n2

0, we can express the left-hand side of this
equation as

n2 − n2
0 = (n − n0)(n + n0) � 2n0(n − n0)

and thus find that the refractive index can be expressed as

n = n0 + δn, (4.4.19)

where the nonlinear change in refractive index is given by

δn ≡ n − n0 = N

2n0
(α3 − α1)

(〈
cos2 θ

〉 − 1
3

)
. (4.4.20)

The quantity 〈cos2 θ〉, given by Eq. (4.4.13), can be calculated in terms of a tabulated function
(the Dawson integral). Fig. 4.4.3 shows a plot of 〈cos2 θ〉 − 1

3 as a function of the intensity

parameter J = 1
2(α3 − α1)Ẽ2/kT .

In order to obtain an explicit formula for the change in refractive index, we expand the
exponentials appearing in Eq. (4.4.13) and integrate the resulting expression term by term. We
find that

〈
cos2 θ

〉 = 1

3
+ 4J

45
+ 8J 2

945
+ · · · . (4.4.21)
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FIGURE 4.4.3: Variation of the quantity (〈cos2 θ〉 − 1
3 ), which is proportional to the nonlinear change

in refractive index δn, with the intensity parameter J . Note that for J � 5, δn increases nearly linearly
with J .

Dropping all terms but the first two, we find from (4.4.20) that the change in the refractive index
due to the nonlinear interaction is given by

δn = N

2n0
(α3 − α1)

4J

45
= N

45n0
(α3 − α1)

2 Ẽ2

kT
. (4.4.22)

We can express this result as

δn = n̄2Ẽ2, (4.4.23)

where the second-order nonlinear refractive index is given by

n̄2 = N

45n0

(α3 − α1)
2

kT
. (4.4.24a)

Equivalently, we find through use of Eq. (4.1.18) that

n2 = N

45n0n
′
0ε0c

(α3 − α1)
2

kT
, (4.4.24b)

using the convention that n = n0 + n2I and where n′
0 is the real part of n0. Note that n2 is

positive both for the case α3 > α1 (the case that we have been considering explicitly) and for
the opposite case where α3 < α1. The reason for this behavior is that the torque experienced by
the molecule is always directed in a manner that tends to align the molecule so that the light
sees a larger value of the polarizability.
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A more accurate prediction of the nonlinear refractive index is obtained by including the
effects of local-field corrections. We begin with the Lorentz–Lorenz law (see also Eq. (3.9.8a)),

n2 − 1

n2 + 2
= 1

3
N〈α〉, (4.4.25)

instead of the approximate relationship (4.4.9). By repeating the derivation leading to
Eq. (4.4.24a) with Eq. (4.4.9) replaced by Eq. (4.4.25) and with the time average of Ẽ2 re-
placed by that of the Lorentz local field (see the discussion of Section 3.9), we find that the
second-order nonlinear refractive index is given by

n̄2 = N

45n0n
′
0ε0c

(
n2

0 + 2

3

)4
(α3 − α1)

2

kT
. (4.4.26)

Note that this result is consistent with the general prescription given in Section 3.9, which
states that local-field effects can be included by multiplying the results obtained in the absence
of local field corrections (that is, Eq. (4.4.24b)) by the local-field correction factor L(3) = [(n2

0 +
2)/3]4 of Eq. (3.9.25).

Finally, we quote some numerical values relevant to the material carbon disulfide. The
maximum possible value of δn is 0.58 and would correspond to a complete alignment of the
molecules. The value J = 1 corresponds to a field strength of E � 3 × 109 V/m. Through use
of Eqs. (4.4.12) and (4.4.24b) and the value n0 = 1.63, we find that n2 = 3 × 10−22 m2/W.

4.4.1 Tensor Properties of χ(3) for the Molecular Orientation Effect

Let us now consider the nonlinear response of a collection of anisotropic molecules to light of
arbitrary polarization. Close et al. (1966) have shown that the mean polarizability in thermal
equilibrium for a molecule whose three principal polarizabilities a, b, and c are distinct can be
represented as

〈αij 〉 = αδij + γij , (4.4.27)

where the linear contribution to the mean polarizability is given by

α = 1
3(a + b + c), (4.4.28)

and where the lowest-order nonlinear correction term is given by

γij = C
∑
kl

(3δikδjl − δij δkl)Ẽ
loc
k (t)Ẽloc

l (t). (4.4.29)
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Here the constant C is given by

C = (a − b)2 + (b − c)2 + (a − c)2

90kT
, (4.4.30)

and Ẽloc denotes the Lorentz local field. In the appendix to this section, we derive the result
given by Eqs. (4.4.27) through (4.4.30) for the special case of an axially symmetric molecule;
the derivation for the general case is left as an exercise to the reader. Next, we use these results to
determine the form of the third-order susceptibility tensor. We first ignore local-field corrections
and replace Ẽloc

k (t) by the microscopic electric field Ẽk(t), which we represent as

Ẽk(t) = Eke
−iωt + c.c. (4.4.31)

The electric-field-dependent factor appearing in Eq. (4.4.29) thus becomes

Ẽloc
k (t)Ẽloc

l (t) = EkE
∗
l + E∗

kEl. (4.4.32)

Since we are ignoring local-field corrections, we can assume that the polarization is given by

Pi = ε0

∑
j

N〈αij 〉Ej (4.4.33)

and thus that the third-order contribution to the polarization is given by

P
(3)
i = ε0N

∑
j

γijEj . (4.4.34)

By introducing the form for γij given by Eqs. (4.4.29) and (4.4.32) into this expression, we find
that

P
(3)
i = ε0NC

∑
jkl

(3δikδjl − δij δkl)(EkE
∗
l + E∗

kEl)Ej ,

which can be written entirely in vector form as

P(3) = ε0NC
[
3(E · E∗)E + 3(E · E)E∗ − (E · E∗)E − (E · E∗)E

]
= ε0NC

[
(E · E∗)E + 3(E · E)E∗]. (4.4.35)

This result can be rewritten using the notation of Maker and Terhune (see also Eq. (4.2.10)) as

P(3) = ε0A(E · E∗)E + 1
2ε0B(E · E)E∗, (4.4.36)

where the coefficients A and B are given by B = 6A = 6NC, which through use of the expres-
sion (4.4.30) for C becomes

B = 6A = N

[
(a − b)2 + (b − c)2 + (a − c)2

15kT

]
. (4.4.37)
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This result shows that for the molecular orientation effect the ratio B/A is equal to 6, a result
quoted earlier without proof (in (4.2.13a)). As in Eq. (4.4.26), local-field corrections can be
included in the present formalism by replacing Eq. (4.4.37) by

B = 6A =
(

n2
0 + 2

3

)4

N

[
(a − b)2 + (b − c)2 + (a − c)2

15kT

]
. (4.4.38)

4.5 Thermal Nonlinear Optical Effects

Thermal processes can lead to large (and often unwanted) nonlinear optical effects. The origin
of thermal nonlinear optical effects is that some fraction of the incident laser power is absorbed
in passing through an optical material. The temperature of the illuminated portion of the ma-
terial consequently increases, which leads to a change in the refractive index of the material.
For gases, the refractive index invariably decreases with increasing temperature (at constant
pressure), but for condensed matter the refractive index can either increase or decrease with
changes in temperature, depending on details of the internal structure of the material. The time
scale for changes in the temperature of the material can be quite long (of the order of seconds),
and consequently thermal effects often lead to strongly time-dependent nonlinear optical phe-
nomena.

Thermal effects can be described mathematically by assuming that the refractive index ñ

varies with temperature according to∗

ñ = n0 +
(

dn

dT

)
T̃1, (4.5.1)

where the quantity (dn/dT ) describes the temperature dependence of the refractive index of a
given material and where T̃1 designates the laser-induced change in temperature. We assume
that T̃1 obeys the heat-transport equation

(ρ0C)
∂T̃1

∂t
− κ∇2T̃1 = αĨ (r). (4.5.2)

Here (ρ0C) denotes the heat capacity per unit volume, κ denotes the thermal conductivity, and
α denotes the linear absorption coefficient of the material. We express the heat capacity in the
form (ρ0C) because most handbooks tabulate the material density ρ0 and the heat capacity per
unit mass C rather than their product (ρ0C), which is the quantity of direct relevance in the
present context. Representative values of dn/dT , (ρ0C), and κ are shown in Table 4.5.1.

Eq. (4.5.2) can be solved as a boundary value problem for any specific physical circum-
stance, and hence the refractive index at any point in space can be found from Eq. (4.5.1). Note

∗ As elsewhere in this text, a tilde is used to designate an explicitly time-dependent quantity.
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TABLE 4.5.1: Thermal properties of various optical materials.

Material (ρ0C) (J/cm3)a κ (W/m K) dn/dT (K−1)b

Diamond 1.76 660

Ethanol 1.91 0.168

Fused silica 1.67 1.4 1.2×10−5

Sodium chloride 1.95 6.4 −3.6×10−5

Water (liquid) 4.2 0.56

Airc 1.2 × 10−3 26 × 10−3 −1.0×10−6

a (ρ0C) is the heat capacity per unit volume and κ is the thermal conductivity. More extensive listings of these quantities can be
found in the CRC Handbook of Chemistry and Physics, Section D, and in the American Institute of Physics Handbook, Section 4.
b dn/dT is the temperature coefficient of the refractive index. It can be either positive or negative, and for condensed matter
typically lies in the range ±3 × 10−5 K−1. See for instance the American Institute of Physics Handbook, Section 6b.
c C is measured at constant pressure. Values are quoted at STP. Under other conditions, the values of these quantities can be found
by noting that to good approximation (ρ0C) is proportional to the density, κ is independent of the density, and that for any ideal
gas dn/dT = −(n − 1)/T .

FIGURE 4.5.1: Geometry for the description of thermal nonlinear optical effects.

that thermal nonlinear optical effects are nonlocal, because the change in refractive index at
some given point will in general depend on the laser intensity at other nearby points. For our
present purposes, let us make some simple numerical estimates of the magnitude of the thermal
contribution to the change in refractive index for the situation shown in Fig. 4.5.1. We assume
that a circular laser beam of intensity I0 and radius R (and consequently power P = πR2I0)
falls onto a slab of optical material of thickness L and absorption coefficient α.

Let us first estimate the response time τ associated with the change in temperature for
this situation. We take τ to be some measure of the time taken for the temperature distribu-
tion to reach its new steady state after the laser field is suddenly switched on or is switched
off. For definiteness we assume the latter situation. We then estimate τ by approximating
∂T̃1/∂t in Eq. (4.5.2) by T1/τ and by approximating ∇2T̃1 as T1/R

2. Eq. (4.5.2) then becomes
(ρ0C)T1/τ ≈ κT1/R

2, from which it follows that

τ ≈ (ρ0C)R2

κ
. (4.5.3)

We can estimate numerically the response time τ for condensed matter by adopting the typical
values (ρ0C) = 106 J/m3 K, κ = 1 W/m K, and R = 1 mm, and thus find that τ ≈ 1 s. Even for
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a tightly collimated beam with R = 10 µm, we find that τ ≈ 100 µs. These response times are
much longer than the pulse duration T produced by most pulsed lasers. One thus reaches the
conclusion that, in the consideration of thermal effects, the power (or alternatively the intensity)
is the relevant quantity for continuous-wave laser beams, but that the pulse energy Q = PT (or
alternatively the fluence, the energy per unit cross-sectional area) is the relevant quantity in the
consideration of pulsed lasers.

4.5.1 Thermal Nonlinearities with Continuous-Wave Laser Beams

We have just seen that the analysis of thermal effects in nonlinear optics is different for contin-
uous wave than for pulsed radiation. Let us consider first the case of continuous-wave radiation.
Under steady-state conditions the equation of heat transport then reduces to

−κ∇2T̃1 = αĨ (r). (4.5.4)

This equation can be solved explicitly for any assumed laser profile Ĩ (r). For our present
purposes it suffices to make an order-of-magnitude estimate of the maximum temperature
rise T

(max)
1 at the center of the laser beam. To do so, we replace ∇2T̃1 by −T

(max)
1 /R2, and

thereby find that

T
(max)
1 = αI (max)R2

κ
, (4.5.5)

where I (max) is the laser intensity at the center of the laser beam. Then from Eq. (4.5.1) we
estimate the maximum change in refractive index as


n =
(

dn

dT

)
αI (max)R2

κ
. (4.5.6)

We can express this change in terms of an effective nonlinear refractive index coefficient n
(th)
2

defined through 
n = n
(th)
2 I (max) to obtain

n
(th)
2 =

(
dn

dT

)
αR2

κ
. (4.5.7)

Note that this quantity is geometry-dependent (through the R2 factor) and hence is not an
intrinsic property of an optical material. Nonetheless, it provides a useful way of quantify-
ing the magnitude of thermal nonlinear optical effects. If we estimate its size through use of
the values (dn/dT ) = 10−5 K−1, α = 1 cm−1, R = 1 mm, and κ = 1 W/m K, we find that
n

(th)
2 = 10−5 cm2/W. By way of comparison, recall that for fused silica n2 = 3×10−16 cm2/W.

Even for a much smaller beam size (R = 10 µm) and a much smaller absorption coeffi-
cient (α = 0.01 cm−1), we still obtain a relatively large thermal nonlinear coefficient of
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n
(th)
2 = 10−11 cm2/W. The conclusion to be drawn from these numbers is clear: thermal ef-

fects are usually the dominant nonlinear optical mechanism for continuous-wave laser beams.
Analyses of thermal effects in nonlinear optics have been presented by Bespalov et al. (1989),
Hoffman (1986), Martin and Hellwarth (1979), and Tochio et al. (1981). Recent experimental
investigations of thermal nonlinear optical effects in gases have been reported by Bentley et al.
(2000).

4.5.2 Thermal Nonlinearities with Pulsed Laser Beams

As mentioned earlier, for most pulsed lasers the induced change in refractive index is pro-
portional to the pulse energy Q = ∫

P̃ (t) dt rather than to the instantaneous power P̃ (t) (or
alternatively it is proportional to the pulse fluence F = ∫

Ĩ (t) dt rather than to the pulse inten-
sity Ĩ (t)). For this reason, it is not possible to describe the change in refractive index in terms
of a quantity such as n

(th)
2 . Rather, 
ñ increases (or decreases) monotonically during the time

extent of the laser pulse. Nonetheless one can develop simple criteria for determining the condi-
tions under which thermal nonlinear optical effects are important. In particular, let us consider
the conditions under which the thermal change in refractive index


n(th) =
(

dn

dT

)
T

(max)
1 (4.5.8)

will be greater than or equal to the change resulting from the electronic response


n(el) = n
(el)
2 I. (4.5.9)

We estimate the maximum change in temperature T
(max)

1 induced by the laser beam as follows:
For a short laser pulse (pulse duration tp much shorter than the thermal response time τ of
Eq. (4.5.3)), the heat transport equation (4.5.2) reduces to

(ρ0C)
∂T̃1

∂t
= αĨ (r); (4.5.10)

we have dropped the term −κ∇2T̃1 because in a time tp 
 τ at most a negligible fraction
of the absorbed energy can diffuse out of the interaction region. By approximating ∂T̃1/∂t as
T

(max)
1 /tp, we find that

T
(max)
1 = αI (max)tp

(ρ0C)
. (4.5.11)

By combining Eqs. (4.5.8) through (4.5.11), we find that the thermal contribution to the change
in refractive index will exceed the electronic contribution if the laser pulse duration satisfies the
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inequality

tp ≥ n
(el)
2 (ρ0C)

(dn/dT )α
. (4.5.12)

If we evaluate this expression assuming the typical values n
(el)
2 = 3 × 10−16 cm2/W, (ρ0C) =

1 × 106 J/m3 K, (dn/dT ) = 1 × 10−5 K−1, α = 1 cm−1, we find that the condition for the
importance of thermal effects becomes

tp ≥ 30 psec. (4.5.13)

We thus see that thermal effects are likely to make a contribution to the nonlinear optical re-
sponse for all but the shortest (tp 
 30 psec) laser pulses.

4.6 Semiconductor Nonlinearities

Semiconductor materials play an important role in nonlinear optics both because they pro-
duce large nonlinear optical responses and because these materials lend themselves to the
construction of integrated devices in which electronic, semiconductor laser, and nonlinear op-
tical components are all fabricated on a single semiconductor substrate.

A key feature of semiconductor materials is that their allowed electronic energy states take
the form of broad bands separated by forbidden regions. The filled or nearly filled bands are
known as valence bands and the empty or partially empty bands are known as conduction bands.
The energy separation between the highest valence band and the lowest conduction band is
known as the band-gap energy Eg . These concepts are illustrated in Fig. 4.6.1(a). A crucial dis-
tinction associated with the nonlinear optical properties of a semiconductor material is whether
the photon energy �ω of the laser field is greater than or smaller than the band-gap energy. For
�ω > Eg , as illustrated in part (b) of the figure, the nonlinear response results from the transfer
of electrons to the conduction band, leading to a modification of the optical properties of the
material. For the opposite case �ω < Eg the nonlinear response is essentially instantaneous
and occurs as the result of parametric processes involving virtual levels. We treat these two
situations separately.

4.6.1 Nonlinearities Resulting from Band-to-Band Transitions

For �ω > Eg , the nonlinear response occurs as the result of band-to-band transitions. For all
but the shortest laser pulses, the nonlinear response can be described in terms of the conduction
band population Nc, which can be taken to obey a rate equation of the form

dNc

dt
= αI

�ω
− (Nc − N

(0)
c )

τR

, (4.6.1)
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FIGURE 4.6.1: (a) The valence band (VB) and conduction band (CB) of a semiconductor are separated
by energy Eg . For �ω > Eg (b), the nonlinear response results from the transfer of electrons to the
conductions band, whereas for �ω < Eg (c), the nonlinear response involves virtual transitions.

where α is the absorption coefficient of the material at the laser frequency, N
(0)
c is the conduc-

tion band electron population in thermal equilibrium, and τR is the electron–hole recombination
time. In steady state this equation possesses the solution

Nc = N(0)
c + αIτR

�ω
. (4.6.2)

However, for the common situation in which the laser pulse duration is shorter than the material
response time τR, the conduction-band electron density increases monotonically during the
laser pulse.

The change in electron concentration described by Eq. (4.6.1) leads to a change in the optical
properties by means of several different mechanisms, which we now describe.

Free-Electron Response

To first approximation, electrons in the conduction band can be considered to respond freely to
an applied optical field. The free-electron contribution to the dielectric constant is well known
(see, for example, Eq. (13.7.3)) and has the form

ε(ω) = εb − ω2
p

ω(ω + i/τ )
, (4.6.3)

where εb is the contribution to the dielectric constant from bound changes, ω2
p is the square

of the plasma frequency and is given by ω2
p = Nce

2/ε0m, and τ is an optical response time
that in general is not equal to τR and is typically much shorter than it. Since Nc increases with
laser intensity, ε(ω) is seen to decrease with laser intensity. In the steady-state limit, we can
derive an approximate expression (see Problem 11) for the intensity-dependent refractive index
as n = n0 + n2I , where

n2
0 = εb − Nc(0)e2

ε0mω(ω + i/τ )
(4.6.4)
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and

n2 = − e2ατR

2εbn0m�ω3
. (4.6.5)

Note that n2 is proportional to ω−3. One thus expects this mechanism to become dominant at
long wavelengths. If we evaluate this expression using the characteristic values m = 0.1 me

(note that m in Eq. (4.6.5) is the effective mass of the conduction-band electron), n0 = 3.5,
α = 104 cm−1, �ω = 0.75 eV, τr = 10 nsec, we find that n2 = 3 × 10−10 m2/W, a reasonably
large value.

Modification of Optical Properties by Plasma Screening Effects

A direct consequence of the presence of electrons in the semiconductor conduction band is
that the material becomes weakly conducting. As a result, charges can flow to shield any unbal-
anced free charges, and the Coulomb interaction between charged particles becomes effectively
weakened. In the classical limit in which the electrons obey a Maxwell–Boltzmann distribution,
the screened potential energy between two point particles of charge e becomes

V (r) = e2

4πεε0r
e−κr , (4.6.6)

where ε is the (real) dielectric constant of the semiconductor material and where

κ =
√

Nce2

εε0kT
(4.6.7)

is the Debye–Hückel screening wavenumber.
Let us pause here to briefly sketch the derivation of expression (4.6.6) for the screened

Coulomb potential. We note that the electrostatic potential �(r) and the total charge density
ρ(r) must be related by Poisson’s equation

∇2�(r) = −1

εε0
ρ(r). (4.6.8)

We model the semiconductor as an electron plasma, that is, we assume that the electrons are
free to move within the material, whereas the positive ions are fixed in position. We assume that
the spatial distribution Nc(r) of the conduction-band electrons is determined by the Boltzmann
factor, that is, by

Nc(r) = Nc,0 e−eV (r)/kBT , (4.6.9)

where kB is Boltzmann’s constant and T is the kinetic temperature of the electron ensemble.
Under homogeneous conditions, the potential �(r) and electron density Nc(r) become spa-
tially uniform. Let us now assume that a point charge Q (assumed positive for definiteness) is
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introduced into the system and placed at the origin of the coordinate system. Electrons will be
drawn toward Q, with the effect of decreasing the field created by Q when measured at large
distances. Closer to Q, the shielding will not be complete. We now estimate the form of the
potential distribution in the vicinity of Q. The total charge density is now given by

ρ(r) = Qδ(r) − e
Nc(r), (4.6.10)

where δ(r) is the Dirac delta function and where 
Nc(r) is the change in the electron distribu-
tion induced by the reaction to the point charge Q. We see by expanding Eq. (4.6.9) in a power
series in V (r) that to first order in the potential the quantity 
Nc(r) is given by


Nc(r) = −Nc,0 eV (r)/kBT . (4.6.11)

Eqs. (4.6.10) and (4.6.11) are now introduced into Poisson’s equation (4.6.8), which can then
be rewritten as

(∇2 − κ2)�(r) = −1

εε0
Qδ(r), (4.6.12)

where we have introduced the Debye–Hückel screening wavenumber

κ =
√

Nce2

εε0kT
. (4.6.13)

The inverse of this quantity is known as the Debye length

λD = 1/κ =
√

εε0kT

Nce2
. (4.6.14)

The Debye length defines the distance scale over which electrostatic forces are important in
a material medium. Eq. (4.6.12) can readily be solved to provide the form of the screened
Coulomb potential. One finds that

�(r) = −e

4πεε0r
e−κr , (4.6.15)

Eq. (4.6.6), quoted above, follows from this result by noting that V (r) = −e�(r).
One consequence of the reduction of the strength of the Coulomb interaction is that exci-

tonic features can disappear at high conduction-band electron densities. Let us recall briefly the
nature of excitonic features in semiconductors. An electron in the conduction band will feel a
force of attraction to a hole in the valence band as the result of their Coulomb interaction. This
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FIGURE 4.6.2: Absorption spectrum of Cu2O at a temperature of 4.2 K. The spectral features result from
transitions from the top of the valence band to the exciton level labeled in the figure. (After Tayagaki et
al., 2005.)

attraction can be sufficiently strong that the pair forms a bound state known as an exciton. Ex-
citonic energy levels typically lie slightly below the edge of the conduction band, at an energy
given by

En = Ec − R∗/n2, (4.6.16)

where n is the principal quantum number, Ec is the energy of the bottom of the conduction
band, and R∗ = �

2(2mra
∗2
0 )−1 is the effective Rydberg constant. Here mr is the reduced mass

of the electron–hole pair and a∗
0 = 4πε0�

2(mre
2)−1 is the effective first Bohr radius. Labora-

tory results showing absorption features associated with transitions to these excitonic levels are
shown in Fig. 4.6.2. Often only the lowest exciton states contribute significantly to the semicon-
ductor absorption spectrum. The situation in which only the n = 1 state contributes is shown
in the conceptual sketch of Fig. 4.6.3(a). In the presence of a laser beam sufficiently intense to
place an appreciable population of electrons into the conduction band, plasma screening effects
can lead to the disappearance of these excitonic resonances, leading to an absorption spectrum
of the sort shown in part (b) of the figure. Let 
α denote the amount by which the absorption
coefficient has changed because of the presence of the optical field. The change in absorption
coefficient is accompanied by a change in refractive index. This change can be calculated by
means of the Kramers–Kronig relations (see Section 1.7), which in the present context we write
in the form


n(ω) = c

π

∫ ∞

0


α(ω′) dω′

ω′ 2 − ω2
, (4.6.17)

where the principal part of the integral is to be taken. The change in refractive index is shown
symbolically in part (c) of Fig. 4.6.3. Note that 
n is positive on the high-frequency side of the
exciton resonance and is negative on the low-frequency side. However, the change in refractive
index is appreciable only over a narrow range of frequency on either side of the exact resonance.
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FIGURE 4.6.3: Schematic low-temperature absorption spectrum of a semiconductor in the absence (a)
and in the presence (b) of an appreciable number of optically excited conduction band electrons. (c) The
modification of the refractive index associated with the optically induced change in absorption coeffi-
cient.

Change of Optical Properties Due to Band-Filling Effects

As electrons are transferred from the valence band to the conduction band, the absorption coef-
ficient of a semiconductor must decrease. This effect is in many ways analogous to saturation
effects in atomic systems, as described in Chapter 6, but in the present case with the added
complexity that the electrons must obey the Pauli principle and thus must occupy a range of
energies within the conduction band. This process leads to a lowering of the refractive index for
frequencies below the band edge and a raising of the refractive index for frequencies above the
band edge. The sense of the change in refractive index is thus the same as that for a two-level
atom. The change in refractive index resulting from band filling can be calculated more pre-
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FIGURE 4.6.4: (a) For �ω < Eg , the nonlinear response involves virtual transitions. Under many cir-
cumstances, virtual two-photon processes (b) make a larger contribution to the nonlinear response than
do one-photon processes (c).

cisely by means of a Kramers–Kronig analysis of the sort described in the previous paragraph;
details are described, for instance, by Peyghambarian et al. (1993, Section 13-4).

Change in Optical Properties Due to Band-Gap Renormalization

For reasons that are rather subtle (exchange and Coulomb correlations), the band-gap energy
of most semiconductors decreases at high concentrations of conduction band electrons, with a
resulting change in the optical properties.

4.6.2 Nonlinearities Involving Virtual Transitions

Let us next consider the nonlinear response of a semiconductor or insulator under the condition
�ω < Eg , as illustrated in Fig. 4.6.4(a). In this situation, the photon energy is too small to allow
single-photon absorption to populate the conduction band, and the nonlinear response involves
virtual processes such as those shown in parts (b) and (c) of the figure. The “two-photon” pro-
cess of part (b) usually is much stronger than the “one-photon” process of part (c) except for
photon energies �ω approaching the band-gap energy Eg . In the approximation in which only
the two-photon process of part (b) is considered, a simple model can be developed to describe
the nonlinear response of the material. We shall not present the details here, which involve
some considerations of the band theory of solids that lie outside the scope of the present work.
Sheik-Bahae et al. (1990, 1991) have addressed this problem theoretically and have shown that
the dominant contribution to the imaginary part of the nonlinear response is the two-photon ab-
sorption process shown in Fig. 4.6.4(b). The real part of the nonlinear response is then obtained
through a Kramers–Kronig transform of the imaginary part. Specifically, they find that the real
part of the nonlinear refractive index coefficient defined such that 
n = n2I can be expressed
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as

n2 = K
�c

√
Ep

2n2
0E

4
g

G2(�ω/Eg), (4.6.18)

where Ep = 21 eV, K can be considered to be a single free parameter whose value is found
empirically to be 3.1×103 in units such that Ep and Eg are measured in eV and n2 is measured
in cm2/W, and where G2 is the universal function

G2(x) = −2 + 6x − 3x2 − x3 − 3
4x4 − 3

4x5 + 2(1 − 2x)3/2�(1 − 2x)

64x6
, (4.6.19)

where �(y) is the Heaviside step function defined such that �(y) = 0 for y < 0 and �(y) = 1
for y ≥ 0. In the same approximation, the two-photon absorption coefficient defined such that
α = α0 + βI is given by

β = K
√

Ep

n2
0E

3
g

F2(2�ω/Eg), (4.6.20)

where F2 is the universal function

F2(2x) = (2x − 1)3/2

(2x)5
for 2x > 1 (4.6.21)

and F2(2x) = 0 otherwise. These functional forms are illustrated in Fig. 4.6.5. Note that the
process of two-photon absorption vanishes for �ω < 1

2Eg for reasons of energetics. Note also
that the nonlinear refractive index peaks at �ω/Eg ≈ 0.54, vanishes at �ω/Eg ≈ 0.69, and is
negative for �ω/Eg � 0.69. Note also from Eq. (4.6.18) that n2 scales as E−4

g . Thus narrow-
band-gap semiconductors are expected to produce a much larger nonlinear response than large-
band-gap semiconductors. These predictions are in very good agreement with experimental
results; see, for instance, Fig. 4.6.6. In plotting this figure, some additional contributions to the
nonlinear response not included in Eqs. (4.6.18) through (4.6.21), such as the Raman effect
and linear and quadratic Stark effects, have been included in the prediction (Sheik-Bahae et al.,
1991).

In general, both the slow, band-to-band nonlinearities considered earlier and the instan-
taneous nonlinearities considered here occur simultaneously. Said et al. (1992) have studied
several semiconductors under conditions such that both processes occur simultaneously, and
they find that the change in refractive index is well described by the equation


n = n2I + σrNc, (4.6.22)

where as usual n2 gives the instantaneous nonlinear response and where σr is the change in
refractive index per unit conduction band electron density. Their measured values of these quan-
tities as well as the two-photon-absorption coefficient are given in Table 4.6.1.
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FIGURE 4.6.5: Variation of the nonlinear refraction coefficient n2 and the two-photon-absorption coef-
ficient with photon energy �ω according to the model of Sheik-Bahae et al. (1990).

TABLE 4.6.1: Nonlinear optical coefficients of several semiconductors.

Semiconductor β (m/TW) n2 (m2/W ) σr (m3)

ZnSe at 532 nm 58 −6.8×10−18 −0.8×10−27

GaAs at 1064 nm 260 −4.1×10−17 −6.5×10−27

CdTe at 1064 nm 260 −3×10−17 −5×10−27

ZnTe at 1064 nm 42 1.2×10−17 −0.75×10−27

After Said et al. (1992).

4.7 Concluding Remarks

Throughout this chapter, we have assumed that the refractive index variation 
n scales mono-
tonically with laser intensity as 
n = n2I . In fact, for any given material there is a maximum
change in refractive index that can be observed. This maximum index change comes about ei-
ther because of saturation effects or because there is a maximum laser intensity that can be used
in order to avoid laser damage effects. A particularly large value of the refractive index vari-
ation of 
nmax = 0.14 has been reported by Brzozowski et al. (2003). This large change was
observed in an InGaAs/InAlGaAs multiple quantum well sample at a wavelength of approxi-
mately 1500 nm and using a pulse fluence of 116 µJ/cm2. Quite recently, even larger values
have been reported. Alam et al. (2016) report the value 
nmax = 0.7 in indium tin oxide, and
Caspani et al. (2016) report the value 
nmax = 4.4 in aluminum-zinc oxide.
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FIGURE 4.6.6: Comparison of the predictions (solid line) of the model of Sheik-Bahae et al. (1991) with
measured values (data points) of the nonlinear refraction parameter n2 for a variety of materials.

For certain conceptual purposes, it can be useful to express the nonlinear susceptibility in
dimensionless form (see, for instance, Kok et al. (2002)). One prescription for doing so is to
define the dimensionless susceptibility as

χ
(3)
D = E2

1,maxχ
(3), (4.7.1)

where E2
1,max is the largest electric field that can be produced in free space by a single pho-

ton. Since a pulse of light can be localized to a volume of the order the cube of the vacuum
wavelength λ, one finds that

�ω

λ3
= 2ε0E

2
1,max (4.7.2)

and thus that

χ
(3)
D = �ω

2ε0λ3
χ(3). (4.7.3)
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For the case of fused silica (χ(3) = 2.5 × 10−22 m2/W2) and a wavelength of 1.0 µm, this
expression for the dimensionless nonlinear suscpetibility becomes when evaluated becomes
χ

(3)
D = 4.5 × 10−13. This number can be taken to represent a typical value of χ

(3)
D . The small-

ness of this number quantifies the notion that nonresonant nonlinear optical interactions tend
to be extremely weak, at least on a local scale. It is only the cumulative effect of nonlinear in-
teractions taking place over large distances that allows nonlinear processes to produce intense
output fields. It should be noted, however, that for some of the largest reported optical non-
linearities the dimensionless susceptibility can become large. For example, for the case of the
nonlinear response of a Bose–Einstein condensate, as quoted in Table 4.1.2, the dimensionless
susceptibility becomes χ

(3)
D ≈ 100.

Problems

1. n2 for a lossy medium. Generalize the derivation of Eq. (4.1.19) to allow the linear refrac-
tive index to be a complex quantity n̄0.
[Ans: Replace n2

0 in the denominator of Eq. (4.1.19) by n̄0 Re n̄0.]
2. Tensor properties of χ(3) for an isotropic medium. Derive Eqs. (4.2.2).
3. Ellipse rotation. A 1-cm-long sample of carbon disulfide is illuminated by elliptically po-

larized light of intensity I = 1 MW/cm2. Determine how the angle through which the
polarization ellipse is rotated depends upon the ellipticity of the light, and calculate nu-
merically the maximum value of the rotation angle. Quantify the ellipticity in terms of the
parameter δ where (−1 ≤ δ ≤ 1) which defines the polarization unit vector through the
relation

ε̂ = x̂ + iδŷ
(1 + δ2)1/2

.

[Hint: The third-order nonlinear optical response of carbon disulfide is due mainly to
molecular orientation.]

4. Sign of χ(3). Verify the statement made in the text that the first term in expression (4.3.12)
is positive whenever ω is smaller than any resonance frequency of the atomic system.

5. Tensor properties of the molecular orientation effect. Derive the result given by Eqs. (4.4.27)
through (4.4.30) for the general case in which a, b, and c are all distinct.
[This problem is extremely challenging.]

6. Thermal nonlinearities. In Section 4.5, we basically used dimensional analysis to make
an order-of-magnitude estimate of the size of thermal nonlinearities. In this problem, we
consider a situation in which the equation of heat transport can be solved exactly.
Consider a laser beam of diameter D1 and power P propagating through a long glass rod
of diameter D2. The outer surface of the glass rod is held at the fixed temperature T0.
Assume steady-state conditions, and make the simplifying assumption that the transverse
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intensity profile of the laser beam is uniform. Determine the local temperature T at each
point within the glass rod and determine the maximum change in refractive index. Evaluate
numerically for realistic conditions.

7. Nonlinearity due to the magnetic force. Consider a plane electromagnetic wave incident
upon a free electron. If the field is strong enough, the electron will acquire sufficient
velocity that the magnetic force FM = (−e/c)v × B has a noticeable effect on its motion.
This is one source of the nonlinear electronic response.
(a) Show that for an optical plane wave with electric field E = x̂ (E0e

i(kz−ωt) + c.c.) the
electromagnetic force on an electron is

FEM = −e
(
E0e

−iωt + c.c.
)[

x̂
(

1 − ż

c

)
+ ẑ

(
ẋ

c

)]
.

How large (order of magnitude) can ẋ/c become for a free electron in a beam with a peak
intensity of 1017 W/cm2?
(b) Derive expressions for χ(2)(2ω) and χ(2)(0) for a collection of free electrons in terms
of the electron number density N . (You may assume there are no “frictional” forces.) In
what direction(s) will light at 2ω be emitted?
(c) Derive expressions for χ(3)(ω) and χ(3)(3ω).
(d) Good conductors can often be modeled using the free electron model. Assuming the
magnetic force is the only source of optical nonlinearity, make a numerical estimate (order
of magnitude) of χ(3)(ω) for gold.

8. Nonlinear phase shift of a focused gaussian beam. Derive an expression for the nonlin-
ear phase shift experienced by a focused gaussian laser beam of beam-waist radius w0

carrying power P in passing through a nonlinear optical material characterized by a non-
linear refractive index n2. Perform this calculation by integrating the on-axis intensity
from z = −∞ to z = +∞. Comment on the accuracy of this method of calculation, and
speculate regarding computational methods that could provide a more accurate prediction
of the nonlinear phase shift.

9. Nonlinear phase shift of a focused gaussian beam. Assuming the validity of the procedure
used in the previous question (that is, by integrating from −∞ to +∞), determine numer-
ically the nonlinear phase shift that can be obtained by a focused gaussian laser beam in
propagating through optical glass, when the power of the beam is adjusted to be just below
the laser damage threshold. Assume initially that the glass is a plate 1 cm thick, but also
describe how the phase shift scales with the thickness of the glass plate. For definiteness,
assume that the beam waist is at the center of the glass block, and assume that bulk (not
surface) damage is the limiting process. Take I (damage) = 10 GW/cm2.

10. Nonlinear phase shift of a focused gaussian beam. Same as the previous problem, but
assume that surface damage is the limiting process.

11. Semiconductor nonlinear response. Derive Eq. (4.6.5).
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Chapter 5

Molecular Origin of the Nonlinear
Optical Response

In Chapter 3, we presented a general quantum-mechanical theory of the nonlinear optical sus-

ceptibility. This calculation was based on time-dependent perturbation theory and led to explicit

predictions for the complete frequency dependence of the linear and nonlinear optical suscep-

tibilities. Unfortunately, however, these quantum-mechanical expressions are typically far too

complicated to be of use for practical calculations.

In this chapter we review some of the simpler approaches that have been implemented to

develop an understanding of the nonlinear optical characteristics of various materials. Many of

these approaches are based on understanding the optical properties at the molecular level. We

also present brief descriptions of the nonlinear optical characteristics of conjugated polymers,

chiral molecules, and liquid crystals.

5.1 Nonlinear Susceptibilities Calculated Using Time-Independent
Perturbation Theory

One approach to the practical calculation of nonlinear optical susceptibilities is based on the

use of time-independent perturbation theory (see, e.g., Jha and Bloembergen, 1968 or Ducuing,

1977). The motivation for using this approach is that time-independent perturbation theory is

usually much easier to implement than time-dependent perturbation theory. The justification

of the use of this approach is that one is often interested in the study of nonlinear optical

interactions in the highly nonresonant limit ω � ω0 (where ω is the optical frequency and ω0

is the resonance frequency of the material system), in order to avoid absorption losses. For

ω � ω0, the optical field can to good approximation be taken to be a quasi-static quantity.

Nonlinear Optics. https://doi.org/10.1016/B978-0-12-811002-7.00014-X
Copyright © 2020 Elsevier Inc. All rights reserved. 249
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To see how this method proceeds, let us represent the polarization of a material system in
the usual form∗

P̃ = ε0χ
(1)Ẽ + ε0χ

(2)Ẽ2 + ε0χ
(3)Ẽ3 + · · · . (5.1.1)

We can then calculate the energy stored in polarizing the medium as

W = −
∫ Ẽ

0
P̃ (Ẽ′) dẼ′ = −1

2
χ(1)Ẽ2 − 1

3
χ(2)Ẽ3 − 1

4
χ(3)Ẽ3 · · ·

≡ W(2) + W(3) + W(4) + · · · . (5.1.2)

The significance of this result is that it shows that if we know W as a function of Ẽ (either
by calculation or, for instance, from Stark effect measurements), we can use this knowledge to
deduce the various orders of susceptibility χ(n). For instance, if we know W as a power series
in Ẽ we can determine the susceptibilities as†

χ(n−1) = −nW(n)

ε0Ẽn
. (5.1.3)

More generally, even if the power series expansion is not known, the nonlinear susceptibilities
can be obtained through differentiation as

χ(n−1) = −1

ε0(n − 1)!
∂nW

∂Ẽn

∣∣∣∣
E=0

. (5.1.4)

Before turning our attention to the general quantum-mechanical calculation of W(n), let us see
how to apply the result given by Eq. (5.1.3) to the special case of the hydrogen atom.

5.1.1 Hydrogen Atom

From considerations of the Stark effect, it is well known how to calculate the ground-state
energy w of the hydrogen atom as a function of the strength E of an applied electric field
(Schiff, 1968; Sewell, 1949). We shall not present the details of the calculation here, both
because they are readily available in the scientific literature and because the simplest method

∗ As a notational convention, in the present discussion we retain the tilde over P and E both for slowly varying
(quasi-static) and for fully static fields.

† For time-varying fields, Eq. (5.1.3) still holds, but with W(n) and Ẽn replaced by their time averages, that is, by

〈W(n)〉 and 〈Ẽn〉. For Ẽ = Ee−iωt + c.c., one finds that Ẽ = 2E cos(ωt + φ), and Ẽn = 2nEn cosn(ωt + φ), so
that 〈Ẽn〉 = 2nEn〈cosn(ωt + φ)〉. Note that 〈cos2(ωt + φ)〉 = 1/2 and 〈cos4(ωt + φ)〉 = 3/8.
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for obtaining this result makes use of the special symmetry properties of the hydrogen atom
and does not readily generalize to other situations. One finds that

w

2R
= −1

2
− 9

4

(
E

Eat

)2

− 3555

64

(
E

Eat

)4

+ · · · , (5.1.5)

where R = me4/32π2ε2
0�

2 = 13.6 eV is the Rydberg constant and where Eat = e/4πε0a
2
0 =

m2e5/(4πε0)
3
�

4 = 5.14 × 1011 V/m is the atomic unit of electric field strength. We now take
W to be given by W = Nw, where N is the number density of atoms, and introduce Eq. (5.1.5)
into Eq. (5.1.3). We thus find that

χ(1) = Nα where α = 9

2
a 3

0 , (5.1.6a)

χ(3) = Nγ where γ = 3555

16

a 7
0

e6
, (5.1.6b)

where a0 = 4πε0�
2/me2 is the Bohr radius. Note that these results conform with standard

scaling laws for nonresonant polarizabilities

α � atomic volume V, (5.1.7a)

γ ∝ V 7/3. (5.1.7b)

5.1.2 General Expression for the Nonlinear Susceptibility in the Quasi-Static Limit

A standard problem in quantum mechanics involves determining how the energy of some state
|ψn〉 of an atomic system is modified in response to a perturbation of the atom. To treat this
problem mathematically, we assume that the Hamiltonian of the system can be represented as

Ĥ = Ĥ0 + V̂ , (5.1.8)

where Ĥ0 represents the total energy of the free atom and V̂ represents the quasi-static pertur-
bation due to some external field. For the problem at hand we assume that

V̂ = −μ̂Ẽ, (5.1.9)

where μ̂ = −ex̂ is the electric dipole moment operator and Ẽ is an applied quasi-static field.
We require that the atomic wavefunction obey the time-independent Schrödinger equation

Ĥ |ψn〉 = wn|ψn〉. (5.1.10)
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For most situations of interest, Eqs. (5.1.8)–(5.1.10) cannot be solved in closed form, and must
be solved using perturbation theory. One represents the energy wn and state vector |ψn〉 as
power series in the perturbation as

wn = w(0)
n + w(1)

n + w(2)
n + · · · , (5.1.11a)

|ψn〉 = ∣∣ψ(0)
n

〉 + ∣∣ψ(1)
n

〉 + ∣∣ψ(2)
n

〉 + · · · . (5.1.11b)

The details of the procedure are well documented in the scientific literature; see, for instance,
Dalgarno (1961). One finds that the energies are given by

w(1)
n = eẼ

〈
n|x|n〉

, (5.1.12a)

w(2)
n = e2Ẽ2

∑
s

′ 〈n|x|s〉〈s|x|n〉
w

(0)
s − w

(0)
n

, (5.1.12b)

w(3)
n = e3Ẽ3

∑
st

′ 〈n|x|s〉〈s|x|t〉〈t |x|n〉
(w

(0)
s − w

(0)
n )(w

(0)
t − w

(0)
n )

, (5.1.12c)

w(4)
n = e4Ẽ4

∑
stu

′ 〈n|x|s〉〈s|x|t〉〈t |x|u〉〈u|x|n〉
(w

(0)
s − w

(0)
n )(w

(0)
t − w

(0)
n )(w

(0)
u − w

(0)
n )

− e2Ẽ2w(2)
n

∑
u

′ 〈n|x|u〉〈u|x|n〉
(w

(0)
u − w

(0)
n )2

. (5.1.12d)

The prime following each summation symbol indicates that the state n is to be omitted from
the indicated summation. Through use of these expressions one can deduce explicit forms for
the linear and nonlinear susceptibilities. We let W = Nw, assume that the state of interest is the
ground state g, and make use of Eqs. (5.1.3) to find that

χ(1) = Nα, α = αxx = 2e2

�

∑
s 
=g

xgsxsg

ωsg

, (5.1.13a)

χ(2) = Nβ, β = βxxx = 3e3

�2

∑
s,t 
=g

xgtxtsxsg

ωtgωsg

, (5.1.13b)

χ(3) = Nγ, γ = γxxxx = 4e4

�3

( ∑
s,t,u
=g

xguxutxtsxsg

ωugωtgωsg

−
∑
s,t 
=g

xgtxtgxgsxsg

ωtgω2
sg

)
,

(5.1.13c)

where �ωsg = w
(0)
s − w

(0)
g , and so on. We see that χ(3) naturally decomposes into the sum

of two terms, which can be represented schematically in terms of the two diagrams shown in
Fig. 5.1.1. Note that this result is entirely consistent with the predictions of the model of the
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FIGURE 5.1.1: Schematic representation of the two terms appearing in Eq. (5.1.13c).

nonlinear susceptibility based on time-dependent perturbation theory (see Eq. (4.3.12)), but is
more simply obtained by the present formalism.

Eqs. (5.1.13) constitute the quantum-mechanical predictions for the static values of the lin-
ear and nonlinear susceptibilities. Evaluation of these expressions can be still quite demanding,
as it requires knowledge of all of the resonance frequencies and dipole transition moments
connecting to the atomic ground state. Several approximations can be made to simplify these
expressions. One example is the Unsöld approximation, which entails replacing each resonance
frequency (e.g., ωsg) by some average transition frequency ω0. The expression (5.1.13a) for the
linear polarizability then becomes

α = 2e2

�ω0

∑
s

′〈g|x|s〉〈s|x|g〉. (5.1.14)

We formally rewrite this expression as

α = 2e2

�ω0

〈
g
∣∣xÔx

∣∣g〉
where Ô =

∑
s

′|s〉〈s|. (5.1.15)

We now replace Ô by the unrestricted sum

Ô =
∑

s

|s〉〈s|, (5.1.16)

which we justify by noting that for states of fixed parity 〈g|x|g〉 vanishes, and thus it is imma-
terial whether or not the state g is included in the sum over all s. We next note that∑

s

|s〉〈s| = 1 (5.1.17)

by the closure assumption of quantum mechanics. We thus find that

α = 2e2

�ω0

〈
x2〉. (5.1.18a)

This result shows that the linear susceptibility is proportional to the electric quadrupole moment
of the ground-state electron distribution. We can apply similar reasoning to the simplification
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of the expressions for the second- and third-order nonlinear coefficients to find that

β = − 3e3

�2ω2
0

〈
x3〉, (5.1.18b)

γ = 4e4

�3ω3
0

[〈
x4〉 − 2

〈
x2〉2]. (5.1.18c)

These results show that the hyperpolarizabilities can be interpreted as measures of various
higher-order moments of the ground state electron distribution. Note that the linear polarizabil-
ity and hyperpolarizabilities increase rapidly with the physical dimensions of the electron cloud
associated with the atomic ground state. Note further that Eqs. (5.1.18a) and (5.1.18c) can be
combined to express γ in the intriguing form

γ = α2 g

�ω0
where g =

[ 〈x4〉
〈x2〉2

− 2

]
. (5.1.19)

Here g is a dimensionless quantity (known in statistics as the kurtosis) that provides a measure
of the normalized fourth moment of the ground-state electron distribution.

These expressions can be simplified still further by noting that within the context of the
present model the average transition frequency ω0 can itself be represented in terms of the
moments of x. We start with the Thomas–Reiche–Kuhn sum rule (see, for instance, Eq. (61) of
Bethe and Salpeter, 1977), which states that

2m

�

∑
k

ωkg|xkg|2 = Z, (5.1.20)

where Z is the number of optically active electrons. If we now replace ωkg by the average tran-
sition frequency ω0 and perform the summation over k in the same manner as in the derivation
of Eq. (5.1.18a), we obtain

ω0 = Z �

2m〈x2〉 . (5.1.21)

This expression for ω0 can now be introduced into Eqs. (5.1.18) to obtain

α = 4e2m

Z�2

〈
x2〉2, (5.1.22)

β = −12e3m2

Z2�4

〈
x2〉2〈x3〉, (5.1.23)

γ = 32e4m3

Z3�6

〈
x2〉3(〈x4〉 − 2

〈
x2〉2). (5.1.24)
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Note that these formulas can be used to infer scaling laws relating the optical constants to the
characteristic size L of a molecule. In particular, one finds that α ∼ L4, β ∼ L7, and γ ∼ L10.
Note the important result that nonlinear coefficients increase rapidly with the size of a molecule.
Note also that α is a measure of the electric quadrupole moment of the ground-state electron dis-
tribution, β is a measure of the octopole moment of the ground-state electron distribution, and
γ depends on both the hexadecimal pole and the quadrupole moment of the electron ground-
state electron distribution.∗

5.2 Semiempirical Models of the Nonlinear Optical Susceptibility

We noted earlier in Section 1.4 that Miller’s rule can be successfully used to predict the second-
order nonlinear optical properties of a broad range of materials. Miller’s rule can be generalized
to third-order nonlinear optical interactions, where it takes the form

χ(3)(ω4,ω3,ω2,ω1) = Aχ(1)(ω4) χ(1)(ω3) χ(1)(ω2) χ(1)(ω1), (5.2.1)

where ω4 = ω1 + ω2 + ω3 and where A is a quantity that is assumed to be frequency indepen-
dent and nearly the same for all materials. Wynne (1969) has shown that this generalization of
Miller’s rule is valid for certain optical materials, such as ionic crystals. However, this general-
ization is not universally valid.

Wang (1970) has proposed a different relation that seems to be more generally valid. Wang’s
relation is formulated for the nonlinear optical response in the quasi-static limit and states
that

χ(3) = Q′(χ(1)
)2

, where Q′ = g′/Neff�ω0, (5.2.2)

and where Neff = Nf is the product of the molecular number density N with the oscillator
strength f , ω0 is an average transition frequency, and g′ is a dimensionless parameter of the
order of unity that is assumed to be nearly the same for all materials. Wang has shown em-
pirically that the predictions of Eq. (5.2.2) are accurate both for low-pressure gases (where
Miller’s rule does not make accurate predictions) and for ionic crystals (where Miller’s rule
does make accurate predictions). By comparison of this relation with Eq. (5.1.19), we see that
g′ is intimately related to the kurtosis of the ground-state electron distribution. There does not
seem to be any simple physical argument for why the quantity g′ should be the same for all
materials.

∗ There is an additional contribution to the hyperpolarizability β resulting from the difference in permanent dipole
moment between the ground and excited states. This contribution is not accounted for by the present model.
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Model of Boling, Glass, and Owyoung

The formula (Eq. 5.2.2) of Wang serves as a starting point for the model of Boling et al. (1978),
which allows one to predict the nonlinear refractive index constant n2 on the basis of linear
optical properties. One assumes that the linear refractive index is described by the Lorentz–
Lorenz law (see Eq. (3.9.8a)) and Lorentz oscillator model (see Eq. (1.4.17) or Eq. (3.5.25))
as

n2 − 1

n2 + 2
= 1

3
Nα, (5.2.3a)

α = f e2/m

ω2
0 − ω2

, (5.2.3b)

where f is the oscillator strength of the transition making the dominant contribution to the
optical properties. Note that by measuring the refractive index as a function of frequency it is
possible through use of these equations to determine both the resonance frequency ω0 and the
effective number density Nf . The nonlinear refractive index is determined from the standard
set of equations

n2 = 3

4n2ε0c
χ(3), χ(3) = L4Nγ, L = n2 + 2

3
, (5.2.4a)

γ = gα2

�ω0
. (5.2.4b)

Eq. (5.2.4b) is the microscopic form of Wang’s formula (5.2.2), where g is considered to be a
free parameter. If Eq. (5.2.3b) is solved for α, which is then introduced into Eq. (5.2.4b), and
use is made of Eqs. (5.2.4a), we find that the expression for n2 is given by

n2 = (n2 + 2)2(n2 − 1)2(gf )

6n2ε0c�ω0(Nf )
. (5.2.5)

This equation gives a prediction for n2 in terms of the linear refractive index n, the quantities
ω0 and (Nf ) which (as described above) can be deduced from the dispersion in the refractive
index, and the combination (gf ), which is considered to be a constant quantity for a broad
range of optical materials. The value (gf ) = 3 is found empirically to give good agreement with
measured values. A comparison of the predictions of this model with measured values of n2 has
been performed by Adair et al. (1989), and some of their results are shown in Fig. 5.2.1. The
two theoretical curves shown in this figure correspond to two different choices of the parameter
(gf ) of Eq. (5.2.5). Lenz et al. (2000) have described a model related to that of Boling et al.
that has good predictive value for describing the nonlinear optical properties of chalcogenide
glasses.
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FIGURE 5.2.1: Comparison of the predictions of Eq. (5.2.5) with experimental results. After Adair et al.
(1989).

5.3 Nonlinear Optical Properties of Conjugated Polymers

Certain polymers known as conjugated polymers can possess an extremely large nonlinear
optical response. For example, a certain form of polydiacetylene known as PTS possesses a
third-order susceptibility of 3.5×10−18 m2/V2, as compared to the value of 2.7×10−20 m2/V2

for carbon disulfide. In this section some of the properties of conjugated polymers are described.
A polymer is said to be conjugated if it contains alternating single and double (or single and

triple) bonds. Alternatively, a polymer is said to be saturated if it contains only single bonds.
A special class of conjugated polymers is the polyenes, which are molecules that contain many
double bonds.

Part (a) of Fig. 5.3.1 shows the structure of polyacetylene, a typical chainlike conjugated
polymer. According to convention, the single lines in this diagram represent single bonds and
double lines represent double bonds. A single bond always has the structure of a σ bond, which
is shown schematically in part (b) of the figure. In contrast, a double bond consists of a σ bond
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FIGURE 5.3.1: (a) Two common representations of a conjugated chainlike polymer. (b) Standard repre-
sentation of a single bond (left) and a schematic representation of the electron charge distribution of the
single bond (right). (c) Standard representation of a double bond (left) and a schematic representation of
the electron charge distribution of the double bond (right). (d) Two representations of the same polymer
chain with the locations of the single and double bonds interchanged, suggesting the arbitrariness of
which bond is called the single bond and which is called the double bond in an actual polymer chain.
(e) Representation of the charge distribution of a conjugated chainlike polymer.

and a π bond, as shown in part (c) of the figure. A π bond is made up of the overlap of two p

orbitals, one from each atom that is connected by the bond.
The optical response of σ bonds is very different from that of π bonds because σ electrons

(that is, electrons contained in a σ bond) tend to be localized in space. In contrast, π electrons
tend to be delocalized. Because π electrons are delocalized, they tend to be less tightly bound
and can respond more freely to an applied optical field. They thus tend to produce larger linear
and nonlinear optical responses.

π electrons tend to be delocalized in the sense that a given electron can be found anywhere
along the polymer chain. They are delocalized because (unlike the σ electrons) they tend to be
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located at some distance from the symmetry axis. In addition, even though one conventionally
draws a polymer chain in the form shown in part (a) of the figure, for a long chain it would be
equally valid to exchange the locations of the single and double bonds. The actual form of the
polymer chain is thus a superposition of the two configurations shown in part (d) of the figure.
This perspective is reinforced by noting that p orbitals extend both to the left and to the right
of each carbon atom, and thus there is considerable arbitrariness as to which bonds we should
call single bonds and which we should call double bonds. Thus, the actual electron distribution
might look more like that shown in part (e) of the figure.

As an abstraction, one can model the π electrons of a conjugated chainlike polymer as being
entirely free to move in a one-dimensional square-well potential whose length L is that of the
polymer chain. Rustagi and Ducuing (1974) performed such a calculation and found that the
linear and third-order polarizabilities are given by

α = 8L3

3a0π2N and γ = 256L5

45a3
0 e2π6N 5

, (5.3.1)

where N is the number of electrons per unit length and a0 is the Bohr radius. (See also Prob-
lem 3 at the end of this chapter.) It should be noted that the linear optical response increases
rapidly with the length L of the polymer chain and that the nonlinear optical response increases
even more rapidly. Of course, for condensed matter, the number of polymer chains per unit
volume N will decrease with increasing chain length L, so the susceptibilities χ(1) and χ(3)

will increase less rapidly with L than do α and β themselves. Nonetheless, the present model
predicts that conjugated polymers in the form of long chains should possess extremely large
values of the nonlinear optical susceptibility. Some experimental results that confirm the L5

dependence of the hyperpolarizability are shown in Fig. 5.3.2. Large values of the nonlinear
optical response has also been studied for the material C60, which consists of essentially free
electrons constrained to lie on the surface of a sphere (Blau et al., 1991).

5.4 Bond-Charge Model of Nonlinear Optical Properties

In a collection of free atoms, the natural basis for describing the optical properties of the
atomic system is the set of energy eigenstates of the individual atoms. However, when atoms
are arranged in a crystal lattice, it becomes more natural to think of the outer electrons as
being localized within the bonds that confine the atoms to their lattice sites. (The inner-
core electrons are so tightly bound that they make negligible contribution to the optical re-
sponse in any case.) Extensive evidence shows that one can ascribe a linear polarizability and
higher-order polarizabilities to each bond in a molecule or crystalline solid (Levine, 1969;
Chemla, 1971). This evidence also shows that the polarizability of one bond is reasonably
unaffected by the nature of nearby bonds. Thus, the susceptibility of a complex system can be
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FIGURE 5.3.2: Measured dependence of the value of the hyperpolarizability γ1111 on the number of
double bonds in the molecule. The data are from Hermann and Ducuing (1974) and the straight line has
a slope of 5 in accordance with Eq. (5.3.1). To convert γ to SI units of m5/V2, multiply each value by
1.4 × 10−14.

predicted by summing (taking proper account of their orientation) the responses of the various
bonds present in the material. Bond hyperpolarizabilities can be determined either experimen-
tally or by one of several different theoretical approaches.

The bond-charge model is illustrated in Fig. 5.4.1. Part (a) of this figure shows a bond
connecting atoms A and B. As an idealization, the bond is considered to be a point charge of
charge q located between the two ions. The quantities rA and rB are the covalent radii of atoms
A and B and d = rA + rB is known as the bond length. According to Levine (1973), the bond
charge is given by

q = env(1/ε + 1
3fc), (5.4.1)

where nv is the number of electrons per bond, ε is the static dielectric constant of the material,
and fc is a parameter known as the fractional degree of covalency of the bond.

Part (b) of Fig. 5.4.1 shows how the bond charge q moves in the presence of an electric
field E that is oriented parallel to the bond axis. The charge is seen to move by an amount
δr = α‖E/q, where α‖ is the polarizability measured along the bond axis, and consequently
the ion-to-bond-charge distances rA and rB change by amounts

−�rA = �rB = δr = α‖E/q. (5.4.2)
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FIGURE 5.4.1: The bond-charge model applied to a chemical bond between constituents A and B.
Parts (b) and (c) show how the charge moves in response to applied electric fields.

Part (c) of the figure shows how the bond charge moves when E is applied perpendicular to
the bond axis. In this case δr = α⊥E/q, and to lowest order the distances rA and rB change by
amounts

�rA = δr2

2rA
= α2⊥E2

2rAq2
, (5.4.3a)

�rB = δr2

2rB
= α2⊥E2

2rBq2
. (5.4.3b)

We see that a field parallel to the bond axis can induce a linear change in the distances rA

and rB , but that a field perpendicular to the axis can induce only a second-order change in these
quantities.

Let us now see how to make quantitative predictions using the bond-charge model (Chemla
et al., 1974). According to Phillips (1967) and Van Vechten (1969), the (linear) bond polariz-
ability can be represented as

α ≡ 1

3
(α‖ + 2α⊥) = (2a0)

3D
E2

0

E2
g

, (5.4.4)

where a0 = 4πε0�
2/me2 is the Bohr radius, E0 = me4/2(4πε0)

2
�

2 is the Rydberg unit of
energy, D is a numerical factor of the order of unity, and Eg is the mean energy gap associated
with the bond. This quantity can be represented as

E2
g = E2

h + C2, (5.4.5)
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where Eh is the homopolar contribution given by

Eh = 40d−2.5, (5.4.6a)

and where C is the heteropolar contribution given by

C = 1.5e−kR

(
zA

rA
− zB

rB

)
e2, (5.4.6b)

where zA and zB are the number of valence electrons on atoms A and B, respectively, and where
exp(−kR) is the Thomas–Fermi screening factor, with R = 1

2(rA + rB) = 1
2d. The numerical

factor in Eq. (5.4.6a) presupposes that d is measured in angstroms and Eh in electron volts.
The bond-charge model ascribes the nonlinear optical response of a material system to the

variation of the bond polarizability αij induced by an applied field Ej . Explicitly one expresses
the bond dipole moment as

pi = p
(1)
i + p

(2)
i + p

(3)
i + · · ·

=
[
(αil)0 +

(
∂αil

∂Ej

)
Ej + 1

2

(
∂2αil

∂EjEk

)
EjEk

]
El + · · ·

≡ (αil)0El + βijkEjEl + γijklEjEkEl + · · · . (5.4.7)

Let us now calculate the hyperpolarizabilities βijk and γijkl . Since the model assumes that
the bonds are axially symmetric, the only nonvanishing components of the hyperpolarizabilities
are

β‖ = βzzz, β⊥ = βxzx, (5.4.8a)

γ‖ = γzzzz, γ⊥ = γxxxx, γ‖⊥ = γzzxx, (5.4.8b)

where we have assumed that z lies along the bond axis. We next note that, as a consequence of
Eqs. (5.4.3), a transverse field E⊥ cannot produce a first-order (or in fact any odd-order) change
in αij , that is, (

∂

∂E⊥

)q

αij = 0 for q odd. (5.4.9)

We also note that the present model obeys Kleinman symmetry, since it does not consider the
frequency dependence of any of the optical properties. Because of Kleinman symmetry, we can
express β⊥ ≡ ∂αxx/∂Ez as

β⊥ = ∂αxz

∂Ex

, (5.4.10)
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which vanishes by Eq. (5.4.9). We likewise find that

γ‖⊥ = 1

2

∂2αxz

∂Ex∂Ez

= 0. (5.4.11)

We thus deduce that the only nonvanishing components are β‖, γ‖, and γ⊥, which can be ex-
pressed as

β‖ = ∂α‖
∂E‖

= 3
∂α

∂E‖
, (5.4.12a)

γ‖ = ∂2α‖
∂E2‖

= 3

2

∂2α

∂E2‖
, (5.4.12b)

γ⊥ = ∂2α⊥
∂E2⊥

= 3

4

∂2α

∂E2⊥
. (5.4.12c)

The equations just presented provide the basis of the bond-charge model. The application of
this model requires extensive numerical computation which will not be reproduced here. In
brief summary, the quantities Eh and C of Eqs. (5.4.6) are developed in power series in the
applied fields E‖ and E⊥ through use of Eqs. (5.4.2) and (5.4.3). Expression (5.4.4) for α can
then be expressed in a power series in the applied field, and the hyperpolarizabilities can be ex-
tracted from this power series expression through use of Eqs. (5.4.12). Finally, susceptibilities
χ

(2)
ijk and χ

(3)
ijkl are determined by summing over all bonds in a unit volume, taking account of

the orientation of each particular bond. This model has been shown to provide good predictive
value. For instance, Chemla et al. (1974) have found that this model provides ∼30% accu-
racy in calculating the third-order nonlinear optical response for Ge, Si, and GaAs. Table 5.4.1
gives values of some measured bond hyperpolarizabilities. In addition Levine (1973) provides
extensive tables comparing the predictions of this model with experimental results.

TABLE 5.4.1: Representative bond hyperpolarizabilities γ

in units of 1.4 × 10−50 m5/V2.a

Bond λ = 1.064 µm λ = 1.907 µm

C–Cl 0.90 ± 0.04 0.7725

C–H 0.05 ± 0.04 −0.0275

O–H 0.42 ± 0.02 0.5531

C–C 0.32 ± 0.42 0.6211

C=C 1.03 ± 1.52 0.61

C–O 0.24 ± 0.19 0.30

C=O 0.82 ± 1.1 0.99
a After Kajzar and Messier (1985).
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5.5 Nonlinear Optics of Chiral Media

Special considerations apply to the analysis of the nonlinear optical properties of a medium
composed of a collection of chiral molecules. A chiral molecule is a molecule with a “handed-
ness,” that is, the mirror image of such a molecule looks different from the molecule itself. By
way of example, simple molecules such as CS2, H2O, CH4 are achiral (that is, are not chiral)
and are identical to their mirror images; however, many organic molecules including simple
sugars such as dextrose are chiral.

In the context of linear optics, it is well known that chiral media display the property of
optical activity, that is, the rotation of the direction of linear polarization of a light beam as it
passes through such a material. (See, for instance, Jenkins and White, 1976.) A material is said
to be dextrorotatory if the direction of the polarization rotates in a clockwise sense (looking into
the beam) as the beam propagates; if the polarization rotates counterclockwise, the medium is
said to be levorotatory. Two molecules that are mirror images of each other are said to be
enantiomers. An equal mixture of two enantiomers is said to be a racemic mixture. Optical
activity obviously vanishes for a racemic mixture.

Let us now turn to a discussion of the nonlinear optical properties of chiral materials.
A liquid composed of chiral molecules is isotropic but nonetheless noncentrosymmetric (see
Fig. 5.5.1), and thus it can possess a second-order nonlinear optical response. As we shall see,
such a medium can produce sum- or difference-frequency generation, but not second-harmonic
generation, and moreover can produce sum- or difference-frequency generation only if the two
input beams are non-collinear. The theory of second-order processes in chiral media was devel-
oped by Giordmaine (1965) and was studied experimentally by Rentzipis et al. (1966). More
recent research on the nonlinear optics of chiral media includes that of Verbiest et al. (1998).

FIGURE 5.5.1: (a) A collection of right-handed spirals and (b) a collection of left-handed spirals. Each
medium is isotropic (looks the same in all directions), but neither possesses a center of inversion sym-
metry.

Let us now turn to a theoretical description of second-order processes in chiral materials.
We represent the second-order polarization induced in such a material as

Pi(ωσ ) = 2ε0

∑
jk

χ
(2)
ijk (ωσ = ω1 + ω2)EjFk, (5.5.1)
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where Ej represents a field at frequency ω1 and Fk represents a field at frequency ω2 (which
can be a negative frequency). We now formally rewrite Eq. (5.5.1) as

Pi = ε0

∑
jk

Sijk(EjFk + EkFj ) + ε0

∑
jk

Aijk(EjFk − EkFj ), (5.5.2)

where Sijk and Aijk denote the symmetric and antisymmetric parts of χ
(2)
ijk and are given by

Sijk = 1

2

(
χ

(2)
ijk + χ

(2)
ikj

)
, (5.5.3a)

Aijk = 1

2

(
χ

(2)
ijk − χ

(2)
ikj

)
. (5.5.3b)

Note that Aijk vanishes for second-harmonic generation or more generally whenever the Klein-
man symmetry condition is valid.

FIGURE 5.5.2: Experimental setup to observe sum-frequency generation in an isotropic, chiral medium.

The tensor properties of the quantities Sijk and Aijk can be deduced using methods anal-
ogous to those described in Section 1.5. For the case of an isotropic but noncentrosymmetric
medium (which corresponds to point group ∞∞) one finds that Sijk vanishes identically and
that the only nonvanishing elements of Aijk are

A123 = A231 = A312. (5.5.4)

Consequently the nonlinear polarization can be expressed as

P = ε0A123 E × F. (5.5.5)

The experimental setup used by Rentzipis et al. to study these effects is shown in Fig. 5.5.2.
The two input beams are at different frequencies, as required for A123 to be nonzero. In ad-
dition, they are orthogonally polarized to ensure that E × F is nonzero and are noncollinear
to ensure that P has a transverse component. Generation of a sum-frequency signal at 2314 Å
was reported for both dextrorotatory and levorotatory forms of arabinose, but no signal was
observed when the cell contained a racemic mixture of the two forms. The measured value of
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A123 was 1.3 × 10−18 m/V; for comparison note that d‖ (quartz) = 1.61 × 10−17 m/V. A de-
tailed reexamination of the second-order nonlinear optical properties of this system has been
presented by Belkin et al. (2001).

5.6 Nonlinear Optics of Liquid Crystals

Liquid crystal materials often display large nonlinear optical effects. The time scale for the
development of such effects is often quite long (milliseconds or longer), but even response
times this long are adequate for certain applications.

Liquid crystals are composed of large, anisotropic molecules. Above a certain transition
temperature, which varies significantly among various liquid crystal materials but which might
typically be 100◦C, these materials exist in an isotropic phase in which they behave like or-
dinary liquids. Below this transition temperature, liquid crystals exist in a mesotropic phase
in which the orientation of adjacent molecules becomes highly correlated, giving rise to the
name liquid crystal. At still lower temperatures liquid crystal materials undergo another phase
transition and behave as ordinary solids.

Several different types of order can occur in the mesotropic phase. Two of the most common
are the nematic phase and the chiral nematic phase (which is also known as the cholesteric
phase), which are illustrated in Fig. 5.6.1.

FIGURE 5.6.1: Two examples of ordered-phases (mesophases or mesotropic phases) of liquid crystals.
(a) In the nematic phase, the molecules are randomly distributed in space but are aligned such that the
long axis of each molecule, known as the director, points in the same direction. (b) In the chiral nematic
phase, the molecules in each plane are aligned as in the nematic phase, but the director orientation rotates
between successive planes.

We next present a brief summary of the development of the field of liquid-crystal nonlinear
optics. As early as 1973, Wang and Shen reported an optical nonlinear response for the isotropic
phase of a nematic liquid crystal. Hanson et al. (1977) reported self-focusing of light in a
liquid crystal medium. Giant nonlinearities of liquid crystals in their mesotropic phase were
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reported by Zeldovich et al. (1980) and by Khoo and Zhuang (1980). Janossy and Kosa (1992)
showed that this response could be further increased by doping the liquid crystal with dye
molecules to increase the light-matter interaction. The studies reported above were conducted
using continuous wave laser radiation. Hsiung et al. (1984) reported strong nonlinear response
for excitation with pulsed radiation, even for laser pulse durations significantly shorter than
the response time of the liquid crystal material. Peccianti et al. (2000) reported waveguiding in
liquid crystal materials assisted by the application of a static electric field. This history has been
reviewed more extensively by Khoo and Shen (1985) and by Lukishova (2000). The optical
properties of liquid crystals have been described more generally by Khoo (2007).

Liquid crystalline materials possess strong nonlinear optical effects in both the isotropic
and mesotropic phases. In the isotropic phase, liquid crystal materials display a molecular-
orientation nonlinear response of the sort described in Section 4.4, but typically with a much
larger magnitude. This response is strongly temperature dependent. In one particular case,
Hanson et al. (1977) find that the nonlinear coefficient n2 and the response time τ are given
by

n2 = 2.54 × 10−15

n0(T − T ∗)
m2 K

W
, T > T ∗, (5.6.1)

τ = e2800/T (K)

T − T ∗ 7 × 10−11 ns K, T > T ∗, (5.6.2)

where T ∗ = 77◦C is the liquid-crystal transition temperature. In the range of temperatures from
130 to 80◦C, n2 ranges from 3.2 to 60 × 10−13 cm2/W and τ varies from 1 to 72 nsec. These
n2 values are 10 to 200 times larger than those of carbon disulfide.

Liquid crystal materials possess even stronger nonlinear optical properties in the mesophase
than in the isotropic phase. Once again, the mechanism is one of molecular orientation, but in
this case the process involves the collective orientation of many interacting molecules. The
effective nonlinear response can be as much as 109 times larger than that of carbon disulfide.

Experimental studies of nonlinear optical processes in nematic liquid crystals are often per-
formed with the molecules anchored at the walls of the cell that contains the liquid crystal
material, as shown in Fig. 5.6.2.

The analysis of such a situation proceeds by considering the angle θ + θ0 between the
director and the propagation vector k of the laser beam. Here θ0 is this angle in the absence
of the laser field and θ is the reorientation angle induced by the laser beam. It can be shown
(Khoo, 2007) that this quantity obeys the relation∗

K1
d2θ

dz2
+ (

n2
e − n2

o

) |A|2
4π

sin 2(θ + θ0) = 0. (5.6.3)

∗ For definiteness we assume the geometry of Fig. 5.6.2(b), and we use gaussian units as in Khoo’s treatment.
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FIGURE 5.6.2: Typical cell configurations for studying optical processes in nematic liquid crystals.
(a) Planar alignment: The molecules are induced to anchor at the upper and lower glass walls by rubbing
these surfaces to induce small scratches into which the molecules attach. (b) Homeotropic alignment:
A surfactant is applied to the cell windows to induce the molecules to align perpendicular to the plane of
the window.

FIGURE 5.6.3: Nature of director reorientation and typical molecular alignment of a homeotropic-
alignment, nematic-liquid-crystal cell in the presence of an intense laser beam.

Here K1 is an elastic constant of the liquid crystal and no and ne are the ordinary and
extraordinary values of the refractive index of the nematic liquid crystal in the absence of the
influence of the incident laser beam. This equation is to be solved subject to the boundary
conditions at the input (z = 0) and output (z = d) planes of the cell. Khoo and Shen (1985)
shows that if this procedure is carried through one finds that the director orientation typically
has the form shown in Fig. 5.6.3 and that the resulting change in refractive index, averaged over
the length of the cell, can be expressed as �n = n2I where

n2 = (n2
e − n2

o)
2 sin2(2β)d2

24K1c
. (5.6.4)

This expression can be evaluated for the conditions d = 100 µm, n2
e − n2

o = 0.6, K1 =
10−6(dyne), β = 45◦, giving

n2 = 5 × 10−7 m2/W. (5.6.5)
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Problems

1. Stark shift in hydrogen. Verify Eq. (5.1.5).
2. Nonlinear response of the square-well potential. Making use of the formalism of Sec-

tion 5.1, calculate the linear and third-order susceptibilities of a collection of electrons
confined in a one-dimensional, infinitely deep, square-well potential. Note that this calcu-
lation constitutes a simple model of the optical response of a conjugated polymer. (Hint:
See Rustagi and Ducuing, 1974.)

3. Classical calculation of the second-order response of chiral materials. Consider an anhar-
monic oscillator for which the potential is of the form

V = 1

2

(
kax

2 + kby
2 + kcz

2) + Axyz.

Calculate the response of such an oscillator to an applied field of the form

E(t) = E1e
−iω1t + E2e

−iω2t + c.c.

Then by assuming that there is a randomly oriented distribution of such oscillators, derive
an expression for χ(2) of such a material. Does it possess both symmetric and antisymmetric
contributions? Show that the antisymmetric contribution can be expressed as

P = χNLE1 × E2,

V = 1
2(kax

2 + kby
2 + kcz

2) + Axyz.

Calculate the response of such an oscillator to an applied field of the form

E(t) = E1e
−iω1t + E2e

−iω2t + c.c.

Then by assuming that there is a randomly oriented distribution of such oscillators, derive
an expression for χ(2) of such a material. Does it possess both symmetric and antisymmetric
contributions? Show that the antisymmetric contribution can be expressed as

P = χNLE1 × E2.
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Chapter 6

Nonlinear Optics in the Two-Level
Approximation

6.1 Introduction

Our treatment of nonlinear optics in the previous chapters has for the most part made use of
power series expansions to relate the response of a material system to the strength of the applied
optical field. In simple cases, this relation can be taken to be of the form

P̃ (t) = ε0χ
(1)Ẽ(t) + ε0χ

(2)Ẽ(t)2 + ε0χ
(3)Ẽ(t)3 + · · · . (6.1.1)

However, there are circumstances under which such a power series expansion does not con-
verge, and under such circumstances different methods must be employed to describe nonlinear
optical effects. One example is that of a saturable absorber, where the absorption coefficient α

is related to the intensity I = 2nε0c|E|2 of the applied optical field by the relation

α = α0

1 + I/Is

, (6.1.2)

where α0 is the weak-field absorption coefficient and Is is an optical constant called the satura-
tion intensity. We can expand this equation in a power series to obtain

α = α0
[
1 − (I/Is) + (I/Is)

2 − (I/Is)
3 + · · · ]. (6.1.3)

However, this series converges only for I < Is , and thus only in this limit can saturable absorp-
tion be described by means of a power series of the sort given by Eq. (6.1.1).

It is primarily under conditions such that a transition of the material system is resonantly
excited that perturbation techniques fail to provide an adequate description of the response of
the system to an applied optical field. However, under such conditions it is usually adequate
to deal only with the two atomic levels that are resonantly connected by the optical field. The
increased complexity entailed in describing the atomic system in a nonperturbative manner

Nonlinear Optics. https://doi.org/10.1016/B978-0-12-811002-7.00015-1
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is thus compensated in part by the ability to make the two-level approximation. When only
two levels are included in the theoretical analysis, there is no need to perform the sums over
all atomic states that appear in the general quantum-mechanical expressions for χ(3) given in
Chapter 3.

In the present chapter, we shall for the most part concentrate on the situation in which a
monochromatic beam of frequency ω interacts with a collection of two-level atoms. The treat-
ment is thus an extension of that of Chapter 4, which treated the interaction of a monochromatic
beam with a nonlinear medium in terms of the third-order susceptibility χ(3)(ω = ω + ω − ω).
In addition, in the last two sections of this chapter we generalize the treatment by studying
nondegenerate four-wave mixing involving a collection of two-level atoms.

Even though the two-level model ignores many of the features present in real atomic sys-
tems, there is still an enormous richness in the physical processes that are described within
the two-level approximation. Some of the processes that can occur and that are described in
the present chapter include saturation effects, power broadening, Rabi oscillations, and optical
Stark shifts. Parallel treatments of optical nonlinearities in two-level atoms can be found in
the books of Allen and Eberly (1975) and Cohen-Tannoudji et al. (1989) and in the reviews of
Sargent (1978) and Boyd and Sargent (1988).

6.2 Density Matrix Equations of Motion for a Two-Level Atom

We first consider the density matrix equations of motion for a two-level system in the absence
of damping effects. Since damping mechanisms can be very different under different physical
conditions, there is no unique way to include damping in the model. The present treatment thus
serves as a starting point for the inclusion of damping by any mechanism.

FIGURE 6.2.1: Near-resonant excitation of a two-level atom.

The interaction we are treating is illustrated in Fig. 6.2.1. The lower atomic level is denoted
a and the upper level b. We represent the Hamiltonian for this system as

Ĥ = Ĥ0 + V̂ (t), (6.2.1)

where Ĥ0 denotes the atomic Hamiltonian and V̂ (t) denotes the energy of interaction of the
atom with the electromagnetic field. We denote the energies of the states a and b as

Ea = �ωa and Eb = �ωb. (6.2.2)
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The Hamiltonian Ĥ0 can thus be represented by the diagonal matrix whose elements are given
by

H0,nm = Enδnm. (6.2.3)

We assume that the interaction energy can be adequately described in the electric dipole
approximation, in which case the interaction Hamiltonian has the form

V̂ (t) = −μ̂Ẽ(t). (6.2.4)

We also assume that the atomic wave functions corresponding to states a and b have definite
parity so that the diagonal matrix elements of μ̂ vanish—that is, we assume that μaa = μbb = 0
and thus that

Vaa = Vbb = 0. (6.2.5)

The only nonvanishing elements of Ṽ are hence Vba and Vab, which are given explicitly by

Vba = V ∗
ab = −μbaẼ(t). (6.2.6)

We describe the state of this system by means of the density matrix, which is given explicitly
by

ρ̂ =
[
ρaa ρab

ρba ρbb

]
, (6.2.7)

where ρba = ρ∗
ab. The time evolution of the density matrix is given, still in the absence of

damping effects, by Eq. (3.3.21) as

ρ̇nm = −i

�

[
Ĥ , ρ̂

]
nm

= −i

�

[(
Ĥ ρ̂

)
nm

− (
ρ̂Ĥ

)
nm

]
= −i

�

∑
v

(Hnvρvm − ρnvHvm). (6.2.8)

We now introduce the decomposition of the Hamiltonian into atomic and interaction parts
(Eq. (6.2.1)) into this expression to obtain

ρ̇nm = −iωnmρnm − i

�

∑
ν

(Vnνρνm − ρnνVνm), (6.2.9)

where we have introduced the transition frequency ωnm = (En − Em)/�. For the case of the
two-level atom, the indices n, m, and ν can take on the values a or b only, and the equations of
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motion for the density matrix elements are given explicitly as

ρ̇ba = −iωbaρba + i

�
Vba(ρbb − ρaa), (6.2.10a)

ρ̇bb = −i

�
(Vbaρab − ρbaVab), (6.2.10b)

ρ̇aa = −i

�
(Vabρba − ρabVba). (6.2.10c)

It can be seen by inspection that

ρ̇bb + ρ̇aa = 0, (6.2.11)

which shows that the total population ρbb + ρaa is a conserved quantity. From the definition of
the density matrix, we know that the diagonal elements of ρ̂ represent probabilities of occupa-
tion, and hence that

ρaa + ρbb = 1. (6.2.12)

No separate equation of motion is required for ρab, because of the relation ρab = ρ∗
ba .

Eqs. (6.2.10) constitute the density matrix equations of motion for a two-level atom in the
absence of relaxation processes. These equations provide an adequate description of resonant
nonlinear optical processes under conditions where relaxation processes can be neglected, such
as excitation with short pulses whose duration is much less than the material relaxation times.
We next see how these equations are modified in the presence of relaxation processes.

6.2.1 Closed Two-Level Atom

Let us first consider relaxation processes of the sort illustrated schematically in Fig. 6.2.2. We
assume that the upper level b decays to the lower level a at a rate 	ba and therefore that the
lifetime of the upper level is given by T1 = 1/	ba . Typically, the decay of the upper level
would be due to spontaneous emission. This system is called closed, because any population
that leaves the upper level enters the lower level. We also assume that the atomic dipole moment
is dephased in the characteristic time T2, leading to a transition linewidth (for weak applied
fields) of characteristic width γba = 1/T2.∗

∗ In fact, one can see from Eq. (6.3.25) that the full width at half maximum in angular frequency units of the
absorption line in the limit of weak fields is equal to 2γba .
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FIGURE 6.2.2: Relaxation processes of the closed two-level atom.

We can describe these relaxation processes mathematically by adding decay terms phe-
nomenologically to Eqs. (6.2.10); the modified equations are given by

ρ̇ba = −
(

iωba + 1

T2

)
ρba + i

�
Vba(ρbb − ρaa), (6.2.13a)

ρ̇bb = −ρbb

T1
− i

�
(Vbaρab − ρbaVab), (6.2.13b)

ρ̇aa = ρbb

T1
+ i

�
(Vbaρab − ρbaVab). (6.2.13c)

The forms of the relaxation terms included in these equations will be justified in the discussion
given below. One can see by inspection of Eqs. (6.2.13) that the condition

ρ̇bb + ρ̇aa = 0 (6.2.14)

is still satisfied.
Since Eq. (6.2.13a) depends on the populations ρbb and ρaa only in terms of the population

difference, ρbb − ρaa , it is useful to consider the equation of motion satisfied by this difference
itself. We subtract Eq. (6.2.13c) from Eq. (6.2.13b) to find that

d

dt
(ρbb − ρaa) = −2ρbb

T1
− 2i

�
(Vbaρab − ρbaVab). (6.2.15)

The first term on the right-hand side can be rewritten using the relation 2ρbb = (ρbb − ρaa) +
(ρbb + ρaa) = (ρbb − ρaa) + 1, where we have made use of Eq. (6.2.12), to obtain

d

dt
(ρbb − ρaa) = −(ρbb − ρaa) + 1

T1
− 2i

�
(Vbaρab − ρbaVab). (6.2.16)

This relation is often generalized by allowing the possibility that the population difference
(ρbb − ρaa)

(eq) in thermal equilibrium can have some value other than −1, the value taken
above by assuming that all of the population resides in the ground state in thermal equilibrium.
This generalized version of Eq. (6.2.16) is given by

d

dt
(ρbb − ρaa) = −(ρbb − ρaa) − (ρbb − ρaa)

(eq)

T1
− 2i

�
(Vbaρab − ρbaVab). (6.2.17)
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We therefore see that for a closed two-level system the density matrix equations of motion
reduce to just two coupled equations, Eqs. (6.2.13a) and (6.2.17).

In order to justify the choice of relaxation terms used in Eqs. (6.2.13a) and (6.2.17), let us
examine the nature of the solutions to these equations in the absence of an applied field—that
is, for Vba = 0. The solution to Eq. (6.2.17) is[

ρbb(t) − ρaa(t)
] = (ρbb − ρaa)

(eq)

+ {[
ρbb(0) − ρaa(0)

] − (ρbb − ρaa)
(eq)

}
e−t/T1 . (6.2.18)

This equation shows that the population inversion [ρbb(t)−ρaa(t)] relaxes from its initial value
ρbb(0) − ρaa(0) to its equilibrium value (ρbb − ρaa)

(eq) in a time of the order of T1. For this
reason, T1 is called the population relaxation time.

Similarly, the solution to Eq. (6.2.13a) for the case Vba = 0 is of the form

ρba(t) = ρba(0)e−(iωba+1/T2)t . (6.2.19)

We can interpret this result more directly by considering the expectation value of the induced
dipole moment, which is given by (see also Eq. (3.3.36))〈

μ̃(t)
〉 = Tr(ρ̂μ̂) = μabρba(t) + μbaρab(t) = μabρba(0)e−(iωba+1/T2)t + c.c.

= [
μabρba(0)e−iωbat + c.c.

]
e−t/T2 . (6.2.20)

This result shows that, for an undriven atom, the dipole moment oscillates at frequency ωba

and decays to zero in the characteristic time T2, which is hence known as the dipole dephasing
time.

For reasons that were discussed in relation to Eq. (3.3.25), T1 and T2 are related to the
collisional dephasing rate γc by

1

T2
= 1

2T1
+ γc. (6.2.21a)

For an atomic vapor, γc is usually described accurately by the formula

γc = CsN + Cf Nf , (6.2.21b)

where N is the number density of atoms having resonance frequency ωba , and Nf is the number
density of any “foreign” atoms of a different atomic species having a different resonance fre-
quency. The parameters Cs and Cf are coefficients describing self-broadening and foreign-gas
broadening, respectively. As an example, for the resonance line (i.e., the 3s → 3p transition) of
atomic sodium, T1 is equal to 16 nsec, Cs = 1.50 × 10−7 cm3/sec, and for the case of foreign-
gas broadening by collisions with argon atoms, Cf = 2.53 × 10−9 cm3/sec. The values of T1,
Cs , and Cf for other transitions are tabulated, for example, by Miles and Harris (1973).
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FIGURE 6.2.3: Relaxation processes for the open two-level atom.

6.2.2 Open Two-Level Atom

The open two-level atom is shown schematically in Fig. 6.2.3. Here the upper and lower levels
are allowed to exchange population with associated reservoir levels. These levels might, for
example, be magnetic sublevels or hyperfine levels associated with states a and b. The system
is called open because the population that leaves the upper level does not necessarily enter the
lower level. This model is often encountered in connection with laser theory, in which case the
upper level or both levels are assumed to acquire population at some controllable pump rates,
which we take to be λb and λa for levels b and a, respectively. As previously, we assume that the
induced dipole moment relaxes in a characteristic time T2. In order to account for relaxation and
pumping processes of the sort just described, the density matrix equations (6.2.10) are modified
to become

ρ̇ba = −
(

iωba + 1

T2

)
ρba + i

�
Vba(ρbb − ρaa), (6.2.22a)

ρ̇bb = λb − 	b(ρbb − ρ
(eq)

bb ) − i

�
(Vbaρab − ρbaVab), (6.2.22b)

ρ̇aa = λa − 	a(ρaa − ρ
(eq)
aa ) + i

�
(Vbaρab − ρbaVab). (6.2.22c)

Note that in this case the total population contained in the two levels a and b is not conserved
and that in general all three equations must be considered. The relaxation rates are related to
the collisional dephasing rate γc and population rates 	b and 	a by

1

T2
= 1

2(	b + 	a) + γc. (6.2.23)

6.2.3 Two-Level Atom with a Non-Radiatively Coupled Third Level

We next consider the energy level scheme shown in Fig. 6.2.4, which is often used to model
a saturable absorber. Population spontaneously leaves the optically excited level b at a rate
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FIGURE 6.2.4: Relaxation processes for a two-level atom with a nonradiatively coupled third level.

	ba + 	bc, where 	ba is the rate of decay to the ground state a, and 	bc is the rate of decay
to level c. Level c acts as a trap level; population decays from level c back to the ground state
at a rate 	ca . The lifetime Tc of population in level c is given by Tc = 1/	ca and is usually
assumed to be the longest time scale in the problem. In addition, any dipole moment associated
with the transition between levels a and b is damped at a rate γba . These relaxation processes
are modeled by modifying Eqs. (6.2.10) to take on the form

ρ̇ba = −(iωba + γba)ρba + i

�
Vba(ρbb − ρaa), (6.2.24a)

ρ̇bb = −(	ba + 	bc)ρbb − i

�
(Vbaρab − ρbaVab), (6.2.24b)

ρ̇cc = 	bcρbb − 	caρcc, (6.2.24c)

ρ̇aa = 	baρbb + 	caρcc + i

�
(Vbaρab − ρbaVab). (6.2.24d)

It can be seen by inspection that the total population in the three levels is conserved, that is, that

ρ̇aa + ρ̇bb + ρ̇cc = 0.

6.3 Steady-State Response of a Two-Level Atom to a Monochromatic
Field

We next examine the nature of the solution to the density matrix equations of motion for a
two-level atom in the presence of a monochromatic, steady-state field. For definiteness, we
treat the case of a closed two-level atom, although our results would be qualitatively similar for
any of the models described above (see Problem 1 at the end of this chapter). For the closed
two-level atomic system, the density matrix equations were shown above (Eqs. (6.2.13a) and
(6.2.17)) to be of the form

d

dt
ρba = −

(
iωba + 1

T2

)
ρba + i

�
Vba(ρbb − ρaa), (6.3.1)

d

dt
(ρbb − ρaa) = −(ρbb − ρaa) − (ρbb − ρaa)

(eq)

T1
− 2i

�
(Vbaρab − ρbaVab). (6.3.2)
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In the electric dipole approximation, the interaction Hamiltonian for an applied field in the form
of a monochromatic wave of frequency ω is given by

V̂ = −μ̂Ẽ(t) = −μ̂
(
Ee−iωt + E∗eiωt

)
, (6.3.3)

and the matrix elements of the interaction Hamiltonian are then given by

Vba = −μba

(
Ee−iωt + E∗eiωt

)
. (6.3.4)

Eqs. (6.3.1) and (6.3.2) cannot be solved exactly for Vba given by Eq. (6.3.4). However,
they can be solved in an approximation known as the rotating-wave approximation. We recall
from the discussion of Eq. (6.2.20) that, in the absence of a driving field, ρba tends to evolve
in time as exp(−iωbat). For this reason, when ω is approximately equal to ωba , the part of Vba

that oscillates as e−iωt acts as a far more effective driving term for ρba than does the part that
oscillates as eiωt . It is thus a good approximation to take Vba not as Eq. (6.3.4) but instead as

Vba = −μbaEe−iωt . (6.3.5)

This approximation is called the rotating-wave approximation. Within this approximation, the
density matrix equations of motion (6.3.1) and (6.3.2) become

d

dt
ρba = −

(
iωba + 1

T2

)
ρba − i

�
μbaEe−iωt (ρbb − ρaa), (6.3.6)

d

dt
(ρbb − ρaa) = −(ρbb − ρaa) − (ρbb − ρaa)

(eq)

T1

+ 2i

�

(
μbaEe−iωtρab − μabE

∗eiωtρba

)
. (6.3.7)

Note that, in the rotating-wave approximation, ρba is driven only at nearly its resonance fre-
quency ωba , and ρbb −ρaa is driven only at nearly zero frequency, which is its natural frequency.

We next find the steady-state solution to Eqs. (6.3.6) and (6.3.7), that is, the solution which
is valid long after the transients associated with the turn-on of the driving field have died out.
We do so by introducing the slowly varying quantity σba , defined by

ρba(t) = σba(t)e
−iωt . (6.3.8)

Eqs. (6.3.6) and (6.3.7) then become

d

dt
σba =

[
i(ω − ωba) − 1

T2

]
σba − i

�
μbaE(ρbb − ρaa), (6.3.9)

d

dt
(ρbb − ρaa) = −(ρbb − ρaa) − (ρbb − ρaa)

(eq)

T1

+ 2i

�

(
μbaEσab − μabE

∗σba

)
. (6.3.10)



282 Chapter 6

The steady-state solution can now be obtained by setting the left-hand sides of Eqs. (6.3.9) and
(6.3.10) equal to zero. We thereby obtain two coupled equations, which we solve algebraically
to obtain

ρbb − ρaa = (ρbb − ρaa)
(eq)[1 + (ω − ωba)

2T 2
2 ]

1 + (ω − ωba)2T 2
2 + (4/�2)|μba|2|E|2T1T2

, (6.3.11)

ρba = σbae
−iωt = μbaEe−iωt (ρbb − ρaa)

�(ω − ωba + i/T2)
. (6.3.12)

We now use this result to calculate the polarization (i.e., the dipole moment per unit vol-
ume), which is given in terms of the off-diagonal elements of the density matrix by (see also
Eq. (3.3.36))

P̃ (t) = N〈μ̃〉 = N Tr
( ˆ̃ρ ˆ̃μ) = N(μabρba + μbaρab), (6.3.13)

where N is the number density of atoms. We introduce the complex amplitude P of the polar-
ization through the relation

P̃ (t) = Pe−iωt + c.c., (6.3.14)

and we define the susceptibility χ as the constant of proportionality relating P and E according
to

P = ε0χE. (6.3.15)

We hence find from Eqs. (6.3.12) through (6.3.15) that the susceptibility is given by

χ = N |μba|2(ρbb − ρaa)

ε0�(ω − ωba + i/T2)
, (6.3.16)

where ρbb − ρaa is given by Eq. (6.3.11). We introduce this expression for [ρbb − ρaa] into
Eq. (6.3.16) and rationalize the denominator to obtain the result

χ = N(ρbb − ρaa)
(eq)|μba|2(ω − ωba − i/T2)T

2
2 /ε0�

1 + (ω − ωba)2T 2
2 + (4/�2)|μba|2|E|2T1T2

. (6.3.17)

Note that this expression gives the total susceptibility, including both its linear and nonlinear
contributions.

We next introduce new notation to simplify this expression. We introduce the quantity

 = 2|μba| |E|/�, (6.3.18)

which is known as the on-resonance Rabi frequency, and the quantity

� = ω − ωba, (6.3.19)
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which is known as the detuning factor, so that the susceptibility can be expressed as

χ =
[
N(ρbb − ρaa)

(eq)|μba|2 T2

ε0�

]
�T2 − i

1 + �2T 2
2 + 2T1T2

. (6.3.20)

Next, we express the combination of factors set off by square brackets in this expression in
terms of the normal (i.e., linear) absorption coefficient of the material system, which is a directly
measurable quantity. The absorption coefficient is given in general by∗

α = 2ω

c
Imn = 2ω

c
Im

[
(1 + χ)1/2], (6.3.21a)

and, whenever the condition |χ | � 1 is valid, the absorption coefficient can be expressed by

α = ω

c
Imχ. (6.3.21b)

If we let α0(�) denote the absorption coefficient experienced by a weak optical wave de-
tuned from the atomic resonance by an amount �, we find by ignoring the contribution 2T1T2

to the denominator of Eq. (6.3.20) that α0(�) can be expressed as

α0(�) = α0(0)

1 + �2T 2
2

, (6.3.22a)

where the unsaturated, line-center absorption coefficient is given by

α0(0) = −ωba

c

[
N(ρbb − ρaa)

(eq)|μba|2 T2

ε0�

]
. (6.3.22b)

By introducing this last expression into Eq. (6.3.20), we find that the susceptibility can be
expressed as

χ = − α0(0)

ωba/c

�T2 − i

1 + �2T 2
2 + 2T1T2

. (6.3.23)

In order to interpret this result, it is useful to express the susceptibility as χ = χ ′ + iχ ′′ with
its real and imaginary parts given by

χ ′ = − α0(0)

ωba/c

1√
1 + 2T1T2

�T2/
√

1 + 2T1T2

1 + �2T 2
2 /(1 + 2T1T2)

, (6.3.24a)

∗ To justify the first equality of Eq. (6.3.21a), we recall that the absorption coefficient α is implicitly defined by

the relation I (z) = I (0) exp (−αz), where I (z) = 2nε0c|E(z)|2 is the optical intensity. We also recall that the
propagation of a plane-wave field in the z direction is described by E(z) = E(0) exp(ikz) = E(0) exp(inωz/c).
We thus find that I (z) = 2nε0cE(z)E∗(z) = I (0) exp(−2 Imnω z/c). By comparison of the two expressions for
I (z), find that α = 2 Imnω/c.
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χ ′′ = α0(0)

ωba/c

(
1

1 + 2T1T2

)
1

1 + �2T 2
2 /(1 + 2T1T2)

. (6.3.24b)

We see from these expressions that, even in the presence of an intense laser field, χ ′ has
a standard dispersive lineshape and χ ′′ has a Lorentzian lineshape. However, each of these
lines has been broadened with respect to its weak-field width by the factor (1 + 2T1T2)

1/2. In
particular, the width of the absorption line (full width at half maximum) is given by

�ωFWHM = 2

T2

(
1 + 2T1T2

)1/2
. (6.3.25)

The tendency of spectral lines to become broadened when measured using intense optical fields
is known as power broadening. We also see (e.g., from Eq. (6.3.24b)) that the line center value
of χ ′′ (and consequently of the absorption coefficient α) is decreased with respect to its weak-
field value by the factor (1 + 2T1T2)

1/2. The tendency of the absorption to decrease when
measured using intense optical fields is known as saturation. This behavior is illustrated in
Fig. 6.3.1.

FIGURE 6.3.1: Real and imaginary parts of the susceptibility χ (in units of α0c/ωba) plotted as functions
of the optical frequency ω for several values of the saturation parameter 2T1T2.
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It is convenient to define, by means of the relation

2T1T2 = |E|2
|E0

s |2
, (6.3.26)

the quantity E0
s , which is known as the line-center saturation field strength. Through the use of

Eq. (6.3.18), we find that E0
s is given explicitly by

∣∣E0
s

∣∣2 = �
2

4|μba|2T1T2
. (6.3.27)

The expression (6.3.23) for the susceptibility can be rewritten in terms of the saturation field
strength as

χ = −α0(0)

ωba/c

�T2 − i

1 + �2T 2
2 + |E|2/|E0

s |2
. (6.3.28)

We see from this expression that the significance of E0
s is that the absorption experienced by

an optical wave tuned to line center (which is proportional to Imχ evaluated at � = 0) drops
to one-half its weak-field value when the optical field has a strength of E0

s . We can analogously
define a saturation field strength for a wave of arbitrary detuning, which we denote E�

s , by
means of the relation

∣∣E�
s

∣∣2 = ∣∣E0
s

∣∣2(1 + �2T 2
2

)
. (6.3.29)

We then see from Eq. (6.3.28) that Imχ drops to one-half its weak-field value when a field of
detuning � has a field strength of E�

s .
It is also useful to define the saturation intensity for a wave at line center (assuming that

|n − 1| � 1) as

I 0
s = 2ε0c

∣∣E0
s

∣∣2
, (6.3.30)

and the saturation intensity for a wave of arbitrary detuning as

I�
s = 2ε0c

∣∣E�
s

∣∣2 = I 0
s

(
1 + �2T 2

2

)
. (6.3.31)

In order to relate our present treatment of the nonlinear optical susceptibility to the pertur-
bative treatment that we have used in the previous chapters, we next calculate the first- and
third-order contributions to the susceptibility of a collection of two-level atoms. By performing
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a power series expansion of Eq. (6.3.28) in the quantity |E|2/|E0
s |2 and retaining only the first

and second terms, we find that the susceptibility can be approximated as

χ � −α0(0)

ωba/c

(
�T2 − i

1 + �2T 2
2

)(
1 − 1

1 + �2T 2
2

|E|2
|E0

s |2
)

. (6.3.32)

We now equate this expression with the usual power series expansion χ = χ(1) + 3χ(3)|E2|
(where χ(3) ≡ χ(3)(ω = ω + ω − ω)) to find that the first- and third-order susceptibilities are
given by

χ(1) = −α0(0)

ωba/c

�T2 − i

1 + �2T 2
2

, (6.3.33a)

χ(3) = α0(0)

3ωba/c

[
�T2 − i

(1 + �2T 2
2 )2

]
1

|E0
s |2

. (6.3.33b)

The frequency dependence of χ(3) as given by this expression is illustrated in Fig. 6.3.2. Note
that the sign of χ(3) is the opposite of that of χ(1). One can understand this result by noting that
χ(3) represents a saturation of the optical response.

For some purposes, it is useful to express the nonlinear susceptibility in terms of the line-
center saturation intensity as

χ(3) = α0(0)

3ωba/c

[
�T2 − i

(1 + �2T 2
2 )2

]
2ε0c

I 0
s

(6.3.34a)

or, through the use of Eqs. (6.3.22a) and (6.3.31), in terms of the saturation intensity and ab-
sorption coefficient at the laser frequency as

χ(3) = α0(�)(�T2 − i)

3ωba/c

2ε0c

I�
s

. (6.3.34b)

Note also that the third-order susceptibility can be related to the linear susceptibility by

χ(3) = −χ(1)

3(1 + �2T 2
2 )|E0

s |2
= −χ(1)

3|E�
s |2 . (6.3.35)

Furthermore, through use of Eqs. (6.3.22b) and (6.3.27), the first- and third-order susceptibili-
ties can be expressed in terms of microscopic quantities as

χ(1) =
[
N(ρbb − ρaa)

(eq)|μba|2 T2

ε0�

]
�T2 − i

1 + �2T 2
2

, (6.3.36a)

χ(3) = −4
3N(ρbb − ρaa)

(eq)|μba|4 T1T
2

2

ε0�
3

�T2 − i

(1 + �2T 2
2 )2

. (6.3.36b)
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FIGURE 6.3.2: Real and imaginary parts of the third-order susceptibility χ(3) plotted as functions of the
optical frequency ω.

In the limit �T2 
 1, the expression for χ(3) reduces to

χ(3) = −4
3N(ρbb − ρaa)

(eq)|μba|4 1

�3�3

T1

T2
. (6.3.37)

Let us consider the magnitudes of some of the physical quantities we have introduced in
this section. Since (for n = 1) the intensity of an optical wave with field strength E is given by
I = 2ε0c|E|2, the Rabi frequency of Eq. (6.3.18) can be expressed as

 = 2|μba|
�

(
I

2ε0c

)1/2

. (6.3.38)

Assuming that |μba| = 2.5ea0 = 2.0 × 10−29 Cm (as it is for the 3s → 3p transition of atomic
sodium) and that I is measured in W/cm2, this relationship gives the numerical result

[rad/sec] = 2π
(
1 × 109)(I [W/cm2]

127

)1/2

. (6.3.39)
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Hence, whenever the intensity I exceeds 127 W/cm2, /2π becomes greater than 1 GHz,
which is a typical value of the Doppler-broadened linewidth of an atomic transition. Intensities
this large are available from the focused output of even low-power, cw lasers.

The saturation intensity of an atomic transition can be quite small. Again using |μba| =
2.0×10−29 Cm, and assuming that T1 = 16 nsec (the value for the 3p → 3s transition of atomic
sodium) and that T2/T1 = 2 (the ratio for a radiatively broadened transition; see Eq. (6.2.21a)),
we find from Eq. (6.3.30) that

I 0
s = 5.27

mW

cm2
= 52.7

W

m2
. (6.3.40)

Lastly, let us consider the magnitude of χ(3) under conditions of the near-resonant excitation
of an atomic transition. We take the typical values N = 1014 cm−3, (ρbb − ρaa)

(eq) = −1,
μba = 2.0 × 10−29 Cm, � = ω − ωba = 2πc (1 cm−1) = 6π × 1010 rad/sec, and T2/T1 = 2,
in which case we find from Eq. (6.3.37) that χ(3) = 2.1 × 10−16 m2/V2. Note that this value is
very much larger than the values of the nonresonant susceptibilities discussed in Chapter 4.

6.4 Optical Bloch Equations

In the previous two sections, we treated the response of a two-level atom to an applied optical
field by working directly with the density matrix equations of motion. We chose to work with
the density matrix equations in order to establish a connection with the calculation of the third-
order susceptibility presented in Chapter 3. However, in theoretical quantum optics the response
of a two-level atom is often treated through use of the optical Bloch equations or through related
theoretical formalisms. Although these various formalisms are equivalent in their predictions,
the equations of motion look different within different formalisms, and consequently different
intuition regarding the nature of resonant optical nonlinearities is obtained. In this section, we
review several of these formalisms.

We have seen (Eqs. (6.3.9) and (6.3.10)) that the density matrix equations describing the
interaction of a closed two-level atomic system with the optical field

Ẽ(t) = E(t)e−iωt + c.c., (6.4.1)

can be written in the rotating-wave approximation as

d

dt
σba =

[
i(ω − ωba) − 1

T2

]
σba − i

�
μbaE(ρbb − ρaa), (6.4.2a)

d

dt
(ρbb − ρaa) = −(ρbb − ρaa) − (ρbb − ρaa)

(eq)

T1
(6.4.2b)

+ 2i

�
(μbaEσab − μabE

∗σba), (6.4.2c)
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where the slowly varying, off-diagonal density matrix component σba(t) is defined by

ρba(t) = σba(t)e
−iωt . (6.4.3)

The form of Eqs. (6.4.2) can be greatly simplified by introducing the following quantities:
1. The population inversions

w = ρbb − ρaa and w(eq) = (ρbb − ρaa)
(eq) (6.4.4a)

2. The detuning of the optical field from resonance,∗

� = ω − ωba (6.4.4b)

3. The atom–field coupling constant

κ = 2μba/�. (6.4.4c)

We also drop the subscripts on σba for compactness. The density matrix equations of mo-
tion (6.4.2) then take the simpler form

d

dt
σ =

(
i� − 1

T2

)
σ − 1

2 iκEw, (6.4.5a)

d

dt
w = −w − w(eq)

T1
+ i(κEσ ∗ − κ∗E∗σ). (6.4.5b)

It is instructive to consider the equation of motion satisfied by the complex amplitude of the
induced dipole moment. We first note that the expectation value of the induced dipole moment
is given by

〈 ˆ̃μ〉 = Tr(ρ̂μ̂) = ρbaμab + ρabμba = σbaμabe
−iωt + σabμbae

iωt . (6.4.6)

If we define the complex amplitude p of the dipole moment 〈 ˆ̃μ〉 through the relation

〈 ˆ̃μ〉 = pe−iωt + c.c., (6.4.7)

we find by comparison with Eq. (6.4.6) that

p = σbaμab. (6.4.8)

Eqs. (6.4.5) can hence be rewritten in terms of the dipole amplitude p as

dp

dt
=

(
i� − 1

T2

)
p − �

4
i|κ|2Ew, (6.4.9a)

dw

dt
= −w − w(eq)

T1
− 4

�
Im(Ep∗). (6.4.9b)

∗ Note that some authors use the opposite sign convention for �.
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These equations illustrate the nature of the coupling between the atom and the optical field.
Note that they are linear in the atomic variables p and w and in the applied field amplitude E.
However, the coupling is parametric: the dipole moment p is driven by a term that depends
on the product of E with the inversion w, and likewise the inversion is driven by a term that
depends on the product of E with p.

For those cases in which the field amplitude E can be taken to be a real quantity, the density
matrix equations (6.4.5) can be simplified in a different way. We assume that the phase conven-
tion for describing the atomic energy eigenstates has been chosen such that μba and hence κ

are real quantities. It is then useful to express the density matrix element σ in terms of two real
quantities u and v as

σ = 1
2(u − iv). (6.4.10)

The factor of one-half and the minus sign are used here to conform with convention (Allen and
Eberly, 1975). This definition is introduced into Eq. (6.4.5b), which becomes

d

dt
(u − iv) =

(
i� − 1

T2

)
(u − iv) − iκEw.

This equation can be separated into its real and imaginary parts as

d

dt
u = �v − u

T2
, (6.4.11a)

d

dt
v = −�u − v

T2
+ κEw. (6.4.11b)

Similarly, Eq. (6.4.5b) becomes

d

dt
w = −w − w(eq)

T1
− κEv. (6.4.11c)

The set (6.4.11) is known as the optical Bloch equations.
We next show that in the absence of relaxation processes (i.e., in the limit T1, T2 → ∞) the

variables u, v, and w obey the conservation law

u2 + v2 + w2 = 1. (6.4.12)

First, we note that the time derivative of u2 + v2 + w2 vanishes:

d

dt

(
u2 + v2 + w2) = 2u

du

dt
+ 2v

dv

dt
+ 2w

dw

dt
= 2u�v − 2v�u + 2vκEw − 2wκEv

= 0, (6.4.13)
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where we have used Eqs. (6.4.11) in obtaining expressions for the time derivatives. We hence
see that u2 + v2 + w2 is a constant. Next, we note that before the optical field is applied the
atom must be in its ground state and hence that w = −1 and u = v = 0 (as there can be no
probability amplitude to be in the upper level). In this case we see that u2 + v2 + w2 is equal
to 1, but since the quantity u2 + v2 + w2 is conserved, it must have this value at all times. We
also note that since all of the damping terms in Eqs. (6.4.11) have negative signs associated
with them, it must generally be true that

u2 + v2 + w2 ≤ 1. (6.4.14)

6.4.1 Harmonic Oscillator Form of the Density Matrix Equations

Still different intuition regarding the nature of resonant optical nonlinearities can be obtained
by considering the equation of motion satisfied by the expectation value of the dipole moment
induced by the applied field (rather than considering the equation satisfied by its complex am-
plitude). This quantity is given by

M̃ ≡ 〈 ˆ̃μ〉 = ρbaμab + c.c. (6.4.15)

For simplicity of notation, we have introduced the new symbol M̃ rather than continuing to
use 〈 ˆ̃μ〉. Note that M̃ is a real quantity that oscillates at an optical frequency.

We take the density matrix equations of motion in the form

ρ̇ba = −
(

iωba + 1

T2

)
ρba − i

�
μbaẼw, (6.4.16a)

ẇ = −w − w(eq)

T1
+ 4Ẽ

�
Im(μabρba), (6.4.16b)

where the dot denotes a time derivative. These equations follow from Eqs. (6.2.6), (6.2.13a),
and (6.2.17) and the definition w = ρbb −ρaa . Here Ẽ is the real, time-varying optical field; note
that we have not made the rotating-wave approximation. We find by direct time differentiation
of Eq. (6.4.15) and subsequent use of Eq. (6.4.16a) that the time derivative of M̃ is given by

˙̃
M = ρ̇baμab + c.c.

= −
(

iωba + 1

T2

)
ρbaμab − i

�
|μba|2Ẽw + c.c.

= −
(

iωba + 1

T2

)
ρbaμab + c.c. (6.4.17)
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We have dropped the second term in the second-to-last form because it is imaginary and disap-
pears when added to its complex conjugate. Next, we calculate the second time derivative of M̃

by taking the time derivative of Eq. (6.4.17) and introducing expression (6.4.16a) for ρ̇ba:

¨̃
M = −

(
iωba + 1

T2

)
ρ̇baμab + c.c.

=
(

iωba + 1

T2

)2

ρbaμab + i

�

(
iωba + 1

T2

)
|μba|2Ẽw + c.c.

or

¨̃
M =

(
−ω2

ba + 2iωba

T2
+ 1

T 2
2

)
ρbaμab − ωba

�
|μba|2Ẽw + c.c. (6.4.18)

If we now introduce Eqs. (6.4.15) and (6.4.17) into this expression, we find that M̃ obeys
the equation

¨̃
M + 2

T2

˙̃
M + ω2

baM̃ = −M̃

T 2
2

− 2ωba

�
|μba|2Ẽw. (6.4.19)

Since ω2
ba is much larger than 1/T 2

2 in all physically realistic circumstances, we can drop the
first term on the right-hand side of this expression to obtain the result

¨̃
M + 2

T2

˙̃
M + ω2

baM̃ = −2ωba

�
|μba|2Ẽw. (6.4.20)

This is the equation of a damped, driven harmonic oscillator. Note that the driving term is
proportional to the product of the applied field strength Ẽ(t) with the inversion w.

We next consider the equation of motion satisfied by the inversion w. In order to simplify
Eq. (6.4.16b), we need an explicit expression for Im(ρbaμab). To find such an expression, we
rewrite Eq. (6.4.17) as

˙̃
M = −

(
iωba + 1

T2

)
ρbaμab + c.c.

= −iωba(ρbaμab − c.c.) − 1

T2
(ρbaμab + c.c.)

= 2ωba Im(ρbaμab) − M̃

T2
, (6.4.21)

which shows that

Im(ρbaμab) = 1

2ωba

(
˙̃

M + M̃

T2

)
. (6.4.22)
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This result is now introduced into Eq. (6.4.16b), which becomes

ẇ = −w − w(eq)

T1
+ 2Ẽ

�ωba

(
˙̃

M + M̃

T2

)
. (6.4.23)

Since ˙̃
M oscillates at an optical frequency (which is much larger than 1/T2), the term M̃/T2

can be omitted, yielding the result

ẇ = −w − w(eq)

T1
+ 2

�ωba

Ẽ
˙̃

M. (6.4.24)

We see that the inversion w is driven by the product of Ẽ with ˙̃
M , which is proportional to the

part of M̃ that is 90 degrees out of phase with Ẽ. We also see that w relaxes to its equilibrium
value w(eq) (which is typically equal to −1) in a time of the order of T1.

Eqs. (6.4.20) and (6.4.24) provide a description of the two-level atomic system. Note that
each equation is linear in the atomic variables M̃ and w. The origin of the nonlinear response
of atomic systems lies in the fact that the coupling to the optical field depends parametrically
on the atomic variables. A linear harmonic oscillator, for example, would be described by
Eq. (6.4.20) with the inversion w held fixed at the value −1. The fact that the coupling de-
pends on the inversion w, whose value depends on the applied field strength as described by
Eq. (6.4.24), leads to nonlinearities.

6.4.2 Adiabatic-Following Limit

The treatment of Section 6.3 considered the steady-state response of a two-level atom to a cw
laser field. The adiabatic-following limit (Grischkowsky, 1970) is another limit in which it is
relatively easy to obtain solutions to the density matrix equations of motion. The nature of the
adiabatic-following approximation is as follows: We assume that the optical field is in the form
of a pulse whose length τp obeys the condition

τp � T1, T2; (6.4.25)

we thus assume that essentially no relaxation occurs during the optical pulse. In addition, we
assume that the laser is detuned sufficiently far from resonance that

|ω − ωba| 
 T −1
2 , τ−1

p ,μbaE/�; (6.4.26)

that is, we assume that the detuning is greater than the transition linewidth, that no Fourier
component of the pulse extends to the transition frequency, and that the transition is not
power-broadened into resonance with the pulse. These conditions ensure that no appreciable
population is excited to the upper level by the laser pulse.
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To simplify the following analysis, we introduce the (complex) Rabi frequency

(t) = 2μbaE(t)/�, (6.4.27)

where E(t) gives the time evolution of the pulse envelope. The density matrix equations of
motion (6.4.5) then become, in the limit T1 → ∞, T2 → ∞,

dσ

dt
= i�σ − 1

2 iw, (6.4.28a)

dw

dt
= −i(∗σ − σ ∗). (6.4.28b)

We note that the quantity w2 + 4σσ ∗ is a constant of the motion whose value is given by

w2(t) + 4
∣∣σ(t)

∣∣2 = 1. (6.4.29)

This conclusion is verified by means of a derivation analogous to that leading to Eq. (6.4.12).
We now make the adiabatic-following approximation, that is, we assume that for all times

the atomic response is nearly in steady state with the applied field. We thus set dσ/dt and
dw/dt equal to zero in Eqs. (6.4.28). The simultaneous solution of these equations (which in
fact is just the solution to (6.4.28a)) is given by

σ(t) = w(t)(t)

2�
. (6.4.30)

Since w(t) is a real quantity, this result shows that σ(t) is always in phase with the driving field
(t). We now combine Eqs. (6.4.29) and (6.4.30) to obtain the equation

w(t)2 + w(t)2||2
�2

= 1, (6.4.31)

which can be solved for w(t) to obtain

w(t) = −|�|√
�2 + |(t)|2 . (6.4.32)

This expression can now be substituted back into Eq. (6.4.30) to obtain the result

σ(t) = − �

|�|
1
2(t)√

�2 + |(t)|2 . (6.4.33)

We now use these results to deduce the value of the nonlinear susceptibility. As in
Eqs. (6.3.11) through (6.3.17), the polarization P is related to σ(t) (recall that σ = σba) through

P = Nμabσ, (6.4.34)
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which through use of Eq. (6.4.33) becomes

P = − �

|�|
1
2Nμab(t)√
�2 + |(t)|2 . (6.4.35)

Our derivation has assumed that the condition |�| 
 || is valid. We can thus expand
Eq. (6.4.35) in a power series in the small quantity ||/� to obtain

P = �

�2

−1
2Nμab(

1 + ||2/�2
)1/2

= −�

�2

1

2
Nμab

(
1 − 1

2

||2
�2

+ · · ·
)

. (6.4.36)

The contribution to P that is third-order in the applied field is thus given by

P (3) = ||2�nμab

4�4
= 2N |μab|4

�3�3
|E|2E, (6.4.37)

where, in obtaining the second form, we have used the fact that  = 2μbaE/�. By convention,
the coefficient of |E|2E is 3ε0χ

(3), and hence we find that

χ(3) = 2N |μba|4
3ε0�

3�3
. (6.4.38)

Note that this prediction is identical to that of the steady-state theory (Eq. (6.3.37)) in the limit
�T2 
 1 for the case of a radiatively broadened transition (i.e., T2/T1 = 2) and for which
(ρbb − ρaa)

(eq) = −1.

6.5 Rabi Oscillations and Dressed Atomic States

In this section we consider the response of a two-level atom to an optical field sufficiently
intense to remove a significant fraction of the population from the atomic ground state. One
might think that the only consequence of a field this intense would be to lower the overall
response of the atom. Such is not the case, however. Stark shifts induced by the laser field
profoundly modify the energy-level structure of the atom, leading to new resonances in the
optical susceptibility. In the present section, we explore some of the processes that occur in the
presence of a strong driving field.

The development will proceed primarily at the level of the atomic wavefunction, rather than
at the level of the density matrix, as our interest is primarily in determining how the atomic
energy level structure is modified by an intense driving field. Some brief comments regarding
damping effects are included at the end of this section.
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6.5.1 Rabi Solution of the Schrödinger Equation

Let us consider the solution to the Schrödinger equation for a two-level atom in the presence
of an intense optical field.∗ We describe the state of the system in terms of the atomic wave
function ψ(r, t), which obeys the Schrödinger equation

i�
∂ψ

∂t
= Ĥψ (6.5.1)

with the Hamiltonian operator Ĥ given by

Ĥ = Ĥ0 + V̂ (t). (6.5.2)

Here Ĥ0 represents the Hamiltonian of a free atom, and V̂ (t) represents the energy of interac-
tion with the applied field. In the electric dipole approximation, V̂ (t) is given by

V̂ (t) = μ̂Ẽ(t), (6.5.3)

where the dipole moment operator is given by μ̂ = −er̂ .
We assume that the applied field is given by Ẽ(t) = Ee−iωt+ c.c. with E constant, and that

the field is nearly resonant with an allowed transition between the atomic ground state a and
some other level b, as shown in Fig. 6.2.1. Since the effect of the interaction is to mix states a

and b, the atomic wavefunction in the presence of the applied field can be represented as

ψ(r, t) = Ca(t)ua(r)e−iωat + Cb(t)ub(r)e−iωbt . (6.5.4)

Here ua(r)e−iωat represents the wavefunction of the atomic ground state a, and ub(r)e−iωbt

represents the wavefunction of the excited state b. We assume that these wavefunctions are
orthonormal in the sense that ∫

d3r u∗
i (r)uj (r) = δij . (6.5.5)

The quantities Ca(t) and Cb(t) that appear in Eq. (6.5.4) can be interpreted as the probability
amplitudes that at time t the atom is in state a or state b, respectively.

We next derive the equations of motion for Ca(t) and Cb(t), using methods analogous to
those used in Section 3.2. By introducing Eq. (6.5.4) into the Schrödinger equation (6.5.1),
multiplying the resulting equation by u∗

a , and integrating this equation over all space, we find
that

Ċa = 1

i�
CbVabe

−iωbat , (6.5.6)

∗ See also Sargent et al. (1974, p. 26), or Dicke and Wittke (1960, p. 203).
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where we have introduced the resonance frequency ωba = ωb − ωa and the interaction matrix
element

Vab = V ∗
ba =

∫
d3r u∗

aV̂ ub. (6.5.7)

Similarly, by multiplying instead by u∗
b and again integrating over all space, we find that

Ċb = 1

i�
CaVbae

iωbat . (6.5.8)

We now explicitly introduce the form of the interaction Hamiltonian and represent the in-
teraction matrix elements as

V ∗
ab = Vba = −μbaẼ(t) = −μba

(
Ee−iωt + E∗eiωt

)
. (6.5.9)

Eqs. (6.5.6) and (6.5.8) then become

Ċa = −μab

i�
Cb

(
E∗e−i(ωba−ω)t + Ee−i(ωba+ω)t

)
(6.5.10a)

and

Ċb = −μba

i�
Ca

(
Eei(ωba−ω)t + E∗ei(ωba+ω)t

)
. (6.5.10b)

We next make the rotating-wave approximation, that is, we drop the rapidly oscillating
second terms in these equations and retain only the first terms.∗ We also introduce the detuning
factor

� = ω − ωba. (6.5.11)

The coupled equations (6.5.10) then reduce to the set

Ċa = i
μabE

∗

�
Cbe

i�t , (6.5.12a)

Ċb = i
μbaE

�
Cae

−i�t . (6.5.12b)

This set of equations can be readily solved by adopting a trial solution of the form

Ca = Ke−iλt . (6.5.13)

This expression is introduced into Eq. (6.5.12a), which shows that Cb must be of the form

Cb = −�λK

μabE∗ e−i(λ+�)t . (6.5.14)

∗ See also the discussion preceding Eq. (6.3.5).
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This form for Cb and the trial solution (6.5.13) for Ca are now introduced into Eq. (6.5.12b),
which shows that the characteristic frequency λ must obey the equation

λ(λ + �) = |μba|2|E|2
�2

. (6.5.15)

The solutions of this equation are

λ± = −1
2� ± 1

2′, (6.5.16)

where we have introduced the generalized (or detuned) Rabi frequency

′ = (||2 + �2)1/2 (6.5.17)

and where, as before,  = 2μbaE/� denotes the complex Rabi frequency. The general solution
to Eqs. (6.5.12) for Ca(t) can thus be expressed as

Ca(t) = e(1/2)i�t
(
A+e−(1/2)i′t + A−e(1/2)i′t), (6.5.18a)

where A+ and A− are constants of integration whose values depend on the initial conditions.
The corresponding expression for Cb(t) is obtained by introducing this result into Eq. (6.5.12a):

Cb(t) = −�Ċa

μabE∗ e−i�t

= e−(1/2)i�t

(
� − ′

∗ A+e−(1/2)i′t + � + ′

∗ A−e(1/2)i′t
)

. (6.5.18b)

Eqs. (6.5.18) give the general solution to Eqs. (6.5.12). Next, we find the specific solution
for two different sets of initial conditions.

6.5.2 Solution for an Atom Initially in the Ground State

One realistic set of initial conditions is that of an atom known to be in the ground state at time
t = 0 so that

Ca(0) = 1 and Cb(0) = 0. (6.5.19)

Eq. (6.5.18a) evaluated at t = 0 then shows that

A+ + A− = 1, (6.5.20)

while Eq. (6.5.18b) evaluated at t = 0 shows that

(� − ′)A+ + (� + ′)A− = 0. (6.5.21)
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These equations are solved algebraically to find that

A+ = 1 − A− = ′ + �

2′ . (6.5.22)

The probability amplitudes Ca(t) and Cb(t) are now determined by introducing these ex-
pressions for A+ and A− into Eqs. (6.5.18), to obtain

Ca(t) = e(1/2)i�t

[(
′ + �

2′

)
e−(1/2)i′t +

(
′ + �

2′

)
e(1/2)i′t

]

= e(1/2)i�t

[
cos

(1
2′t

) − i�

′ sin
(1

2′t
)]

(6.5.23)

and

Cb(t) = e−(1/2)i�t

(−

2′ e
−(1/2)i′t + 

2′ e
(1/2)i′t

)

= ie−(1/2)i�t

[


′ sin
(1

2′t
)]

. (6.5.24)

The probability that the atom is in level a at time t is hence given by

|Ca|2 = cos2(1
2′t

) + �2

′ 2
sin2(1

2′t
)
, (6.5.25)

while the probability of being in level b is given by

|Cb|2 = ||2
′ 2

sin2(1
2′t

)
. (6.5.26)

Note that (since ′ 2 = ||2 + �2)

|Ca|2 + |Cb|2 = 1, (6.5.27)

which shows that probability is conserved.
For the case of exact resonance (� = 0), Eqs. (6.5.25) and (6.5.26) reduce to

|Ca|2 = cos2(1
2 ||t), (6.5.28a)

|Cb|2 = sin2(1
2 ||t), (6.5.28b)

and the probabilities oscillate between zero and one in the simple manner illustrated in
Fig. 6.5.1. Note that, since the probability amplitude Ca oscillates at angular frequency ||/2,
the probability |Ca|2 oscillates at angular frequency ||, that is, at the Rabi frequency. As the
detuning � is increased, the angular frequency at which the population oscillates increases,
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FIGURE 6.5.1: Rabi oscillations of the populations in the ground (|Ca|2) and excited (|Cb|2) states for
the case of exact resonance (� = 0).

FIGURE 6.5.2: Rabi oscillations of the excited state population for two values of � ≡ ω − ωba .

since the generalized Rabi frequency is given by ′ = [||2 + �2]1/2, but the amplitude of the
oscillation decreases, as shown in Fig. 6.5.2.

Next, we calculate the expectation value of the atomic dipole moment for an atom known
to be in the atomic ground state at time t = 0. This quantity is given by

〈μ̃〉 = 〈ψ |μ̃|ψ〉, (6.5.29)

where ψ(r, t) is given by Eq. (6.5.4). We assume as before that 〈a|μ̃|a〉 = 〈b|μ̃|b〉 = 0, and we
denote the nonvanishing matrix elements of μ̃ by

μab = 〈a|μ̃|b〉 = 〈b|μ̃|a〉∗ = μ∗
ba. (6.5.30)

We thus find that the induced dipole moment is given by

〈μ̃〉 = C∗
aCbμabe

−iωbat + c.c. (6.5.31)
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or, by introducing Eqs. (6.5.23) and (6.5.24) for Ca and Cb, by

〈μ̃〉 = μab



′

[−�

2ω′ e
−iωt + 1

4

(
�

′ − 1

)
e−i(ω+′)t

+ 1

4

(
�

′ + 1

)
e
−i

(
ω−′)t

]
+ c.c. (6.5.32)

This result shows that the atomic dipole oscillates not only at the driving frequency ω but
also at the Rabi sideband frequencies ω + ′ and ω − ′. We can understand the origin of this
effect by considering the frequencies that are present in the atomic wavefunction. We recall that
the wavefunction is given by Eq. (6.5.4), where (according to Eqs. (6.5.23) and (6.5.24)) Ca(t)

contains frequencies −1
2(� ± ′) and Cb(t) contains frequencies 1

2(�±′). Fig. 6.5.3 shows
graphically the frequencies that are present in the atomic wavefunction. Note that the frequen-

FIGURE 6.5.3: Frequency spectrum of the atomic wavefunction given by Eq. (6.5.4) (with Ca(t) and
Cb(t) given by Eqs. (6.5.28) and (6.5.29)) for the case of (a) positive detuning (� > 0) and (b) negative
detuning (� < 0).
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cies at which the atomic dipole oscillates correspond to differences of the various frequency
components of the wavefunction.

6.5.3 Dressed States

Another important solution to the Schrödinger equation for a two-level atom is that correspond-
ing to the dressed atomic states (Autler and Townes, 1955; Cohen-Tannoudji and Reynaud,
1977). The characteristic feature of these states is that the probability to be in atomic level a

(or b) is constant in time. As a consequence, the probability amplitudes Ca(t) and Cb(t) can
depend on time only in terms of exponential phase factors. Recall, however, that in general
(that is, for states that are not dressed states) Ca(t) and Cb(t) are given by the more compli-
cated expressions (6.5.18).

There are two ways in which the solution of Eqs. (6.5.18) can lead to time-independent
probabilities of occupancy for levels a and b. One such solution, which we designate as ψ+,
corresponds to the case in which the integration constants A+ and A− have the values

A+ = 1, A− = 0 (for ψ+); (6.5.33a)

the other solution, which we designate as ψ−, corresponds to the case in which

A+ = 0, A− = 1 (for ψ−). (6.5.33b)

Explicitly, the atomic wavefunction corresponding to each of these solutions is given,
through use of Eqs. (6.5.4), (6.5.18), and (6.5.33), as

ψ± = N±
{
ua(r) exp

[−i
(
ωa − 1

2� ± 1
2′)t]

+ � ∓ ′

∗ ub(r) exp
[−i

(
ωb + 1

2� ± 1
2′)t]}, (6.5.34)

where N± is a normalization constant. The value of this constant is determined by requiring
that ∫

|ψ±|2 d3r = 1. (6.5.35)

By introducing Eq. (6.5.34) into this expression and performing the integrations, we find that

|N±|2
[

1 + (� ∓ ′)2

||2
]

= 1. (6.5.36)

For future convenience, we choose the phases of N± such that N± are given by

N± = ∗

′

[
′

2(′ ∓ �)

]1/2

. (6.5.37)
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The normalized dressed-state wavefunctions are hence given by

ψ± = ∗

′

[
′

2(′ ∓ �)

]1/2

ua(r) exp
[−i

(
ωa − 1

2� ± 1
2′)t]

∓
[
′ ∓ �

2′

]1/2

ub(r) exp
[−i

(
ωb + 1

2� ± 1
2′)t]. (6.5.38)

We next examine some of the properties of the dressed states. The probability amplitude for
an atom in the dressed state ψ± to be in the atomic level a is given by

〈a|ψ±〉 = ∗

′

[
′

2(′ ∓ �)

]1/2

exp
[−i

(
ωa − 1

2� ± 1
2′)t], (6.5.39)

and thus the probability of finding the atom in the state a is given by

∣∣〈a|ψ±〉∣∣2 = ||2
′ 2

′

2(′ ∓ �)
= ||2

2′(′ ∓ �)
. (6.5.40)

Similarly, the probability amplitude of finding the atom in state b is given by

〈b|ψ±〉 = ∓
(

′ ∓ �

2′

)1/2

exp
[−i

(
ωb + 1

2� ± 1
2′)t], (6.5.41)

and thus the probability of finding the atom in the state b is given by

∣∣〈b|ψ±〉∣∣2 = ′ ∓ �

2′ . (6.5.42)

Note that these probabilities of occupancy are indeed constant in time; in this sense the dressed
states constitute the stationary states of the coupled atom–field system.

The dressed states ψ± are solutions of Schrödinger’s equation in the presence of the total
Hamiltonian Ĥ = Ĥ0 + V̂ (t). Thus, if the system is known to be in state ψ+ (or ψ−) at the time
t = 0, the system will remain in this state, even though the system is subject to the interaction
Hamiltonian V̂ . They are stationary states in the sense just mentioned that the probability of
finding the atom in either of the atomic states a or b is constant in time. Although the states
ψ± are stationary states, they are not energy eigenstates, because the Hamiltonian Ĥ depends
explicitly on time.

It is easy to demonstrate that the dressed states are orthogonal—that is, that

〈ψ+|ψ−〉 = 0. (6.5.43)

The expectation value of the induced dipole moment for an atom in a dressed state is given
by 〈

ψ±|μ̂|ψ±
〉 = ∓ 

2′ μabe
−iωt + c.c. (6.5.44)



304 Chapter 6

FIGURE 6.5.4: The dressed atomic states ψ+ and ψ− for � positive (a) and negative (b).

Thus, the induced dipole moment of an atom in a dressed state oscillates only at the driving
frequency. However, the dipole transition moment between the dressed states is nonzero:

〈ψ±|μ̂|ψ∓〉 = ±μab



2′

(
′ ± �

′ ∓ �

)1/2

e−i(ω∓′)t

∓ μba

∗

2′

(
′ ∓ �

′ ± �

)1/2

ei(ω±′)t . (6.5.45)

The properties of the dressed states are summarized in the frequency level diagram shown
for the case of positive � in Fig. 6.5.4(a) and for the case of negative � in Fig. 6.5.4(b).

Next, we consider the limiting form of the dressed states for the case of a weak applied
field—that is, for || � |�|. In this limit, we can approximate the generalized Rabi frequency
′ as

′ = (||2 + �2)1/2 = |�|
(

1 + ||2
�2

)1/2

� |�|
(

1 + 1

2

||2
�2

)
. (6.5.46)

Using this result, we can approximate the dressed-state wavefunctions of Eq. (6.5.38) for
the case of positive � as

ψ+ = ∗

||uae
−iωat − ||

2�
ube

i(ωb+�)t , (6.5.47a)

ψ− = ∗

2�
uae

−i(ωa−�)t + ube
−iωbt . (6.5.47b)

We note that in this limit ψ+ is primarily ψa and ψ− is primarily ψb. The smaller contribution to
ψ+ can be identified with the virtual level induced by the transition. For the case of negative �,
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FIGURE 6.5.5: The weak field limit of the dressed states ψ+ and ψ− for the case of (a) positive and
(b) negative detuning �.

we obtain

ψ+ = −∗

2�
uae

−i(ωa−�)t − ube
−iωbt , (6.5.48a)

ψ− = ∗

||uae
−iωat − ||

2�
ube

−i(ωb+�)t . (6.5.48b)

Now ψ+ is primarily ψb, and ψ− is primarily ψa . These results are illustrated in Fig. 6.5.5.
Note that these results have been anticipated in drawing certain of the levels as dashed lines in
the weak-field limit of the diagrams shown in Figs. 6.5.3 and 6.5.4.

6.5.4 Inclusion of Relaxation Phenomena

In the absence of damping phenomena, it is adequate to treat the response of a two-level atom
to an applied optical field by solving Schrödinger’s equation for the time evolution of the wave-
function. We have seen that under such circumstances the population inversion oscillates at the
generalized Rabi frequency ′ = (2 + �2)1/2. If damping effects are present, we expect that
these Rabi oscillations will eventually become damped out and that the population difference
will approach some steady-state value. In order to treat this behavior, we need to solve the
density matrix equations of motion with the inclusion of damping effects. We take the density
matrix equations in the form (essentially Eqs. (6.4.9) with weq = −1 and κ = 2μE/�)

ṗ =
(

i� − 1

T2

)
p − i

�
|μ|2Ew, (6.5.49a)

ẇ = −w + 1

T1
− 2i

�
(pE∗ − p∗E), (6.5.49b)

and we assume that at t = 0 the atom is in its ground state—that is, that

p(0) = 0, w(0) = −1, (6.5.50)
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FIGURE 6.5.6: Damped Rabi oscillations.

and that the field Ẽ(t) is turned on at t = 0 and oscillates harmonically thereafter (i.e., E = 0
for t < 0, E = constant for t ≥ 0).

Eqs. (6.5.49) can be solved in general under the conditions given above (see Problem 4
at the end of this chapter). For the special case in which T1 = T2, the form of the solution is
considerably simpler than in the general case. The solution to Eqs. (6.5.49) for the population
inversion for this special case is given by

w(t) = w0 − (1 + w0)e
−t/T2

[
cos′t + 1

′T2
sin′t

]
, (6.5.51a)

where

w0 = −(1 + �2T 2
2 )

1 + �2T 2
2 + 2T1T2

. (6.5.51b)

The nature of this solution is shown in Fig. 6.5.6. Note that the Rabi oscillations are damped
out in a time of the order of T2. Once the Rabi oscillations have damped out, the system enters
one of the dressed states of the coupled atom–field system.

In summary, we have seen that, in the absence of damping effects, the population inversion
of a strongly driven two-level atom oscillates at the generalized Rabi frequency ′ = (2 +
�2)1/2 and that consequently the induced dipole moment oscillates at the applied frequency ω

and also at the Rabi sideband frequencies ω ± ′. In the presence of dephasing processes, the
Rabi oscillations die out in a characteristic time given by the dipole dephasing time T2. Hence,
Rabi oscillations are not present in the steady state.

In the following section, we explore the nature of the response of the atom to a strong
field at frequency ω and a weak field at frequency ω + δ. If the frequency difference δ (or
its negative −δ) between these two fields is nearly equal to the generalized Rabi frequency
′, the beat frequency between the two applied fields can act as a source term to drive the
Rabi oscillation. We shall find that, in the presence of such a field, the population difference
oscillates at the beat frequency δ, and that the induced dipole moment contains the frequency
components ω and ω ± δ.
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6.6 Optical Wave Mixing in Two-Level Systems

In the present section we consider the response of a collection of two-level atoms to the simul-
taneous presence of a strong optical field (which we call the pump field) and one or more weak
optical fields (which we call probe fields). These latter fields are considered weak in the sense
that they alone cannot saturate the response of the atomic system.

An example of such an occurrence is saturation spectroscopy, using a setup of the sort
shown in Fig. 6.6.1. In such an experiment, one determines how the response of the medium to
the probe wave is modified by the presence of the pump wave. Typically, one might measure
the transmission of the probe wave as a function of the frequency ω and intensity of the pump
wave and of the frequency detuning δ between the pump and probe waves. The results of such
experiments can be used to obtain information regarding the dipole transition moments and the
relaxation times T1 and T2.

FIGURE 6.6.1: Saturation spectroscopy setup.

Another example of the interactions considered in this section is the multiwave mixing ex-
periment shown in part (a) of Fig. 6.6.2. Here the pump wave at frequency ω and the probe
wave at frequency ω + δ are copropagating (or nearly copropagating) through the medium. For
this geometry, the four-wave mixing process shown in part (b) of the figure becomes phase-
matched (or nearly phase-matched), and this process leads to the generation of the symmetric
sideband at frequency ω − δ.

At low intensities of the pump laser, the response of the atomic system at the frequencies
ω + δ and ω − δ can be calculated using perturbation theory of the sort developed in Chapter 3.
In this limit, one finds that the absorption (and dispersion) experienced by the probe wave in
the geometry of Fig. 6.6.1 is somewhat reduced by the presence of the pump wave. One also
finds that, for the geometry of Fig. 6.6.2, the intensity of the generated sideband at frequency
ω − δ increases quadratically as the pump intensity is increased.

In this section we show that the character of these nonlinear processes is profoundly mod-
ified when the intensity of the pump laser is increased to the extent that perturbation theory is
not sufficient to describe the interaction. These higher-order processes become important when
the Rabi frequency  associated with the pump field is greater than both the detuning � of the
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FIGURE 6.6.2: (a) Forward four-wave mixing. (b) Energy-level description of the four-wave mixing
process, drawn for clarity for the case in which δ is negative.

pump wave from the atomic resonance and the transition linewidth 1/T2. Under this condition,
the atomic energy levels are strongly modified by the pump field, leading to new resonances in
the absorptive and mixing responses. In particular, we shall find that these new resonances can
be excited when the pump–probe detuning δ is approximately equal to ±′, where ′ is the
generalized Rabi frequency.

6.6.1 Solution of the Density Matrix Equations for a Two-Level Atom in the Presence of
Pump and Probe Fields

We have seen in Section 6.4 that the dynamical behavior of a two-level atom in the presence of
the optical field

Ẽ(t) = Ee−iωt + c.c. (6.6.1)

can be described in terms of equations of motion for the population inversion w = ρbb − ρaa

and the complex dipole amplitude p = μabσba , which is related to the expectation value p̃(t)

of the atomic dipole moment by

p̃(t) = pe−iωt + c.c. (6.6.2)

The equations of motion for p and w are given explicitly by (see Eqs. (6.4.9) and take κ =
2μE/�)

dp

dt
=

(
i� − 1

T2

)
p − i

�
|μba|2Ew, (6.6.3)
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dw

dt
= −w − w(eq)

T1
+ 4

�
Im(pE∗), (6.6.4)

where � = ω −ωba . For the problem at hand, we represent the amplitude of the applied optical
field as

E = E0 + E1e
−iδt , (6.6.5)

where we assume that |E1| � |E0|. By introducing Eq. (6.6.5) into Eq. (6.6.1), we find that the
electric field can alternatively be expressed as

Ẽ(t) = E0e
−iωt + E1e

−i(ω+δ)t + c.c.; (6.6.6)

hence, E0 and E1 represent the complex amplitudes of the pump and probe waves, respectively.
Eqs. (6.6.3) and (6.6.4) cannot readily be solved exactly for the field given in Eq. (6.6.5).

Instead, our strategy will be to find a solution that is exact in the amplitude E0 of the strong
field and is correct to lowest order in the amplitude E1 of the weak field. We hence require that
the steady-state solution of Eqs. (6.6.3) and (6.6.4) be of the form

p = p0 + p1e
−iδt + p−1e

iδt (6.6.7)

and

w = w0 + w1e
−iδt + w−1e

iδt , (6.6.8)

where p0 and w0 denote the solution for the case in which only the pump field E0 is present,
and where the other terms are assumed to be small in the sense that

|p1|, |p−1| � |p0|, |w1|, |w−1| � |w0|. (6.6.9)

Note that, to the lowest order in the amplitude E1 of the probe field, 0 and ±δ are the only
frequencies that can be present in the solution of Eqs. (6.6.3) and (6.6.4). Note also that, in
order for w(t) to be a real quantity, w−1 must be equal to w∗

1. Hence, w(t) is of the form
w(t) = w0 + 2|w1| cos(δt + φ), where φ is the phase of w. Thus, in the simultaneous presence
of pump and probe fields, the population difference oscillates harmonically at the pump–probe
frequency difference, and w1 represents the complex amplitude of the population oscillation.

We now introduce the trial solution (6.6.7) and (6.6.8) into the density matrix equa-
tions (6.6.3) and (6.6.4) and equate terms with the same time dependence. In accordance with
our perturbation assumptions, we drop any term that contains the product of more than one
small quantity. Then, for example, the zero-frequency part of the equation of motion for dipole
amplitude, Eq. (6.6.3), becomes

0 =
(

i� − 1

T2

)
p0 − i

�
|μba|2E0w0,
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whose solution is

p0 = �
−1|μba|2E0w0

� + i/T2
. (6.6.10)

Likewise, the part of Eq. (6.6.3) oscillating as e−iδt is

−iδp1 =
(

i� − 1

T2

)
p1 − i

�
|μba|2(E0w1 + E1w0),

which can be solved algebraically to obtain

p1 = �
−1|μba|2(E0w1 + E1w0)

(� − δ) + i/T2
; (6.6.11)

the part of Eq. (6.6.3) oscillating as eiδt is similarly given by

iδp−1 =
(

i� − 1

T2

)
p−1 − i

�
|μba|2(E0w−1),

which can be solved to obtain

p−1 = �
−1|μba|2E0w−1

(� − δ) + i/T2
. (6.6.12)

Next, we consider the solution of the inversion equation (6.6.4). We introduce the trial so-
lution (6.6.7) and (6.6.8) into this equation. The zero-frequency part of the resulting expression
is

0 = −w0 − w(eq)

T1
+ 4

�
Im

(
p0E

∗
0

)
. (6.6.13)

We now introduce Eq. (6.6.10) for p0 into this expression to obtain

w0 − w(eq)

T1
= 2w0 Im

(
� − i/T2

�2 + 1/T 2
2

)
= −2w0/T2

�2 + 1/T 2
2

, (6.6.14)

where we have introduced the on-resonance Rabi frequency  = 2|μbaE|/�. We now solve
Eq. (6.6.14) algebraically for w0 to obtain

w0 = w(eq)(1 + �2T 2
2 )

1 + �2T 2
2 + 2T1T2

. (6.6.15)
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We next consider the oscillating part of Eq. (6.6.4). The part of Im(pE∗) oscillating at
frequencies ±δ is given by

Im(pE∗) = Im
(
p0E

∗
1eiδt + p1E

∗
0e−iδt + p−1E

∗
0eiδt

)
= 1

2i

(
p0E

∗
1eiδt + p1E

∗
0e−iδt + p−1E

∗
0eiδt

− p∗
0E1e

−iδt − p∗
1E0e

iδt − p∗−1E0e
−iδt

)
, (6.6.16)

where in obtaining the second form we have used the identity Im z = (z − z∗)/2i. We now
introduce this result into Eq. (6.6.4). The part of the resulting expression that varies as e−iδt is

−iδw1 = −w1

T1
− 2i

�

(
p1E

∗
0 − p∗

0E1 − p∗−1E0
)
.

This expression is solved for w1 to obtain

w1 = 2�−1(p1E
∗
0 − p∗

0E1 − p∗−1E0)

δ + i/T1
. (6.6.17)

We similarly find from the part of Eq. (6.6.4) oscillating as eiδt that

w−1 = 2�−1(p∗
1E0 − p0E

∗
1 − p−1E

∗
0)

δ − i/T1
. (6.6.18)

Note that w−1 = w∗
1, as required from the condition that w(t) as given by Eq. (6.6.8) be real.

At this point we have a set of six coupled equations [(6.6.10), (6.6.11), (6.6.12), (6.6.15),
(6.6.17), (6.6.18)] for the six quantities p0,p1,p−1,w0,w1,w−1. We note that w0 is given by
Eq. (6.6.15) in terms of known quantities. Our strategy is thus to solve next for w1, since the
other unknown quantities are simply related to w0 and w1. We thus introduce the expressions
for p1,p0, and p−1 into Eq. (6.6.17), which becomes

(
δ + i

T1

)
w1 = 2|μba|2

�2

×
( |E0|2w1

� + δ + i/T2
+ E1E

∗
0w0

� + δ + i/T2
− E1E

∗
0w0

� − i/T2
− |E0|2w1

� − δ − i/T2

)
. (6.6.19)

This equation is now solved algebraically for w1, yielding

w1 = −w2
0|μba|2E1E

∗
0�

−2(δ − � + i/T2)(δ + 2i/T2)(� − i/T2)
−1

(δ + i/T1)(δ − � + i/T2)(� + δ + i/T2) − 2(δ + i/T2)
. (6.6.20)
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The combination of terms that appears in the denominator of this expression appears repeatedly
in the subsequent equations. For convenience we denote this combination as

D(δ) =
(

δ + i

T1

)(
δ − � + i

T2

)(
δ + � + i

T2

)
− 2

(
δ + i

T2

)
, (6.6.21)

so that Eq. (6.6.20) can be written as

w1 = −2w0|μba|2E1E
∗
0�

−2 (δ − � + i/T2)(δ + 2i/T2)

(� − i/T2)D(δ)
. (6.6.22)

Note that w1 (and consequently p1 and p−1) shows a resonance whenever the pump wave
is tuned to line center so that � = 0, or whenever a zero occurs in the function D(δ). We next
examine the resonance nature of the function D(δ). We first consider the limit 2 → 0—that is,
the χ(3) perturbation theory limit. In this limit D(δ) is automatically factored into the product
of three terms as

D(δ) =
(

δ + i

T1

)(
δ − � + i

T2

)(
� + δ + i

T2

)
, (6.6.23)

and we see by inspection that zeros of D(δ) occur at

δ = 0,±�. (6.6.24)

The positions of these frequencies are indicated in part (a) of Fig. 6.6.3. However, inspection of
Eq. (6.6.22) shows that no resonance occurs in w1 at δ = �, because the factor δ −�+ i/T2 in
the numerator exactly cancels the same factor in the denominator. However, a resonance occurs
near δ = � when the term containing 2 in Eq. (6.6.21) is not ignored. χ(5) is the lowest-order
contribution to this resonance.

In the general case in which 2 is not small, the full form of Eq. (6.6.21) must be used.
In order to determine its resonance structure, we write D(δ) in terms of its real and imaginary
parts as

D(δ) = δ

(
δ2 − ′ 2 − 1

T 2
2

− 2

T1T2

)

+ i

(
δ2 − �2

T1
+ 2δ2

T2
− 2

T2
− 1

T1T
2
2

)
, (6.6.25)

where we have introduced the detuned Rabi frequency ′ = (2 +�2)1/2. We see by inspection
that the real part of D vanishes for

δ = 0, δ = ±
(

′ 2 + 1

T 2
2

+ 2

T1T2

)1/2

. (6.6.26)
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FIGURE 6.6.3: Resonances in the response of a two-level atom to pump and probe fields, as given by
the function D(δ), (a) in the limit 2 → 0, and (b) in the general case.

If we now assume that ′T2 is much greater than unity, these three resonances will be well
separated, and we can describe their properties individually. In this limit, the function D(δ)

becomes

D(δ) = δ
(
δ2 − ′ 2) + i

(
δ2 − �2

T1
+ 2δ2 − 2

T2

)
, (6.6.27)

and the three resonances occur at

δ = 0,±′. (6.6.28)

Near the resonance at δ = 0, and D(δ) can be approximated as

D(δ) = −′ 2(δ + i	0), (6.6.29a)

where

	0 = �2/T1 + 2/T2

�2 + 2
(6.6.29b)

represents the width of this resonance. Likewise, near the resonances at δ = ∓′, D(δ) can be
approximated as

D(δ) = 2′ 2[(δ ± ′) + i	±
]
, (6.6.30a)
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where

	± = 2/T1 + (2�2 + 2)/T2

2(2 + �2)
(6.6.30b)

represents the width of these resonances. Note that the positions of these resonances can be
understood in terms of the energies of the dressed atomic states, as illustrated in Fig. 6.6.3(b).
Note also that, for the case of weak optical excitation (i.e., for 2 � �2), 	0 approaches the
population decay rate 1/T1, and 	± approach the dipole dephasing rate 1/T2. In the limit of
strong optical excitation (i.e., for 2 
 �2), 	0 approaches the limit 1/T2 and 	± approach
the limit 1

2(1/T1 + 1/T2).
We next calculate the response of the atomic dipole at the sideband frequencies ±δ. We

introduce the expression (6.6.20) for w1 into Eq. (6.6.11) for p1 and obtain

p1 = �
−1|μba|2w0E1

� + δ + i/T2

×
[

1 −
1
22(δ − � + i/T2)(δ + 2i/T2)/(� − i/T2)

(δ + i/T1)(δ − � + i/T2)(� + δ + i/T2) − 2(δ + i/T2)

]
.

(6.6.31)

Written in this form, we see that the response at the probe frequency ω+ δ can be considered to
be the sum of two contributions. The first is the result of the zero-frequency part of the popula-
tion difference w. The second is the result of population oscillations. The first term is resonant
only at δ = −�, whereas the second term contains the additional resonances associated with
the function D(δ). Sargent (1978) has pointed out that the second term obeys the relation∫ ∞

−∞
−1

22(δ − � + i/T2)(δ + 2i/T2)(� − i/T2)
−1

(δ + i/T1)(δ − � + i/T2)(� + δ + i/T2) − 2(δ + i/T2)
dδ = 0. (6.6.32)

Thus, the second term, which results from population oscillations, does not modify the inte-
grated absorption of the atom in the presence of a pump field; it simply leads to a spectral
redistribution of probe-wave absorption.

A certain simplification of Eq. (6.6.31) can be obtained by combining the two terms alge-
braically so that p1 can be expressed as

p1 = �
−1|μba|2w0E1

D(δ)

[(
δ + i

T1

)(
δ − � + i

T2

)
− 1

22 δ

� − i/T2

]
. (6.6.33)

Finally, we calculate the response at the sideband opposite to the applied probe wave through
use of Eqs. (6.6.12) and (6.6.22) and the fact that w−1 = w∗

1, as noted in the discussion follow-
ing Eq. (6.6.18). We obtain the result

p−1 = 2w0|μba|4E2
0E∗

1(δ − � − i/T2)(−δ + 2i/T2)(� + i/T2)
−1

�3(� − δ + i/T2)D∗(δ)
. (6.6.34)
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6.6.2 Nonlinear Susceptibility and Coupled-Amplitude Equations

Let us now use these results to determine the forms of the nonlinear polarization and the nonlin-
ear susceptibility. Since p1 is the complex amplitude of the dipole moment at frequency ω + δ

induced by a probe wave at this frequency, the polarization at this frequency is P(ω+δ) = Np1.
If we set P(ω + δ) equal to ε0χ

(1)
eff (ω + δ)E1, we find that χ

(1)
eff (ω + δ) = Np1/ε0E1, or through

use of Eq. (6.6.33) that

χ
(1)
eff (ω + δ) = N |μba|2w0

ε0�D(δ)

[(
δ + i

T1

)(
δ − � + i

T2

)
− 1

22 δ

� − i/T2

]
. (6.6.35)

We have called this quantity an effective linear susceptibility because it depends on the intensity
of the pump wave. Similarly, the part of the nonlinear polarization oscillating at frequency ω−δ

is given by P(ω − δ) = Np−1. If we set this quantity equal to 3ε0χ
(3)
eff [ω − δ = ω + ω − (ω +

δ)]E2
0E∗

1 , we find through use of Eq. (6.6.34) that

χ
(3)
eff

[
ω − δ = ω + ω − (ω + δ)

]
= 2Nw0|μba|4(δ − � − i/T2)(−δ + 2i/T2)(� + i/T2)

−1

3ε0�
3(� − δ + i/T2)D∗(δ)

. (6.6.36)

We have called this quantity an effective third-order susceptibility, because it too depends on
the laser intensity.

The calculation just presented has assumed that E1 (the field at frequency ω + δ) is the only
weak wave that is present. However, for the geometry of Fig. 6.6.2, a weak wave at frequency
ω − δ is generated by the interaction, and the response of the medium to this wave must also
be taken into consideration. If we let E−1 denote the complex amplitude of this new wave, we
find that we can represent the total response of the medium through the equations

P(ω + δ) = ε0χ
(1)
eff (ω + δ)E1 + 3ε0χ

(3)
eff

[
ω + δ = ω + ω − (ω − δ)

]
E2

0E∗−1,

(6.6.37a)

P(ω − δ) = ε0χ
(1)
eff (ω − δ)E−1 + 3ε0χ

(3)
eff

[
ω − δ = ω + ω − (ω + δ)

]
E2

0E∗
1 .

(6.6.37b)

Formulas for the new quantities χ
(1)
eff (ω− δ) and χ

(3)
eff [ω+ δ = ω+ω− (ω− δ)] can be obtained

by formally replacing δ by −δ in Eqs. (6.6.35) and (6.6.36).
The nonlinear response of the medium as described by Eqs. (6.6.37) will of course influence

the propagation of the weak waves at frequencies ω ± δ. We can describe the propagation of
these waves by means of coupled-amplitude equations that we derive using methods described
in Chapter 2. We introduce the slowly varying amplitudes A±1 of the weak waves by means of
the equation

E±1 = A±1e
ik±1z, (6.6.38a)
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where the propagation constant is given by

k±1 = n±1(ω ± δ)/c. (6.6.38b)

Here n±1 is the real part of the refraction index experienced by each of the sideband frequencies
and is given by

n2±1 = 1 + Reχ
(1)
eff (ω ± δ). (6.6.38c)

We now introduce the nonlinear polarization of Eqs. (6.6.37) and the field decomposition
of Eq. (6.6.38a) into the wave equation in the form of Eq. (2.1.22), and assume the validity of
the slowly varying amplitude approximation. We find that the slowly varying amplitudes must
obey the set of coupled equations

dA1

dz
= −α1A1 + κ1A

∗−1e
i�kz, (6.6.39a)

dA−1

dz
= −α−1A−1 + κ−1A

∗
1e

i�kz, (6.6.39b)

where we have introduced the nonlinear absorption coefficients

α±1 = −1

2

(
ω ± δ

n±1c

)
Imχ

(1)
eff (ω ± δ), (6.6.40a)

the nonlinear coupling coefficients

κ±1 = −i
3

2

(
ω ± δ

n±1c

)
χ

(3)
eff

[
ω ± δ = ω + ω − (ω ∓ δ)

]
A2

0, (6.6.40b)

and the wavevector mismatch

�k = 2k0 − k1 − k−1, (6.6.40c)

where k0 is the magnitude of the wavevector of the pump wave.∗ The coupled wave equations
given by Eqs. (6.6.37) can be solved explicitly for arbitrary boundary conditions. We shall not
present the solution here; it is formally equivalent to the solution presented in Chapter 10 to the
equations describing Stokes–anti-Stokes coupling in stimulated Raman scattering. The nature
of the solution to Eqs. (6.6.37) for the case of a two-level atomic system has been described
in detail by Boyd et al. (1981). These authors find that significant amplification of the A1 and

∗ We have arbitrarily placed the real part of χ
(1)
eff into n±1 and the imaginary part into α±1. We could equivalently

have placed all of χ
(1)
eff in a complex absorption coefficient α±1 and set �k equal to zero, or could have placed

all of χ
(1)
eff in a complex refraction index n±1 and set α±1 equal to zero. We have chosen the present convention

because it illustrates most clearly the separate effects of absorption and of wavevector mismatch.
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A−1 waves can occur in the near-forward direction as a consequence of the four-wave mixing
processes described by Eqs. (6.6.37). They also find that the gain is particularly large when the
detuning δ (or its negative −δ) is approximately equal to the generalized Rabi frequency ′.
These effects have been studied experimentally by Harter et al. (1981).

Let us consider the nature of the solutions of Eqs. (6.6.37) for the special case of the geom-
etry shown in Fig. 6.6.1. For this geometry, because of the large angle θ between the pump and
probe beams, the magnitude �k of the wavevector mismatch is very large, and as a result the
coupled-amplitude equations (6.6.39a) and (6.6.39b) decouple into the two equations

dA1

dz
= −α1A1,

dA−1

dz
= −α−1A−1. (6.6.41)

Recall that α±1 denotes the absorption coefficient experienced by the probe wave at frequency
ω ± δ, and that α±1 depends on the probe–pump detuning δ, on the detuning � of the pump
wave from the atomic resonance, and on the intensity I of the pump wave.

The dependence of α1 on the probe–pump detuning δ is illustrated for one representative
case in part (a) of Fig. 6.6.4. We see that three features appear in the probe absorption spectrum.
One of these features is centered on the laser frequency, and the other two occur at the Rabi
sidebands of the laser frequency, that is, they occur at frequencies detuned from the laser fre-
quency by the generalized Rabi frequency ′ = (2 +�2)1/2 associated with the driven atomic
response. Note that α1 can become negative for two of these features; the gain associated with
these features was predicted by Mollow (1972) and has been observed experimentally by Wu et
al. (1977) and by Gruneisen et al. (1988, 1989). The gain feature that occurs near δ = 0 can be
considered to be a form of stimulated Rayleigh scattering (see also Chapter 9). Alternatively,
the origin of this feature can be traced to the harmonic temporal modulation of the population
difference w(t), as described by Eqs. (6.6.8) and (6.6.22)—that is, to coherent population oscil-
lations. The gain associated with these features has been utilized to construct optical parametric
oscillators (Grandclement et al., 1987). As demanded by Kramers–Kronig relations, there is a
rapid spectral variation of the refractive index associated with this gain feature. This rapid fre-
quency variation can lead to a significant modification of the group velocity vg at which light
pulses propagate through such a system in accordance with the standard relation vg = c/ng ,
where the group index ng is given by ng = n + ω(dn/dω). Physical situations occur for which
ng 
 1; the term “slow light” is sometimes used to describe this situation. Analogously, the sit-
uation ng positive with ng � 1 corresponds to “fast light.” Most intriguingly, physical situations
can occur for which ng is negative, which corresponds to “backward” light propagation. More
detailed accounts of these possibilities have been presented by Bigelow et al. (2003a, 2003b)
and Gehring et al. (2006).

Part (b) of Fig. 6.6.4 shows the origin of each of the features shown in part (a). The leftmost
portion of this figure shows how the dressed states of the atom are related to the unperturbed
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FIGURE 6.6.4: (a) Absorption spectrum of a probe wave in the presence of a strong pump wave for the
case �T2 = −3, T2 = 8, and T2/T1 = 2. (b) Each of the features in the spectrum shown in part (a) is
identified by the corresponding transition between dressed states of the atom. TP denotes the three-
photon resonance, RL denotes the Rayleigh resonance, and AC denotes the ac-Stark-shifted atomic
resonance.

atomic energy states. The next diagram, labeled TP, shows the origin of the three-photon res-
onance. Here the atom makes a transition from the lowest dressed level to the highest dressed
level by the simultaneous absorption of two pump photons and the emission of a photon at
the Rabi sideband frequency ω − ′. This process can amplify a wave at the Rabi sideband
frequency, as indicated by the region of negative absorption labeled TP in part (a). The third
diagram of part (b), labeled RL, shows the origin of the stimulated Rayleigh resonance. The
Rayleigh resonance corresponds to a transition from the lower level of the lower doublet to the
upper doublet. Each of these transitions is centered on the frequency of the pump laser. The fi-
nal diagram of part (b) of the figure, labeled AC, corresponds to the usual absorptive resonance
of the atom as modified by the ac-Stark effect. For the sign of the detuning used in the diagram,
the atomic absorption is shifted to higher frequencies. Note that this last feature can lead only
to absorption, whereas the first two features can lead to amplification. The theory of optical
wave mixing has been generalized by Agarwal and Boyd (1988) to treat the quantum nature of
the optical field; this theory shows how quantum fluctuations can initiate the four-wave mixing
process described in this section.
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Problems

1. Alternative relaxation models. Determine how the saturated absorption of an atomic transi-
tion depends on the intensity of the incident (monochromatic) laser field for the case of an
open two-level atom and for a two-level atom with a non-radiatively coupled intermediate
level, and compare these results with those derived in Section 6.3 for a closed two-level
atom.

2. χ(3) for an impurity-doped solid. One is often interested in determining the third-order
susceptibility of a collection of two-level atoms contained in a medium of constant (i.e.,
wavelength-independent and non-intensity-dependent) refractive index n0. Show that the
third-order susceptibility of such a system is given by Eq. (6.3.36b) in the form shown,
or by Eq. (6.3.33b) with a factor of n0 introduced in the numerator, or by Eq. (6.3.34a) or
(6.3.34b) with a factor of n2

0 introduced in the numerator. In cases in which I 0
s , I�

s , or α0(�)

appears in the expression, it is to be understood that the expressions (6.3.30) and (6.3.31)
for I 0

s and I�
s should each be multiplied by a factor of n0 and the expression (6.3.22b) for

α0(0) should be divided by a factor of n0.
3. Orthogonality of dressed states. Verify Eq. (6.5.43).
4. Damping of Rabi oscillations. The intent of this problem is to determine the influence of T1-

and T2-type relaxation processes on Rabi oscillations of the sort predicted by the solution
to the Schrödinger equation for an atom in the presence of an intense, near-resonant driving
field. In particular, you are to solve the Bloch equation in the form of Eqs. (6.5.49) for the
time evolution of an atom known to be in the ground state at time t = 0 and subject to a
field Ee−iωt + c.c. that is turned on at time t = 0. In addition, sketch the behavior of w and
of p as functions of time.
[Hint: At a certain point in the calculation, the mathematical complexity will be markedly
reduced by assuming that T1 = T2. Make this simplification only when it becomes neces-
sary.]

5. Response times. Consider the question of estimating the response time of nonresonant elec-
tronic nonlinearities of the sort described in Section 4.3. Student A argues that it is well
known that the response time under such conditions is of the order of the reciprocal of the
detuning of the laser field from the nearest atomic resonance. Student B argues that only
relaxation processes can allow a system to enter the steady state and that consequently the
response time is of the order of the longer of T1 and T2—that is, is of the order of T1. Who
is right, and in what sense is each of them correct?
[Hint: Consider how the graph shown in Fig. 6.5.6 and the analogous graph of p(t) would
look in the limit of � 
 ,�T2 
 1.]
[Partial answer: The nonlinearity turns on in a time �−1 but does not reach its steady-state
value until a time of the order of T1.]
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6. Identity pertaining to population oscillations. Verify Eq. (6.6.32).
7. Coupled wave equations for forward four-wave mixing. Verify that Eqs. (6.6.37) follow

from the referenced equations. Also, display explicitly the two alternative forms of these
equations alluded to in the footnote to these equations.
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Chapter 7

Processes Resulting from the
Intensity-Dependent Refractive Index

In this chapter, we explore several processes of practical importance that occur as a result of
the intensity-dependent refractive index.

7.1 Self-Focusing of Light and Other Self-Action Effects

Self-focusing of light is the process in which an intense beam of light modifies the optical
properties of a material medium in such a manner that the beam is caused to come to a focus
within the material Kelley (1965). This circumstance is shown schematically in Fig. 7.1.1(a).
Here we have assumed that n2 is positive. As a result, the laser beam induces a refractive index
variation within the material with a larger refractive index at the center of the beam than at its
periphery. The material thus acts as if it were a positive lens, causing the beam to come to a
focus within the material. More generally, one refers to self-action effects as effects in which
a beam of light modifies its own propagation by means of the nonlinear response of a material
medium. An extensive review of self-focusing is presented by Boyd et al. (2009). See especially
the preface for an overview of self-action effects.

Another self-action effect is the self-trapping of light, which is illustrated in Fig. 7.1.1(b). In
this process a beam of light propagates with a constant diameter as a consequence of an exact
balance between self-focusing and diffraction effects. An analysis of this circumstance, which
is presented below, shows that self-trapping can occur only if the power carried by the beam is
exactly equal to the so-called critical power for self-trapping

Pcr = π(0.61)2λ2
0

8n0n2
, (7.1.1)

where λ0 is the vacuum wavelength of the laser radiation. This line of reasoning leads to the
conclusion that self-focusing can occur only if the beam power P is greater than Pcr.

Nonlinear Optics. https://doi.org/10.1016/B978-0-12-811002-7.00016-3
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FIGURE 7.1.1: Schematic illustration of three self-action effects: (a) self-focusing of light, (b) self-
trapping of light, and (c) laser beam breakup, showing the transverse distribution of intensity of a beam
that has broken up into many filaments.

The final self-action effect shown in Fig. 7.1.1(c) is laser beam breakup.∗ This process
occurs only for P � Pcr and leads to the breakup of the beam into many components, each
of which carries a power of approximately Pcr. This process occurs as a consequence of the
growth of imperfections of the laser wavefront by means of the amplification associated with
the forward four-wave mixing process.

Let us begin our analysis of self-action effects by developing a simple model of the self-
focusing process. For the present, we ignore the effects of diffraction; these effects are intro-
duced below. The neglect of diffraction is justified if the beam diameter or intensity (or both)
is sufficiently large. Fig. 7.1.2 shows a collimated beam of light of characteristic radius w0 and
an on-axis intensity I0 falling onto a nonlinear optical material for which n2 is positive. We
want to determine the distance zsf from the input face of the material to the self-focus point.
We make use of Fermat’s principle, which in the present context states that the optical path
length

∫
n(r) dl of all rays traveling from a wavefront at the input face to the self-focus point

must be equal. As a first approximation, we take the refractive index along the marginal ray to
be the linear refractive index n0 of the medium and the refractive index along the central ray

∗ Many authors use the term filamentation (or small-scale filamentation) to describe the quasi-random breakup of
a laser beam into many individual components. However, other authors use the term filamentation to mean the
collapse of a laser beam into a single filament, that is, the creation of a self-trapped beam of light. To avoid
ambiguity, in the present work we avoid the use of the word filamentation, preferring instead to speak of laser
beam breakup for the first meaning and self-trapped beams for the second.
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FIGURE 7.1.2: Prediction of the self-focusing distance zsf by means of Fermat’s principle. The curved
ray trajectories within the nonlinear material are approximated as straight lines.

to be n0 + n2I0. Fermat’s principle then tells us that

(n0 + n2I )zsf = n0zsf/cos θsf, (7.1.2)

where θsf is the angle defined in the figure. If we approximate cos θsf as 1 − 1
2θ2

sf and solve the
resulting expression for θsf, we find that

θsf = √
2n2I/n0. (7.1.3)

This quantity is known as the self-focusing angle and in general can be interpreted as the charac-
teristic angle through which a beam of light is deviated as a consequence of self-action effects.
The ratio n2I/n0 of nonlinear to linear refractive index is invariably a small quantity, thus
justifying the use of the paraxial approximation. In terms of the self-focusing angle, we can
calculate the characteristic self-focusing distance as zsf = w0/θsf or as

zsf = w0

√
n0

2n2I
= 2n0w

2
0

λ0

1√
P/Pcr

(for P � Pcr), (7.1.4)

where in writing the result in the second form we have made use of expression (7.1.1).
The derivation leading to the result given by Eq. (7.1.4) ignores the effects of diffraction, and

thus might be expected to be valid when self-action effects overwhelm those of diffraction—
that is, for P � Pcr. For smaller laser powers, the self-focusing distance can be estimated by
noting that the beam convergence angle is reduced by diffraction effects and is given approxi-
mately by θ = (θ2

sf − θ2
dif)

1/2, where

θdif = 0.61λ0/n0d (7.1.5)
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is the diffraction angle of a beam of diameter d and vacuum wavelength λ0. Then, once again
arguing that zsf = w0/θ , we find that

zsf = 2n0w
2
0

λ0

1√
P/Pcr − 1

. (7.1.6)

Yariv (1975) has shown that for the still more general case in which the beam has arbitrary
power and arbitrary beam-waist position, the distance from the entrance face to the position of
the self-focus is given by the formula

zsf =
1
2kw2

(P/Pcr − 1)1/2 + 2zmin/kw2
0

, (7.1.7)

where k = n0ω/c. The beam radius parameters w and w0 (which have their conventional mean-
ings) and zmin are defined in Fig. 7.1.3.

Even under conditions whereby a light beam does not come to a complete focus, nonlinear
propagation effects can lead to a modification of the beam parameters such as the radius of
curvature of the wavefront. The resulting modification of the beam shape underlies the Z-scan
procedure for performing accurate measurements of the n2 coefficient. The Z-scan method is
explored in detail in Problem 3 at the end of this chapter.

FIGURE 7.1.3: Definition of the parameters w, w0, and zmin. The “rays” are shown as unmodified by the
nonlinear interaction.

7.1.1 Self-Trapping of Light

Let us next consider the conditions under which self-trapping of light can occur. One expects
self-trapping to occur when the tendency of a beam to spread as a consequence of diffraction is
precisely balanced by the tendency of the beam to contract as a consequence of self-focusing
effects. The condition for self-trapping can thus be expressed mathematically as a statement
that the diffraction angle of Eq. (7.1.5) be equal to the self-focusing angle of Eq. (7.1.3)—that
is, that

θdif = θsf. (7.1.8)
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By introducing Eqs. (7.1.3) and (7.1.5) into this equality, we find that self-trapping will occur
only if the intensity of the light within the beam is given by

I = (0.61)2λ2
0

2n2n0d2
. (7.1.9)

Since the power contained in such a beam is given by P = (π/4)d2I , we also see that self-
trapping occurs only if the power contained in the beam has the critical value

Pcr = π(0.61)2λ2
0

8n0n2
≈ λ2

0

8n0n2
. (7.1.10)

This result was stated above without proof as Eq. (7.1.1). Note that according to the present
model a self-trapped beam can have any diameter d, and that for any value of d the power
contained in the filament has the same value, given by Eq. (7.1.10). The value of the numerical
coefficient appearing in this formula depends on the detailed assumptions of the mathematical
model of self-focusing; this issue has been discussed in detail by Fibich and Gaeta (2000).

The process of laser-beam self-trapping can be described perhaps more physically in terms
of an argument presented by Chiao et al. (1964). One makes the simplifying assumption that the
laser beam has a flat-top intensity distribution, as shown in Fig. 7.1.4(a). The refractive index
distribution within the nonlinear medium then has the form shown in part (b) of the figure,
which shows a cut through the medium that includes the symmetry axis of the laser beam. Here
the refractive index of the bulk of the material is denoted by n0 and the refractive index of that
part of the medium exposed to the laser beam is denoted by n0 + δn, where δn is the nonlinear
contribution to the refractive index. Also shown in part (b) of the figure is a ray of light incident
on the boundary between the two regions. It is one ray of the bundle of rays that makes up the
laser beam. This ray will remain trapped within the laser beam if it undergoes total internal
reflection at the boundary between the two regions. Total internal reflection occurs if θ is less
than the critical angle θ0 for total internal reflection, which is given by the equation

cos θ0 = n0

n0 + δn
. (7.1.11)

Since δn is very much smaller than n0 for essentially all nonlinear optical materials, and con-
sequently θ0 is much smaller than unity, Eq. (7.1.11) can be approximated by

1 − 1
2θ2

0 = 1 − δn

n0
,

which shows that the critical angle is related to the nonlinear change in refractive index by

θ0 = (2δn/n0)
1/2. (7.1.12)



326 Chapter 7

FIGURE 7.1.4: (a) Radial intensity distribution of a “flat-top” laser beam. (b) A ray of light incident on
the boundary formed by the edge of the laser beam.

Note that if we identify δn with n2I , the critical angle is identical to the self-focusing angle of
Eq. (7.1.3).

A laser beam of diameter d will contain rays within a cone whose maximum angular extent
is of the order of the characteristic diffraction angle θdif = 0.61λ0/n0d , where λ0 is the wave-
length of the light in vacuum. We expect that self-trapping will occur if all of the rays contained
in the beam undergo total internal reflection, that is, if θdif = θ0. By comparing Eqs. (7.1.12)
and (7.1.5), we see that self-trapping will occur if

δn = 1
2n0(0.61λ0/dn0)

2, (7.1.13a)

or equivalently, if

d = 0.61λ0(2n0δn)−1/2. (7.1.13b)

If we now replace δn by n2I , we see that the diameter of a self-trapped beam is related to the
intensity of the light within the beam by

d = 0.61λ0(2n0n2I )−1/2. (7.1.14)

The power contained in a beam whose diameter is given by Eq. (7.1.14) is given as before by

Pcr = π

4
d2I = π(0.61)2λ2

0

8n0n2
. (7.1.15)

Note that the power, not the intensity, of the laser beam is crucial in determining whether
self-focusing will occur.
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When the power P greatly exceeds the critical power Pcr and self-focusing does occur, the
beam will usually break up into many filaments, each of which contains power Pcr. The theory
of filament formation has been described by Bespalov and Talanov (1966) and is described
more fully in a following subsection.

It is instructive to determine the numerical values of the various physical quantities intro-
duced in this section. For carbon disulfide (CS2), n2 for linearly polarized light is equal to
3.2 × 10−18 m2/W, n0 is equal to 1.7, and Pcr at a wavelength of 1 µm is equal to 27 kW. For
typical crystals and glasses, n2 is in the range 5 × 10−20 to 5 × 10−19 m2/W and Pcr is in the
range 0.2 to 2 MW. We can also estimate the self-focusing distance of Eq. (7.1.4). A fairly mod-
est Q-switched Nd:YAG laser operating at a wavelength of 1.06 µm might produce an output
pulse containing 10 mJ of energy with a pulse duration of 10 nsec, and thus with a peak power
of the order of 1 MW. If we take w0 equal to 100 µm, Eq. (7.1.4) predicts that zsf is equal to
1 cm for carbon disulfide.

7.1.2 Mathematical Description of Self-Action Effects

The description of self-action effects just presented has been of a somewhat qualitative nature.
Self-action effects can be described more rigorously by means of the nonlinear optical wave
equation.

For the present, we consider steady-state conditions only, as would apply for excitation with
a continuous-wave or long-pulse laser beam. The paraxial wave equation under these conditions
is given according to Eq. (2.10.3) by

2ik0
∂A

∂z
+ ∇2

T A = − ω2

ε0c2
pNL, (7.1.16)

where for a purely third-order nonlinear optical response the amplitude of the nonlinear polar-
ization is given by

pNL = 3ε0χ
(3)|A|2A. (7.1.17)

Steady-state self-trapping can be described by these equations.
We consider first the solution of Eqs. (7.1.16) and (7.1.17) for a beam that is allowed to

vary in one transverse dimension only. Such a situation could be realized experimentally for
the situation in which a light field is constrained to propagate within a planar waveguide. In this
case these equations become

2ik0
∂A

∂z
+ ∂2A

∂x2
= −3χ(3) ω

2

c2
|A|2A, (7.1.18)
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where A is now a function of x and z only. This equation possesses a solution of the form

A(x, z) = A0 sech(x/x0)e
iγ z, (7.1.19)

where the width of the field distribution is given by

x0 = 1

k0

√
n0

2n2|A0|2 = 1

k0

√
n0

n2I
(7.1.20)

and the rate of nonlinear phase acquisition is given by

γ = k0n2|A0|2/n0 = k0n2I/(2n0), (7.1.21)

where, as in Section 4.1, n2 = 3χ(3)/4n0 and n2I = 2n2|A0|2. The solution given by
Eq. (7.1.19) is sometimes referred to as a spatial soliton, because it describes a field that can
propagate for long distances with an invariant transverse profile. Behavior of this sort has been
observed experimentally by Barthelemy et al. (1985) and by Aitchison et al. (1991).

For a beam that varies in both transverse directions, Eqs. (7.1.16) and (7.1.17) cannot be
solved analytically, and only numerical results are known. The lowest-order solution for a
beam with cylindrical symmetry was reported by Chiao et al. (1964) and is of the form of a
bell-shaped curve of approximately gaussian shape. Detailed analysis shows that in two trans-
verse dimensions spatial solitons are unstable in a pure Kerr medium (i.e., one described by
an n2 nonlinearity) but that they can propagate stably in a saturable nonlinear medium. Stable
self-trapping in saturable media has been observed experimentally by Bjorkholm and Ashkin
(1974). Higher-order solutions have been reported by Haus (1966).

7.1.3 Laser Beam Breakup into Many Filaments

We mentioned earlier that beam breakup occurs as a consequence of the growth by forward
four-wave-mixing amplification of irregularities initially present on the laser wavefront. This
occurrence is illustrated schematically in Fig. 7.1.5. Beam breakup typically leads to the gener-
ation of a beam with a random intensity distribution, of the sort shown in part (c) of Fig. 7.1.1.

FIGURE 7.1.5: Illustration of laser beam breakup by the growth of wavefront perturbations.
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FIGURE 7.1.6: (a) Beam breakup occurs by the growth of the spatial sidemodes E1 and E−1 at the
expense of the strong central component E0. (b) Wavevectors of the interacting waves.

However, under certain circumstances, the beam breakup process can produce beams with
a transverse structure in the form of highly regular geometrical patterns; see, for instance,
Bennink et al. (2002).

Let us now present a mathematical description of the process of laser beam breakup. Our
derivation follows closely that of the original description of Bespalov and Talanov (1966). We
begin by expressing the field within the nonlinear medium as

Ẽ(r, t) = E(r)e−iωt + c.c., (7.1.22)

where (see also Fig. 7.1.6) it is convenient to express the electric field amplitude as the sum of
three plane-wave components as

E(r) = E0(r) + E1(r) + E−1(r) = [
A0(z) + A1(r) + A−1(r)

]
eikz

= [
A0(z) + a1(z)e

iq·r + a−1(z)e
−iq·r]eikz, (7.1.23)

where k = n0ω/c. Here E0 represents the strong central component of the laser field and E1 and
E−1 represent weak, symmetrically displaced spatial sidemodes; at various points in the cal-
culation it will prove useful to make use of the related quantities A0, A±1 and a±1 which are
introduced in the last form of this expression. The latter quantities are defined in relation to the
transverse component q of the optical wavevector of the off-axis modes. We next calculate the
nonlinear polarization in the usual manner:

P = 3ε0χ
(3)|E|2E ≡ P0 + P1 + P−1, (7.1.24)

where the part of the polarization that is phase matched to the strong central component is given
by

P0 = 3ε0χ
(3)|E0|2E0 = 3ε0χ

(3)|A0|2A0 eikz ≡ p0e
ikz, (7.1.25)

and where the part of the polarization that is phase matched to the sidemodes is given by

P±1 = 3ε0χ
(3)

(
2|E0|2E±1 + E2

0E∗∓1

) ≡ p±1e
ikz. (7.1.26)
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We first solve the wave equation for the spatial evolution of A0, which is described by

2ik
∂A0

∂z
+ ∇2⊥A0 = − ω2

ε0c2
p0. (7.1.27)

We have assumed that A0 is a uniform plane wave, and thus ∇2⊥A0 = 0. The solution of the
resulting equation is

A0(z) = A00e
iγ z, (7.1.28)

where

γ = 3ωχ(3)

2n0c
|A00|2 = n2kvacI (7.1.29)

denotes the spatial rate of nonlinear phase acquisition and where we have made use of the form
of n2 given by Eq. (4.1.19). This solution expresses the expected result that the strong central
component simply acquires a nonlinear phase shift as it propagates. We now use this result with
Eq. (7.1.26) to find that the part of the nonlinear polarization that couples to the sidemodes is
given by

p±1 = 3ε0χ
(3)

[
2|A00|2A±1 + A2

00e
2iγ zA∗∓1

]
. (7.1.30)

We next consider the wave equation for the off-axis modes. Starting with

2ik
∂A±1

∂z
+ ∇2⊥A±1 = − ω2

ε0c2
p±1, (7.1.31)

we introduce A±1 = a±1 exp(±iq · r) and expression (7.1.30) for P±1 to obtain

2ik
∂a±1

∂z
− q2a±1 = −ω2

c2
3χ(3)|A00|2

[
2a±1 + a∗∓1e

2iγ z
]
. (7.1.32)

This equation is now rearranged, and expression (7.1.29) for γ is introduced to obtain

da±1

dz
+ iq2

2k
a±1 = iγ

(
2a±1 + a∗∓1e

2iγ z
)
. (7.1.33)

We next perform a change of variables to remove the unwanted exponential phase factor ap-
pearing in the last term in this equation. In particular, we define

a±1 = a′±1e
iγ z. (7.1.34)

In terms of the new “primed” variables, Eq. (7.1.33) becomes

d

dz
a′±1 = i

(
γ − q2/2k

)
a′±1 + iγ a′ ∗∓1. (7.1.35)
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This set of equations now possesses constant coefficients and can be solved directly. Perhaps
the simplest way to solve these equations is to express them in matrix form as

d

dz

[
a′

1

a′ ∗−1

]
=

[
i(γ − β) iγ

−iγ −i(γ − β)

][
a′

1

a′ ∗−1

]
, (7.1.36)

where β ≡ q2/2k. We seek the eigensolutions of this equation—that is, solutions of the form[
a′

1(z)

a′ ∗−1(z)

]
=

[
a′

1(0)

a′ ∗−1(0)

]
e�z. (7.1.37)

The parameter � is the gain eigenvalue. The real part of � gives the spatial growth rate (if
positive) or the attenuation rate (if negative) of the coupled solution. This assumed solution is
substituted into Eq. (7.1.36), which then becomes

[
i(γ − β) − � iγ

−iγ −i(γ − β) − �

][
a′

1(0)

a′ ∗−1(0)

]
= 0. (7.1.38)

This equation possesses nonvanishing solutions only if the determinant of the two-by-two ma-
trix appearing in this equation vanishes. This condition leads to the result that

� = ±√
β(2γ − β). (7.1.39)

Note that this system of equations can produce gain (Re� > 0) only for γ > 1
2β, which shows

immediately that n2 must be positive in order for beam breakup to occur. More explicitly,
Fig. 7.1.7 shows a plot of the forward four-wave-mixing gain coefficient � as a function of
the transverse wavevector magnitude q. We see that the maximum gain is numerically equal to
the nonlinear phase shift γ experienced by the pump wave. We also see that the gain vanishes
for all values of q greater than qmax = 2

√
kγ and reaches its maximum value for wavevector

qopt = qmax/
√

2. There is consequently a characteristic angle at which the breakup process
occurs, which is given by

θopt = qopt/k. (7.1.40)

This angle has a direct physical interpretation, as described originally by Chiao et al. (1966). In
particular, θopt is the direction in which the near-forward four-wave-mixing process becomes
phase matched, when account is taken of the nonlinear contributions to the wavevectors of the
on- and off-axis waves.

It is instructive to calculate the characteristic power carried by each of the filaments created
by the breakup process. This power Pfil is of the order of the initial intensity I of the laser
beam times the characteristic cross sectional area of one of the filaments. We identify this area
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FIGURE 7.1.7: Variation of the gain coefficient � of the forward four-wave mixing process that leads to
laser-beam breakup with the transverse wavevector magnitude q.

with the square of the characteristic transverse distance scale associated with the beam breakup
process—that is, with w2

eff = (π/q)2. We thereby find that

Pfil = λ2

8n0n2
, (7.1.41)

which is very nearly equal to the critical power for self-focusing Pcr introduced in Eq. (7.1.1).
We thus see that the beam breakup process is one in which the laser beam breaks up into a large
number of individual components, each of which carries power of the order of Pcr.

Conditions for the Occurrence of Nonlinear Beam Breakup

Let us next determine the conditions under which laser beam breakup is expected to occur.
This issue is quite subtle for the following reasons. First, the breakup process grows from
perturbations initially present on the laser wavefront, and thus a very clean laser beam will
have a much higher threshold for beam breakup than a “dirty” beam. Second, whereas the
gain of the breakup process depends directly on laser intensity, the properties of whole-beam
self-focusing depend on the intensity and beam spot size in a more complicated manner.

To address this question, we define a beam breakup distance zbr by means of the relation
n2kvacIzbr = G, where G is a numerical factor (of the order of 3 to 10) that specifies the level
of gain that must be present in order for beam breakup to occur. For the optimum transverse
wavevector qopt, the gain coefficient � attains its maximum value � = γ = n2kvacI , and we
thus find that

zbr = G

n2kvacI
. (7.1.42)
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This distance is to be compared to the self-focusing distance

zsf = 2n0w
2
0

λ0

1√
P/Pcr − 1

(7.1.43)

(see Eq. (7.1.4) derived earlier), with Pcr = π(0.61)2λ2
0/8n0n2. The condition for the occur-

rence of beam breakup then can be stated as zfil < L, where L is the interaction path length,
and zfil < zsf. These conditions state that the breakup process must occur within the length of
the interaction region, and that the competing process of whole-beam self-focusing must not
occur. Note that zfil decreases more rapidly with increasing laser power (or intensity) than does
zsf, and thus beam breakup can always be induced through use of a sufficiently large laser
power. We now calculate the value of the laser power under conditions such that zbr is exactly
equal to zsf. We find, using Eq. (7.1.43) in the limit P � Pcr, that

P/Pcr = 4G2. (7.1.44)

For the representative value G = 5, we find that beam breakup is expected only for P > 100Pcr.

7.1.4 Self-Action Effects with Pulsed Laser Beams

For simplicity and conceptual clarity, the preceding discussion has dealt with continuous-wave
laser beams. Self-action effects can have quite a different character when excited using pulsed
radiation. Only some general comments are presented here. Additional aspects of self-action
effects as excited by ultrashort optical pulses are presented in Chapter 13.

Moving Focus Model

The moving focus model was developed by Loy and Shen (1973) to describe the properties of
self-focusing when excited with nanosecond laser pulses. To understand this model, one notes
that for pulsed radiation the self-focusing distance zsf of Eq. (7.1.4) (i.e., the distance from the
input face of the nonlinear medium to the self-focus point) will vary according to the value of
the instantaneous intensity I (t) at the input face. Thus, the focal point will sweep through the
material as it follows the temporal evolution of the pulse intensity. Under many circumstances,
damage will occur at the point of peak intensity, and thus the damage tracks observed by early
works (Hercher, 1964) can be interpreted as the locus of focal points for all values of the
input intensity I (t). Some aspects of the moving focus model are quite subtle. For instance,
because of transit time effects, there are typically two self-focal points within the material at
any given moment of time. One of these occurs closer to the entrance face of the material and
is a consequence of intense light near the peak of the pulse, whereas another focus occurs at
greater distances into the material and occurs as a consequence of earlier, weaker parts of the
pulse.
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Transient Self-Focusing

Transient self-focusing occurs when the laser pulse duration τp is comparable to or shorter
than the turn-on time of the material response. In this situation, the nonlinear response devel-
ops during the temporal extent of the laser pulse, and consequently the nonlinear response is
stronger for the trailing edge of the pulse than for the leading edge. Thus the trailing edge
is more strongly self-focused than is the leading edge, leading to significant distortion of the
pulse intensity distribution in both space and time. This process has been described in detail by
Shen (1975). Transient self-focusing can be observed, for example, through use of picosecond
laser pulses propagating through liquids in which the dominant nonlinearity is the molecular
orientation effect.

7.2 Optical Phase Conjugation

Optical phase conjugation is a process that can be used to remove the effects of aberrations
from certain types of optical systems (Zel’dovich et al., 1985; Boyd and Grynberg, 1992). The
nature of the phase conjugation process is illustrated in Fig. 7.2.1. Part (a) of the figure shows an
optical wave falling at normal incidence onto an ordinary metallic mirror. We see that the most
advanced portion of the incident wavefront remains the most advanced in the reflected wave.
Part (b) of the figure shows the same wavefront falling onto a phase-conjugate mirror. In this
case the most advanced portion turns into the most retarded portion in the reflection process.
For this reason, optical phase conjugation is sometimes referred to as wavefront reversal. Note,
however, that the wavefront is reversed only with respect to normal geometrical reflection; in
fact, the generated wavefront exactly replicates the incident wavefront but propagates in the
opposite direction. For this reason, optical phase conjugation is also sometimes referred to as
the generation of a time-reversed wavefront, as shown more explicitly in Eq. (7.2.5).

FIGURE 7.2.1: Reflection from (a) an ordinary mirror and (b) a phase-conjugate mirror.
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The reason why the process illustrated in part (b) of Fig. 7.2.1 is called phase conjugation
can be understood by introducing a mathematical description of the process. We represent the
wave incident on the phase-conjugate mirror (called the signal wave) as

Ẽs(r, t) = Es(r)e−iωt + c.c. (7.2.1)

When illuminated by such a wave, a phase-conjugate mirror produces a reflected wave, called
the phase-conjugate wave, described by

Ẽc(r, t) = rE∗
s (r)e

−iωt + c.c., (7.2.2)

where r represents the amplitude reflection coefficient of the phase-conjugate mirror. In order
to determine the significance of replacing Es(r) by E∗

s (r) in the reflection process, it is useful
to represent Es(r) as the product

Es(r) = ε̂sAs(r)eiks·r, (7.2.3)

where ε̂s represents the polarization unit vector, As(r) the slowly varying field amplitude, and
ks the mean wavevector of the incident light. The complex conjugate of Eq. (7.2.3) is given
explicitly by

E∗
s (r) = ε̂∗

s A
∗
s (r)e

−iks·r. (7.2.4)

We thus see that the action of an ideal phase-conjugate mirror is threefold:
1. The complex polarization unit vector of the incident radiation is replaced by its complex

conjugate. For example, right-hand circular light remains right-hand circular in reflection
from a phase-conjugate mirror rather than being converted into left-hand circular light, as
is the case in reflection at normal incidence from a metallic mirror.

2. As(r) is replaced by A∗
s (r), implying that the wavefront is reversed in the sense illustrated

in Fig. 7.2.1(b).∗
3. ks is replaced by −ks, showing that the incident wave is reflected back into its direction

of incidence. From the point of view of ray optics, this result shows that each ray of the
incident beam is precisely reflected back onto itself.

Note further that Eqs. (7.2.1) through (7.2.4) imply that

Ẽc(r, t) = rẼs(r,−t). (7.2.5)

This result shows that the phase conjugation process can be thought of as the generation of a
time-reversed wavefront.

∗ Because of this property, the phase conjugation process displays special quantum noise characteristics. These
characteristics have been described by Gaeta and Boyd (1988).
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It is important to note that the description given by Eq. (7.2.4) refers to an ideal phase-
conjugate mirror. Many physical devices that are commonly referred to as phase-conjugate
mirrors are imperfect either in the sense that they do not possess all three of these properties or
in the sense that they possess these properties only approximately. For example, many phase-
conjugate mirrors are highly imperfect in their polarization properties, even though they are
nearly perfect in their ability to perform wavefront reversal.

7.2.1 Aberration Correction by Phase Conjugation

The process of phase conjugation is able to remove the effects of aberrations under conditions
such that a beam of light passes twice in opposite directions through an aberrating medium. The
reason why optical phase conjugation leads to aberration correction is illustrated in Fig. 7.2.2.
Here an initially plane wavefront propagates through an aberrating medium. The aberration
may be due to turbulence in the earth’s atmosphere, inhomogeneities in the refractive index
of a piece of glass, or a poorly designed optical system. The wavefront of the light leaving
the medium therefore becomes distorted in the manner shown schematically in the figure. If
this aberrated wavefront is now allowed to fall onto a phase-conjugate mirror, a conjugate
wavefront will be generated, and the sense of the wavefront distortion will be inverted in this
reflected wave. As a result, when this wavefront passes through the aberrating medium again,
an undistorted output wave will emerge.

Let us now see how to demonstrate mathematically that optical phase conjugation leads to
aberration correction. (Our treatment here is similar to that of Yariv and Fisher in Fisher, 1983.)
We consider a wave Ẽ(r, t) propagating through a lossless material of nonuniform refractive
index n(r) = [ε(r)]1/2, as shown in Fig. 7.2.3.

FIGURE 7.2.2: Aberration correction by optical phase conjugation.
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FIGURE 7.2.3: Conjugate waves propagating through an inhomogeneous optical medium.

We assume that the spatial variation of ε(r) occurs on a scale that is much larger than an
optical wavelength. The optical field in this region must obey the wave equation, which we
write in the form

∇2Ẽ − ε(r)
c2

∂2Ẽ

∂t2
= 0. (7.2.6)

We represent the field propagating to the right through this region as

Ẽ(r, t) = A(r)ei(kz−ωt) + c.c., (7.2.7)

where the field amplitude A(r) is assumed to be a slowly varying function of r. Since we have
singled out the z direction as the mean direction of propagation, it is convenient to express the
Laplacian operator that appears in Eq. (7.2.6) as

∇2 = ∂2

∂z2
+ ∇2

T , (7.2.8)

where ∇2
T = ∂2/∂x2 + ∂2/∂y2 is called the transverse Laplacian. Eqs. (7.2.7) and (7.2.8) are

now introduced into Eq. (7.2.6), which becomes

∇2
T A +

[
ω2ε(r)

c2
− k2

]
A + 2ik

∂A

∂z
= 0. (7.2.9)

In writing this equation in the form shown, we have omitted the term ∂2A/∂z2 because A(r)
has been assumed to be slowly varying. Since this equation is generally valid, so is its complex
conjugate, which is given explicitly by

∇2
T A∗ +

[
ω2ε(r)

c2
− k2

]
A∗ − 2ik

∂A∗

∂z
= 0. (7.2.10)

However, this equation describes the wave

Ẽc(r, t) = A∗(r)ei(−kz−ωt) + c.c., (7.2.11)

which is a wave propagating in the negative z direction whose complex amplitude is everywhere
the complex conjugate of the forward-going wave. This proof shows that if the phase-conjugate
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mirror can generate a backward-going wave whose amplitude is the complex conjugate of that
of the forward-going wave at any one plane (say the input face of the mirror), then the field
amplitude of the backward-going wave will be the complex conjugate of that of the forward-
going wave at all points in front of the mirror. In particular, if the forward-going wave is a plane
wave before entering the aberrating medium, then the backward-going (i.e., conjugate) wave
emerging from the aberrating medium will also be a plane wave.

The phase conjugation process is directly suited for removing the effects of aberrations in
double pass, but under special circumstances can be used to perform single-pass aberration
correction; see, for instance, MacDonald et al. (1988).

7.2.2 Phase Conjugation by Degenerate Four-Wave Mixing

Let us now consider a physical process that can produce a phase conjugate wavefront. It has
been shown by Hellwarth (1977) and by Yariv and Pepper (1977) that the phase conjugate of
an incident wave can be created by the process of degenerate four-wave mixing (DFWM) using
the geometry shown in Fig. 7.2.4. This four-wave mixing process is degenerate in the sense
that all four interacting waves have the same frequency. In this process, a lossless nonlinear
medium characterized by a third-order nonlinear susceptibility χ(3) is illuminated by two strong
counterpropagating pump waves E1 and E2 and by a signal wave E3. The pump waves are
usually taken to be plane waves, although in principle they can possess any wavefront structure
as long as their amplitudes are complex conjugates of one another. The signal wave is allowed to
have an arbitrary wavefront. In this section we show that, as a result of the nonlinear coupling
between these waves, a new wave E4 is created that is the phase conjugate of E3. We also
derive an expression (Eq. (7.2.37)) that describes the efficiency with which the conjugate wave
is generated.

Since the following mathematical development is somewhat involved, it is useful to first
consider in simple terms why the interaction illustrated in Fig. 7.2.4 leads to the generation of

FIGURE 7.2.4: Geometry of phase conjugation by degenerate four-wave mixing.
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a conjugate wavefront. We represent the four interacting waves by

Ẽi(r, t) = Ei(r)e−iωt + c.c.

= Ai(r)ei(ki ·r−ωt) + c.c. (7.2.12)

for i = 1,2,3,4, where the Ai(r) are slowly varying quantities. The nonlinear polarization
produced within the medium by the three input waves will have, in addition to a large number
of other terms, a term of the form

P NL = 6ε0χ
(3)E1E2E

∗
3 = 6ε0χ

(3)A1A2A
∗
3e

i(k1+k2−k3)·r. (7.2.13)

We have assumed that the pump waves E1 and E2 are counterpropagating, and thus their
wavevectors are related by

k1 + k2 = 0, (7.2.14)

and thus Eq. (7.2.13) becomes

P NL = 6ε0χ
(3)A1A2A

∗
3e

−ik3·r. (7.2.15)

We see that this contribution to the nonlinear polarization has a spatial dependence that allows
it to act as a phase-matched source term for a conjugate wave (E4) having wavevector −k3, and
we thus see that the wavevectors of the signal and conjugate waves are related by

k3 = −k4. (7.2.16)

The field amplitude of the wave generated by the nonlinear polarization of Eq. (7.2.15) will
be proportional to A1A2A

∗
3. This wave will be the phase conjugate of A3 whenever the phase

of the product A1A2 is spatially invariant, either because A1 and A2 both represent plane waves
and hence are each constant or because A1 and A2 are phase conjugates of one another (because
if A2 is proportional to A∗

1, then A1A2 will be proportional to the real quantity |A1|2).
We can also understand the interaction shown in Fig. 7.2.4 from the following point of

view. The incoming signal wave of amplitude A3 interferes with one of the pump waves (e.g.,
the forward-going pump wave of amplitude A1) to form a spatially varying intensity distribu-
tion. As a consequence of the nonlinear response of the medium, a refractive index variation
accompanies this interference pattern. This variation acts as a volume diffraction grating, which
scatters the other pump wave to form the outgoing conjugate wave of amplitude A4.

Let us now treat the degenerate four-wave mixing process more rigorously. The total field
amplitude within the nonlinear medium is given by

E = E1 + E2 + E3 + E4. (7.2.17)
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This field produces a nonlinear polarization within the medium, given by

P = 3ε0χ
(3)E2E∗, (7.2.18)

where χ(3) = χ(3)(ω = ω + ω − ω). The product E2E∗ that appears on the right-hand side of
this equation contains a large number of terms with different spatial dependences. Those terms
with spatial dependence of the form

eiki ·r for i = 1,2,3,4 (7.2.19)

are particularly important because they can act as phase-matched source terms for one of the
four interacting waves. The polarization amplitudes associated with these phase-matched con-
tributions are as follows:

P1 = 3ε0χ
(3)

[
E2

1E∗
1 + 2E1E2E

∗
2 + 2E1E3E

∗
3 + 2E1E4E

∗
4 + 2E3E4E

∗
2

]
,

P2 = 3ε0χ
(3)

[
E2

2E∗
2 + 2E2E1E

∗
1 + 2E2E3E

∗
3 + 2E2E4E

∗
4 + 2E3E4E

∗
1

]
,

P3 = 3ε0χ
(3)

[
E2

3E∗
3 + 2E3E1E

∗
1 + 2E3E2E

∗
2 + 2E3E4E

∗
4 + 2E1E2E

∗
4

]
,

P4 = 3ε0χ
(3)

[
E2

4E∗
4 + 2E4E1E

∗
1 + 2E4E2E

∗
2 + 2E4E3E

∗
3 + 2E1E2E

∗
3

]
. (7.2.20)

We next assume that the fields E3 and E4 are much weaker than the pump fields E1 and E2.
In the above expressions we therefore drop those terms that contain more than one weak-field
amplitude. We hence obtain

P1 = 3ε0χ
(3)

[
E2

1E∗
1 + 2E1E2E

∗
2

]
,

P2 = 3ε0χ
(3)

[
E2

2E∗
2 + 2E2E1E

∗
1

]
,

P3 = 3ε0χ
(3)

[
2E3E1E

∗
1 + 2E3E2E

∗
2 + 2E1E2E

∗
4

]
,

P4 = 3ε0χ
(3)

[
2E4E1E

∗
1 + 2E4E2E

∗
2 + 2E1E2E

∗
3

]
. (7.2.21)

Note that, at the present level of approximation, the E3 and E4 fields are each driven by a
polarization that depends on the amplitudes of all of the fields, but that the polarizations driving
the E1 and E2 fields depend only on E1 and E2 themselves. We thus consider first the problem
of calculating the spatial evolution of the pump field amplitudes E1 and E2. We can then later
use these known amplitudes when we calculate the spatial evolution of the signal and conjugate
waves.

We assume that each of the interacting waves obeys the wave equation in the form

∇2Ẽi − ε

c2

∂2Ẽi

∂t2
= 1

ε0c2

∂2

∂t2
P̃i . (7.2.22)

We now introduce Eqs. (7.2.12) and (7.2.21) into this equation and make the slowly varying
amplitude approximation. Also, we let z′ be the spatial coordinate measured in the direction
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of propagation of the E1 field, and we assume for simplicity that the pump waves have plane
wavefronts. We then find that the pump field A1 must obey the equation[(

−k2
1 + 2ik1

d

dz′ + εω2

c2

)
A1

]
ei(k1z

′−ωt)

= −ω2

c2
3χ(3)

[|A1|2 + 2|A2|2
]
A1e

i(k1z
′−ωt),

which, after simplification, becomes

dA1

dz′ = 3iω

2nc
χ(3)

[|A1|2 + 2|A2|2
]
A1 ≡ iκ1A1. (7.2.23a)

We similarly find that the backward-going pump wave is described by the equation

dA2

dz′ = −3iω

2nc
χ(3)

[|A2|2 + 2|A1|2
]
A2 ≡ iκ2A2. (7.2.23b)

Since κ1 and κ2 are real quantities, these equations show that A1 and A2 each undergo
phase shifts as they propagate through the nonlinear medium. The phase shift experienced by
each wave depends both on its own intensity and on that of the other wave. Note that each wave
shifts the phase of the other wave by twice as much as it shifts its own phase, in consistency
with the general result described in the discussion following Eq. (4.1.14). These phase shifts can
induce a phase mismatch into the process that generates the phase-conjugate signal. Note that
since only the phases (and not the amplitudes) of the pump waves are affected by the nonlinear
coupling, the quantities |A1|2 and |A2|2 are spatially invariant, and thus the quantities κ1 and
κ2 that appear in Eqs. (7.2.23) are in fact constants. These equations can therefore be solved
directly to obtain

A1(z
′) = A1(0)eiκ1z

′
, (7.2.24a)

A2(z
′) = A2(0)e−iκ2z

′
. (7.2.24b)

The product A1A2 that appears in the expression (7.2.15) for the nonlinear polarization respon-
sible for producing the phase-conjugate wave therefore varies spatially as

A1(z
′)A2(z

′) = A1(0)A2(0)ei(κ1−κ2)z
′ ; (7.2.25)

the factor ei(κ1−κ2)z
′

shows the effect of wavevector mismatch. If the two pump beams have
equal intensities so that κ1 = κ2, the product A1A2 becomes spatially invariant, so that

A1(z
′)A2(z

′) = A1(0)A2(0), (7.2.26)

and in this case the interaction is perfectly phase-matched. We shall henceforth assume that the
pump intensities are equal.
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We next consider the coupled-amplitude equations describing the signal and conjugate
fields, Ẽ3 and Ẽ4. We assume for simplicity that the incident signal wave has plane wave-
fronts. This is actually not a restrictive assumption, because an arbitrary signal field can be
decomposed into plane-wave components, each of which will couple to a plane-wave compo-
nent of the conjugate field Ẽ4. Under this assumption, the wave equation (7.2.22) applied to the
signal and conjugate fields leads to the coupled-amplitude equations

dA3

dz
= 3iω

nc
χ(3)

[(|A1|2 + |A2|2
)
A3 + A1A2A

∗
4

]
, (7.2.27a)

dA4

dz
= −3iω

nc
χ(3)

[(|A1|2 + |A2|2
)
A4 + A1A2A

∗
3

]
. (7.2.27b)

For convenience, we write these equations as

dA3

dz
= iκ3A3 + iκA∗

4, (7.2.28a)

dA4

dz
= −iκ3A4 − iκA∗

3, (7.2.28b)

where we have introduced the coupling coefficients

κ3 = 3ω

nc
χ(3)

(|A1|2 + |A2|2
)
, (7.2.29a)

κ = 3ω

nc
χ(3)A1A2. (7.2.29b)

The set of equations (7.2.28) can be simplified through a change of variables. We let

A3 = A′
3e

iκ3z, (7.2.30a)

A4 = A′
4e

−iκ3z. (7.2.30b)

Note that the primed and unprimed variables coincide at the input face of the interaction
region—that is, at the plane z = 0. We introduce these relations into Eq. (7.2.28a) which be-
comes

iκ3A
′
3e

iκ3z + dA′
3

dz
eiκ3z = iκ3A

′
3e

iκ3z + iκA′ ∗
4 eiκ3z,

or

dA′
3

dz
= iκA′ ∗

4 . (7.2.31a)

We similarly find that Eq. (7.2.28b) becomes

dA′
4

dz
= −iκA′ ∗

3 . (7.2.31b)
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This set of equations shows why degenerate four-wave mixing leads to phase conjugation:
The generated field A′

4 is driven only by the complex conjugate of the input field amplitude.
We note that this set of equations is formally identical to the set that we would have obtained if
we had taken the driving polarizations of Eq. (7.2.21) to be simply

P1 = P2 = 0, P3 = 6ε0χ
(3)E1E2E

∗
4 , P4 = 6ε0χ

(3)E1E2E
∗
3 , (7.2.32)

that is, if we had ignored the modification of the pump waves resulting from the nonlinear
interaction.

Next, we solve the set of equations (7.2.31). We take the derivative of Eq. (7.2.31b) with
respect to z and introduce Eq. (7.2.31a) to obtain

d2A′
4

dz2
+ |κ|2A′

4 = 0. (7.2.33)

This result shows that the spatial dependence of A′
4 must be of the form

A′
4(z) = B sin|κ|z + C cos|κ|z. (7.2.34)

In order to determine the constants B and C, we must specify the initial condition for each
of the two weak waves at its input plane. In particular, we assume that A′ ∗

3 (0) and A′
4(L) are

specified. In this case, the solution of Eq. (7.2.33) is

A′ ∗
3 (z) = − i|κ|

κ

sin|κ|z
cos|κ|LA′

4(L) + cos[|κ|(z − L)]
cos|κ|L A′ ∗

3 (0), (7.2.35a)

A′
4(z) = cos|κ|z

cos|κ|LA′
4(L) − iκ

|κ|
sin[|κ|(z − L)]

cos|κ|L A′ ∗
3 (0). (7.2.35b)

However, for the case of four-wave mixing for optical phase conjugation, we can usually as-
sume that there is no conjugate wave injected into the medium at z = L—that is, we can assume
that

A′
4(L) = 0. (7.2.36)

Furthermore, we are usually interested only in the output values of the two interacting fields.
These output field amplitudes are then given by

A′ ∗
3 (L) = A′ ∗

3 (0)

cos |κ|L, (7.2.37a)

A′
4(0) = iκ

|κ|(tan |κ|L)A′ ∗
3 (0). (7.2.37b)

Note that the transmitted signal wave A′ ∗
3 (L) is always more intense than the incident wave.

Note also that the output conjugate wave A4(0) can have any intensity ranging from zero to
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infinity, the actual value depending on the particular value of |κ|L. The reflectivity of a phase-
conjugate mirror based on degenerate four-wave mixing can exceed 100% because the mirror
is actively pumped by externally applied waves, which can supply energy.

FIGURE 7.2.5: Parts (a) and (b) are energy-level diagrams describing two different interactions that
can lead to phase conjugation by degenerate four-wave mixing. In either case, the interaction involves
the simultaneous annihilation of two pump photons with the creation of signal and conjugate photons.
Diagram (a) describes the dominant interaction if the applied field frequency is nearly resonant with
a one-photon transition of the material system, whereas (b) describes the dominant interaction under
conditions of two-photon-resonant excitation. Part (c) shows the wavevectors of the four interacting
waves. Because k1 + k2 − k3 − k4 = 0, the process is perfectly phase-matched.

From the point of view of energetics, we can describe the process of degenerate four-wave
mixing as a process in which one photon from each of the pump waves is annihilated and one
photon is added to each of the signal and conjugate waves, as shown in Fig. 7.2.5. Hence, the
conjugate wave A4 is created, and the signal wave A3 is amplified. The degenerate four-wave
mixing process with counterpropagating pump waves is automatically phase-matched (when
the two pump waves have equal intensity or whenever we can ignore the nonlinear phase shifts
experienced by each wave). We see that this is true because no phase-mismatch terms of the
sort e±i�κz appear on the right-hand sides of Eqs. (7.2.31). The fact that degenerate four-wave
mixing in the phase conjugation geometry is automatically phase-matched has a very simple
physical interpretation. Since this process entails the annihilation of two pump photons and
the creation of a signal and conjugate photon, the total input energy is 2�ω and the total input
momentum is �(k1 + k2) = 0; consequently the total output energy must be 2�ω and the total
output momentum must be �(k3 +k4) = 0. If the two pump beams are not exactly counterprop-
agating, then �(k1 + k2) does not vanish and the phase-matching condition is not automatically
satisfied.

The first experimental demonstration of phase conjugation by degenerate four-wave mix-
ing was performed by Bloom and Bjorklund (1977). Their experimental setup is shown in
Fig. 7.2.6. They observed that the presence of the aberrating glass plate did not lower the reso-
lution of the system when the mirror was aligned to retroreflect the pump laser beam onto itself.
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FIGURE 7.2.6: Experimental setup for studying phase conjugation by degenerate four-wave mixing.

However, when this mirror was partially misaligned, the return beam passed through a different
portion of the aberrating glass and the resolution of the system was degraded.

Degenerate four-wave mixing is usually performed using the geometry of Fig. 7.2.4, al-
though it can also be performed using the surface nonlinearity of the interface between a linear
and nonlinear medium; see, for instance, Maki et al. (1992) for details.

7.2.3 Polarization Properties of Phase Conjugation

Our discussion thus far has treated phase conjugation in the scalar approximation and has shown
that phase conjugation can be used to remove the effects of wavefront aberrations. It is often
desirable that phase conjugation be able to remove the effects of polarization distortions as
well. An example is shown in Fig. 7.2.7. Here a beam of light that initially is linearly polarized
passes through a stressed optical component. As a result of stress-induced birefringence, the
state of polarization of the beam becomes distorted nonuniformly over the cross section of the
beam. This beam then falls onto a phase-conjugate mirror. If this mirror is ideal in the sense
that the polarization unit vector ε̂ of the incident light is replaced by its complex conjugate in
the reflected beam, the effects of the polarization distortion will be removed in the second pass
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FIGURE 7.2.7: Polarization properties of phase conjugation.

FIGURE 7.2.8: Geometry of vector phase conjugation.

through the stressed optical component, and the beam will be returned to its initial state of linear
polarization. A phase-conjugate mirror that produces a reflected beam that is both a wavefront
conjugate and a polarization conjugate is often called a vector phase-conjugate mirror.

In order to describe the polarization properties of the degenerate four-wave mixing process,
we consider the geometry shown in Fig. 7.2.8, where F, B, and S denote the amplitudes of
the forward- and backward-going pump waves and of the signal wave, respectively. The total
applied field is thus given by

E = F + B + S. (7.2.38)

We assume that the angle θ between the signal and forward-going pump wave is much smaller
than unity, so that only the x and y components of the incident fields have appreciable ampli-
tudes. We also assume that the nonlinear optical material is isotropic, so that the third-order
nonlinear optical susceptibility χ

(3)
ijkl = χ

(3)
ijkl(ω = ω + ω − ω) is given by Eq. (4.2.5) as

χ
(3)
ijkl = χ1122(δij δkl + δikδjl) + χ1221δilδjk, (7.2.39)
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and so that the nonlinear polarization can be expressed as

P = 6ε0χ1122(E · E∗)E + 3ε0χ1221(E · E)E∗

= ε0A(E · E∗)E + 1
2ε0B(E · E)E∗. (7.2.40)

If we now introduce Eq. (7.2.38) into Eq. (7.2.40), we find that the phase-matched contribution
to the nonlinear polarization that acts as a source for the conjugate wave is given by

[
Px

Py

]
= 6ε0

[
χ1111BxFx + χ1221ByFy χ1122(BxFy + ByFx)

χ1122(ByFx + BxFy) χ1111ByFy + χ1221BxFx

][
S∗

x

S∗
y

]
,

(7.2.41)

where χ1111 = 2χ1122 + χ1221. The polarization properties of the phase-conjugation process
will be ideal (i.e., vector phase conjugation will be obtained) whenever the two-by-two transfer
matrix of Eq. (7.2.41) is a multiple of the identity matrix. Under these conditions, both cartesian
components of the incident field are reflected with equal efficiency, their relative phases are
preserved, and no coupling takes place between orthogonal components.

There are two different ways in which the matrix in Eq. (7.2.41) can be made to reduce to
a multiple of the identity matrix. One way is for A = 6χ1122 to vanish identically. In this case
Eq. (7.2.41) becomes

[
Px

Py

]
= 6ε0χ1221(BxFx + ByFy)

[
1 0
0 1

][
S∗

x

S∗
y

]

= 6ε0χ1221(BxFx + ByFy)

[
S∗

x

S∗
y

]
, (7.2.42)

and thus the nonlinear polarization is proportional to the complex conjugate of the signal
amplitude for any choice of the polarization vectors of the pump waves. This result can be
understood directly in terms of Eq. (7.2.40), which shows that P has the vector character of E∗
whenever χ1122 vanishes. However, χ1122 (or A) vanishes identically only under very unusual
circumstances. The only known case for this condition to occur is that of degenerate four-wave
mixing in an atomic system utilizing a two-photon resonance between certain atomic states.
This situation has been analyzed by Grynberg (1984) and Kauranen et al. (1989) and studied
experimentally by Malcuit et al. (1988). The analysis can be described most simply for the case
of a transition between two S states of an atom with zero electron spin. The four-wave mixing
process can then be described graphically by the diagram shown in Fig. 7.2.9. Since the lower
and upper levels each possess zero angular momentum, the sum of the angular momenta of the
signal and conjugate photons must be zero, and this condition implies that the polarization unit
vectors of the two waves must be related by complex conjugation.
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FIGURE 7.2.9: Phase conjugation by degenerate four-wave mixing using a two-photon transition.

For most physical mechanisms giving rise to optical nonlinearities, the coefficient A does
not vanish. (Recall that for molecular orientation B/A = 6, for electrostriction B/A = 0, and
for nonresonant electronic response B/A = 1.) For the general case in which A is not equal
to 0, vector phase conjugation in the geometry in Fig. 7.2.8 can be obtained only when the
pump waves are circularly polarized and counterrotating. By counterrotating, we mean that if
the forward-going wave is described by

F̃(z, t) = F
x̂ − iŷ√

2
ei(kz−ωt) + c.c., (7.2.43a)

then the backward-going wave is described by

B̃(z, t) = B
x̂ + iŷ√

2
ei(−kz−ωt) + c.c. (7.2.43b)

These waves are counterrotating in the sense that, for any fixed value of z, F̃ rotates clock-
wise in time in the xy plane and B̃ rotates counterclockwise in time. However, both waves are
right-hand circularly polarized, since, by convention, the handedness of a wave is the sense of
rotation as determined when looking into the beam.

In the notation of Eq. (7.2.41), the amplitudes of the fields described by (7.2.43) are given
by

Fx = F√
2
eikz, Fy = −i

F√
2

ikz

,

Bx = B√
2
e−ikz, By = i

B√
2
e−ikz, (7.2.44)

and so Eq. (7.2.41) becomes

[
Px

Py

]
= 3ε0FB(χ1111 + χ1221)

[
1 0
0 1

][
S∗

x

S∗
y

]
. (7.2.45)
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We see that the transfer matrix is again a multiple of the identity matrix and hence that the
nonlinear polarization vector is proportional to the complex conjugate of the signal field vector.
The fact that degenerate four-wave mixing excited by counterrotating pump waves leads to
vector phase conjugation was predicted theoretically by Zel’dovich and Shkunov (1979) and
was verified experimentally by Martin et al. (1980).

The reason why degenerate four-wave mixing with counterrotating pump waves leads to
vector phase conjugation can be understood in terms of the conservation of linear and angular
momentum. As just described, phase conjugation can be visualized as a process in which one
photon from each pump wave is annihilated and a signal and conjugate photon are simulta-
neously created. Since the pump waves are counterpropagating and counterrotating, the total
linear and angular momenta of the two input photons must vanish. Then conservation of linear
and angular momentum requires that the conjugate wave must be emitted in a direction opposite
to the direction of propagation of the signal wave and that its polarization vector must rotate in
a sense opposite to that of the signal wave.

7.3 Optical Bistability and Optical Switching

Certain nonlinear optical systems can possess more than one output state for a given input state.
The term optical bistability refers to the situation in which two different output intensities are
possible for a given input intensity, and the more general term optical multistability is used to
describe the circumstance in which two or more stable output states are possible. Interest in
optical bistability stems from its potential usefulness as a memory element or a switch for use
in optical communication and in optical computing.

Optical bistability was first described theoretically and observed experimentally using an
absorptive nonlinearity by Szöke et al. (1969). Optical bistability was observed experimentally
for the case of a refractive nonlinearity (real χ(3)) by Gibbs et al. (1976). The bistable optical
device described in these works consists of a nonlinear medium placed inside of a Fabry–Perot
resonator. Such a device is illustrated schematically in Fig. 7.3.1. Here A1 denotes the field
amplitude of the incident wave, A′

1 denotes that of the reflected wave, A2 and A′
2 denote the

amplitudes of the forward- and backward-going waves within the interferometer, and A3 de-
notes the amplitude of the transmitted wave. The cavity mirrors are assumed to be identical
and lossless, with amplitude reflectance ρ and transmittance τ that are related to the intensity
reflectance R and transmittance T through

R = |ρ|2 and T = |τ |2 (7.3.1a)

with

R + T = 1. (7.3.1b)
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The incident and internal fields are related to each other through boundary conditions of the
form

A′
2 = ρA2e

2ikl−αl, (7.3.2a)

A2 = τA1 + ρA′
2. (7.3.2b)

In these equations, we assume that the field amplitudes are measured at the inner surface of the
left-hand mirror. The propagation constant k = nω/c and intensity absorption coefficient α are
taken to be real quantities, which include both their linear and nonlinear contributions. In writ-
ing Eq. (7.3.2) in the form shown, we have implicitly made a mean-field approximation—that
is, we have assumed that the quantities k and α are spatially invariant; if such is not the case, the
exponent should be replaced by

∫ l

0 dz[2ik(z) − α(z)]. For simplicity we also assume that the
nonlinear material and the medium surrounding the resonator have the same linear refractive
indices.

FIGURE 7.3.1: Bistable optical device in the form of a Fabry–Perot interferometer containing a nonlinear
medium.

Eqs. (7.3.2) can be solved algebraically by eliminating A′
2 to obtain

A2 = τA1

1 − ρ2e2ikl−αl
, (7.3.3)

which is known as Airy’s function∗ and which describes the properties of a Fabry–Perot in-
terferometer. If k or α (or both) is a sufficiently nonlinear function of the intensity of the light
within the interferometer, this equation predicts bistability in the intensity of the transmitted
wave. In general, both k and α can display nonlinear behavior; however, we can obtain a better
understanding of the nature of optical bistability by considering in turn the limiting cases in
which either the absorptive or the refractive contribution dominates.

∗ The original paper of Fabry and Perot (Ann. Chim. Phys. 12, 459, 1897) refers to this form as Airy’s function but
does not give a citation to the specific publication of G.B. Airy.
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7.3.1 Absorptive Bistability

Let us first examine the case in which only the absorption coefficient α depends nonlinearly on
the field intensity. The wavevector magnitude k is hence assumed to be constant. To simplify
the following analysis, we assume that the mirror separation l is adjusted so that the cavity is
tuned to resonance with the applied field; in such a case the factor ρ2e2ikl that appears in the
denominator of Eq. (7.3.3) is equal to the real quantity R. We also assume that αl � 1, so that
we can ignore the spatial variation of the intensity of the field inside the cavity, which justi-
fies the use of the mean-field approximation. Under these conditions, Airy’s equation (7.3.3)
reduces to

A2 = τA1

1 − R(1 − αl)
. (7.3.4)

The analogous equation relating the incident and circulating intensities Ii = 2nε0|Ai |2 for
i = 1,2 is given by

I2 = T I1

[1 − R(1 − αl)]2
. (7.3.5)

This equation can be simplified by introducing the dimensionless parameter C (known as the
cooperation number),

C = Rαl

1 − R
, (7.3.6)

which becomes (since 1 + C = (1 − R + Rαl)/(1 − R) = [1 − R(1 − αl)]/T )

I2 = 1

T

I1

(1 + C)2
. (7.3.7)

We now assume that the absorption coefficient α and hence the parameter C depend on the
intensity of the light within the interferometer. For simplicity, we assume that the absorption
coefficient obeys the relation valid for a two-level saturable absorber,

α = α0

1 + I/Is

, (7.3.8)

where α0 denotes the unsaturated absorption coefficient, I the local value of the intensity, and
Is the saturation intensity. For simplicity we also ignore the standing-wave nature of the field
within the interferometer and take I equal to I2 + I ′

2 ≈ 2I2. It is only approximately valid to
ignore standing-wave effects for the interferometer of Fig. 7.3.1, but it is strictly valid for the
traveling-wave interferometer shown in Fig. 7.3.2. Under the assumption that the absorption
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FIGURE 7.3.2: Bistable optical device in the form of a traveling wave interferometer containing a non-
linear medium.

coefficient depends on the intensity of the internal fields according to Eq. (7.3.8) with I = 2I2,
the parameter C is given by

C = C0

1 + 2I2/Is

, (7.3.9)

with C0 = Rα0l/(1 − R). The relation between I1 and I2 given by Eq. (7.3.7) can be rewritten
using this expression for C as

I1 = TI2

(
1 + C0

1 + 2I2/Is

)2

. (7.3.10)

Finally, the output intensity I3 is related to I2 by

I3 = TI2. (7.3.11)

The input–output relation implied by Eqs. (7.3.10) and (7.3.11) is illustrated graphically in
Fig. 7.3.3 for several different values of the weak-field parameter C0. For C0 greater than 8,
more than one output intensity can occur for certain values of the input intensity, which shows
that the system possesses multiple solutions.

The input–output characteristics for a system showing optical bistability are shown schemat-
ically in Fig. 7.3.4(a). The portion of the curve that has a negative slope is shown by a dashed
line. This portion corresponds to the branch of the solution to Eq. (7.3.10) for which the output
intensity increases as the input intensity decreases. As might be expected on intuitive grounds,
and as can be verified by means of a linear stability analysis, this branch of the solution is un-
stable; if the system is initially in this state, it will rapidly switch to one of the stable solutions
through the growth of small perturbations.
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FIGURE 7.3.3: The input–output relation for a bistable optical device described by Eqs. (7.3.10)
and (7.3.11).

FIGURE 7.3.4: Schematic representation of the input–output characteristics of a system showing optical
bistability.

The solution shown in Fig. 7.3.4(a) displays hysteresis in the following sense. We imagine

that the input intensity I1 is initially zero and is slowly increased. As I1 is increased from zero to

Ih (the high jump point), the output intensity is given by the lower branch of the solution—that
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is, by the segment terminated by points a and b. As the input intensity is increased still further,
the output intensity must jump to point c and trace out that portion of the curve labeled c–d.
If the intensity is now slowly decreased, the system will remain on the upper branch and the
output intensity will be given by the curve segment e–d. As the input intensity passes through
the value Il (the low jump point), the system makes a transition to point f and traces out the
curve of f –a as the input intensity is decreased to zero.

The use of such a device as an optical switch is illustrated in part (b) of Fig. 7.3.4. If the
input intensity is held fixed at the value Ib (the bias intensity), the two stable output points
indicated by the filled dots are possible. The state of the system can be used to store binary
information. The system can be forced to make a transition to the upper state by injecting a
pulse of light so that the total input intensity exceeds Ih; the system can be forced to make a
transition to the lower state by momentarily blocking the input beam.

7.3.2 Refractive Bistability

Let us now consider the case in which the absorption coefficient vanishes but in which the
refractive index n depends nonlinearly on the optical intensity. For α = 0, Eq. (7.3.3) becomes

A2 = τA1

1 − ρ2e2ikl
= τA1

1 − Reiδ
. (7.3.12)

In obtaining the second form of this equation, we have written ρ2 in terms of its amplitude and
phase as

ρ2 = Reiφ (7.3.13)

and have introduced the total phase shift δ acquired in a round trip through the cavity. This
phase shift is the sum

δ = δ0 + δ2 (7.3.14)

of a linear contribution

δ0 = φ + 2n0
ω

c
l (7.3.15)

and a nonlinear contribution

δ2 = 2n2I
ω

c
l, (7.3.16)

where

I = I2 + I ′
2 � 2I2. (7.3.17)
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Eq. (7.3.12) can be used to relate the intensities Ii = 2nε0c|Ai |2 of the incident and internal
fields as

I2 = TI1

(1 − Reiδ)(1 − Re−iδ)
= TI1

1 + R2 − 2R cos δ

= TI1

(1 − R)2 + 4R sin2 1
2δ

= TI1

T 2 + 4R sin2 1
2δ

= I1/T

1 + (4R/T 2) sin2 1
2δ

, (7.3.18)

which shows that

I2

I1
= 1/T

1 + (4R/T 2) sin2 1
2δ

, (7.3.19)

where, according to Eqs. (7.3.14) through (7.3.17), the phase shift is given by

δ = δ0 + (4n2ωl/c)I2. (7.3.20)

In order to determine the conditions under which bistability can occur, we solve Eqs. (7.3.19)
and (7.3.20) for the internal intensity I2 as a function of the incident intensity I1. This procedure
is readily performed graphically by plotting each side of Eq. (7.3.19) as a function of I2. Such a
plot is shown in Fig. 7.3.5. We see that the system can possess one, three, five, or more solutions
depending on the value of I1. For the case in which three solutions exist for the range of input
intensities I1 that are available, a plot of I3 versus I1 looks very much like the curves shown in
Fig. 7.3.4. Hence, the qualitative discussion of optical bistability given above is applicable in
this case as well.

FIGURE 7.3.5: Graphical solution to Eq. (7.3.19). The oscillatory curve represents the right-hand side of
this equation, and the straight lines labeled a through c represent the left-hand side for increasing values
of the input intensity I1.
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FIGURE 7.3.6: Configuration of an all-optical switch in the form of a Mach–Zehnder interferometer
containing a nonlinear element. The input signal field is routed to either output 1 or 2 depending on its
intensity and/or on the intensity of the control field.

More detailed treatments of optical bistability can be found in Lugiato (1984) and Gibbs
(1985).

7.3.3 Optical Switching

Let us now analyze a prototypical all-optical switching device, as illustrated in Fig. 7.3.6. For
simplicity, in the present analysis we assume that only a signal field is applied to the device;
we shall show that this signal beam is directed to one or the other of the output ports depending
on its intensity. Such an application of this device is illustrated in Fig. 7.3.7. A more general
situation, in which both signal and control fields are applied to the device, can be treated by a
similar but somewhat more detailed calculation, with the conclusion that the control field can
be used to route the signal beam to either output port.

We assume that a signal field of amplitude Es is incident upon the device and that the beam
splitters are symmetric (have the same amplitude reflection and transmission coefficients r and
t for beams incident on the beam splitter from either side) with coefficients given by∗

r = i
√

R, t = √
T (7.3.21)

with

R + T = 1. (7.3.22)

∗ This form of the beam-splitter relation ensures that the transfer characteristics obey a unitarity condition or
equivalently that they obey the Stokes relations.
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FIGURE 7.3.7: Illustration of the use of the device of Fig. 7.3.6 (without a control field) as a pulse sorter.
The weaker pulses are routed to output 1, and the stronger pulses are routed to output 2.

The field at output port 1 is then seen to be given by

E1 = Es

(
rt + rteiφNL

)
, (7.3.23)

where

φNL = n2(ω/c)IL = n2(ω/c)|t |2(2n0ε0c)|Es |2L. (7.3.24)

The intensity at output port 1 is thus proportional to

|E1|2 = |Es |2|r|2|t |2
(
1 + eiφNL

)(
1 + e−iφNL

)
= 2|Es |2RT (1 + cosφNL). (7.3.25)

We similarly find that the output at port 2 is given by

E2 = Es

(
r2 + t2eiφNL

)
(7.3.26)

with an intensity proportional to

|E2|2 = |Es |2
[
R2 + T 2 − 2RT cosφNL

]
. (7.3.27)
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Note that

|E1|2 + |E2|2 = |Es |2 (7.3.28)

as required by conservation of energy. These relations are illustrated in Fig. 7.3.8 and lead to
the sort of behavior shown qualitatively in Fig. 7.3.7.

FIGURE 7.3.8: Plot of the transfer relations described by Eqs. (7.3.25) and (7.3.27).

Even though the calculation just presented is somewhat simplistic in that it considers the sit-
uation in which there is only a single input beam, it illustrates a crucial point: A nonlinear phase
shift of π radians is required to produce high-contrast all-optical switching. The requirement
that the nonlinear phase shift be as large as π radians is generic to a broad class of all-optical
switching devices.

Let us therefore examine more carefully the conditions under which a nonlinear phase shift
of π radians can be achieved. Let us first examine the consequences of using a nonlinear optical
material that displays linear absorption. Under this circumstance the nonlinear phase shift is
given by

φNL = n2(ω/c)

∫ L

0
I (z) dz, (7.3.29)

where

I (z) = I0e
−αz. (7.3.30)

Straightforward integration leads to the result

φNL = n2(ω/c)I0Leff, (7.3.31a)

where

Leff = 1 − e−αL

α
. (7.3.31b)
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FIGURE 7.3.9: Two-photon absorption (shown in (a)) can be prevented by utilizing a material (b) such
that the laser frequency lies below the half-band-gap energy. This strategy, however, precludes the use of
one-photon-resonant nonlinearities (c).

Note that

Leff → L for αL � 1, (7.3.32a)

Leff → 1/α for αL � 1. (7.3.32b)

Thus, for a strongly absorbing nonlinear optical material the effective interaction length can
be much shorter than the physical length of the nonlinear medium. We also note that optical
damage (see also Chapter 11) imposes a limit on how large a value of I0 can be used for
a particular material. Thus certain materials cannot even in principle be used for all-optical
switching.

When the optical material displays two-photon absorption as well as linear absorption, the
absorption coefficient appearing in Eq. (7.3.30) should be replaced by

α = α0 + βI, (7.3.33)

where β is the two-photon absorption coefficient.
Two-photon absorption is often a significant problem in the design of all-optical switching

devices because it occurs at the same order of nonlinearity as the intensity-dependent refractive
index n2 (because these processes are proportional to the imaginary and real parts of χ(3),
respectively). Two-photon absorption can be eliminated entirely by choosing a material for
which the lowest-lying excited state lies more than 2�ω above the ground state, as illustrated
schematically in Fig. 7.3.9. A good summary of all-optical switching has been presented by
Stegeman and Miller (1993).

7.4 Two-Beam Coupling

Let us consider the situation shown in Fig. 7.4.1 in which two beams of light (which in general
have different frequencies) interact in a nonlinear material. Under certain conditions, the two
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beams interact in such a manner that energy is transferred from one beam to the other; this phe-
nomenon is known as two-beam coupling. Two-beam coupling is a process that is automatically
phase-matched. Consequently the efficiency of the process does not depend critically upon the
angle θ between the two beams. The reason why this process is automatically phase-matched
will be clarified by the following analysis; for the present it is perhaps helpful to note that the
origin of two-beam coupling is that the refractive index experienced by either wave is modified
by the intensity of the other wave.

FIGURE 7.4.1: Two-beam coupling. We wish to determine the circumstances under which power can be
transferred from the beam of frequency ω1 to the beam of frequency ω2.

Two-beam coupling occurs under several different circumstances in nonlinear optics. We
saw in Chapter 6 that the nonlinear response of a two-level atom to pump and probe fields can
lead to amplification of the probe wave. Furthermore, we shall see in Chapters 9 and 10 that gain
occurs for various scattering processes such as stimulated Brillouin scattering and stimulated
Raman scattering. Furthermore, in Chapter 11 we shall see that two-beam coupling occurs in
many photorefractive materials. In the present section, we examine two-beam coupling from a
general point of view that elucidates the conditions under which such energy transfer can occur.
Our analysis is similar to that of Silberberg and Bar-Joseph (1982, 1984).

We describe the total optical field within the nonlinear medium as

Ẽ(r, t) = A1e
i(k1·r−ω1t) + A2e

i(k2·r−ω2t) + c.c., (7.4.1)

where ki = n0ωi/c, with n0 denoting the linear part of the refractive index experienced by each
wave. We now consider the intensity distribution associated with the interference between the
two waves. The intensity is given in general by

I = n0ε0c
〈
Ẽ2〉, (7.4.2)

where the angular brackets denote an average over a time interval of many optical periods. The
intensity distribution for Ẽ given by Eq. (7.4.1) is hence given by

I = 2n0ε0c
{
A1A

∗
1 + A2A

∗
2 + [

A1A
∗
2e

i(k1−k2)·r−i(ω1−ω2)t + c.c.
]}

= 2n0ε0c
{
A1A

∗
1 + A2A

∗
2 + [

A1A
∗
2e

i(q·r−δt) + c.c.
]}

, (7.4.3)
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where in writing the second form we have introduced the wavevector difference (or “grating”
wavevector)

q = k1 − k2 (7.4.4a)

and the frequency difference

δ = ω1 − ω2. (7.4.4b)

For the geometry of Fig. 7.4.1, the interference pattern has the form shown in Fig. 7.4.2,
where we have assumed the condition |δ| � ω1. Note that the pattern moves upward for δ > 0,
moves downward for δ < 0, and is stationary for δ = 0.

FIGURE 7.4.2: Interference pattern formed by two interacting waves.

A particularly simple example is the special case in which θ = 180◦. Then, again assuming
that |δ| � ω1, we find that the wavevector difference is given approximately by

q � −2k2 (7.4.5)

and thus that the intensity distribution is given by

I = 2n0ε0c
{
A1A

∗
1 + A2A

∗
2 + [

A1A
∗
2e

i(−2kz−δt) + c.c.
]}

. (7.4.6)

The interference pattern is hence of the form shown in Fig. 7.4.3. If δ is positive, the interference
pattern moves to the left, and if δ is negative, it moves to the right—in either case with phase
velocity |δ|/2k.

Since the material system is nonlinear, a refractive index variation accompanies this inten-
sity variation. Each wave is scattered by this index variation, or grating. We shall show below
that no energy transfer accompanies this interaction for the case of a nonlinear material that
responds instantaneously to the applied field. In order to allow the possibility of energy trans-
fer, we assume that the nonlinear part of the refractive index (nNL) obeys a Debye relaxation
equation of the form

τ
dnNL

dt
+ nNL = n2I, (7.4.7)

where τ is a measure of the response time of the material, that is, the characteristic time for
the nonlinear response to develop. Note that this equation predicts that, in steady state, the
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FIGURE 7.4.3: Interference pattern formed by two counterpropagating beams.

nonlinear contribution to the refractive index is given simply by nNL = n2I , in consistency
with Eq. (4.1.15). However, under transient conditions it predicts that the nonlinearity develops
in a time interval of the order of τ .

Eq. (7.4.7) can be solved (i.e., by the method of variation of parameters or by the Green’s
function method) to give the result

nNL = n2

τ

∫ t

−∞
I (t ′)e(t ′−t)/τ dt ′. (7.4.8)

The expression (7.4.3) for the intensity I (t) is next introduced into this equation. We find, for
example, that the part of I (t) that varies as e−iδt leads to an integral of the form∫ t

−∞
e−iδt ′e(t ′−t)/τ dt ′ = e−t/τ

∫ t

−∞
e(−iδ+1/τ)t ′ dt ′ = e−iδt

−iδ + 1/τ
, (7.4.9)

with a similar result for the part of I (t) that varies as eiδt . Eq. (7.4.8) hence shows that the
nonlinear contribution to the refractive index is given by

nNL = 2n0n2ε0c

[(
A1A

∗
1 + A2A

∗
2

) + A1A
∗
2e

i(q·r−δt)

1 − iδτ
+ A∗

1A2e
−i(q·r−δt)

1 + iδτ

]
. (7.4.10)

Because of the complex nature of the denominators, the refractive index variation is not in
general in phase with the intensity distribution.

In order to determine the degree of coupling between the two fields, we require that the field
given by Eq. (7.4.1) satisfy the wave equation

∇2Ẽ − n2

c2

∂2Ẽ

∂t2
= 0, (7.4.11)

where we take the refractive index to have the form

n = n0 + nNL. (7.4.12)

We make the physical assumption that |nNL| � n0, in which case it is a good approximation to
express n2 as

n2 = n2
0 + 2n0nNL. (7.4.13)
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Let us consider the part of Eq. (7.4.11) that shows a spatial and temporal dependence given
by exp[i(k2 · r − ω2t)]. Using Eqs. (7.4.1), (7.4.10), and (7.4.13), we find that this portion of
Eq. (7.4.11) is given by

d2A2

dz2
+ 2ik2

dA2

dz
− k2

2A2 + n2
0ω

2
2

c2
A2

= −4n2
0n2ω

2
2ε0

c

(|A1|2 + |A2|2
)
A2 − 4n2

0n2ω
2
1ε0

c

|A1|2A2

1 + iδτ
. (7.4.14)

Note that the origin of the last term on the right-hand side is the scattering of the field
A1 exp[i(k1 · r − ω1t)] from the time-varying refractive index distribution (i.e., the moving
grating)

(2n0ε0n2c)A
∗
1A2

e−i(q·r−δt)

1 + iδτ
,

whereas the origin of the first term on the right-hand side is the scattering of the field
A2 exp[i(k2 · r − ω2t)] from the stationary refractive index variation

(2n0ε0n2c)
(
A1A

∗
1 + A2A

∗
2

)
.

We next drop the first term on the left-hand side of Eq. (7.4.14) by making the slowly
varying amplitude approximation, and we note that the third and fourth terms exactly cancel.
The equation then reduces to

dA2

dz
= 2in0n2(ω/c)

[(|A1|2 + |A2|2
)
A2 + |A1|2A2

1 + iδτ

]
, (7.4.15)

where, to good approximation, we have replaced ω1 and ω2 by ω. We now calculate the rate of
change of intensity of the ω2 field. We introduce the intensities

I1 = 2n0ε0cA1A
∗
1 and I2 = 2n0ε0cA2A

∗
2 (7.4.16)

and note that the spatial variation of I2 is given by

dI2

dz
= 2n0ε0c

(
A∗

2
dA2

dz
+ A2

dA∗
2

dz

)
. (7.4.17)

We then find from Eqs. (7.4.15) through (7.4.17) that

dI2

dz
= 2n2ω

c

δτ

1 + δ2τ 2
I1I2. (7.4.18)

Note that only the last term on the right-hand side of Eq. (7.4.15) contributes to energy transfer.
The frequency dependence of the right-hand side of Eq. (7.4.18) is shown in Fig. 7.4.4.
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FIGURE 7.4.4: Frequency dependence of the gain for two-beam coupling.

For the case of a positive value of n2 (e.g., for the molecular orientation Kerr effect, for elec-
trostriction, for a two-level atom with the optical frequencies above the resonance frequency),
Eq. (7.4.18) predicts gain for positive δ, that is, for ω2 < ω1. Conversely, when n2 is negative,
this equation predicts that the higher-frequency wave will be amplified at the expense of the
lower frequency wave. For the case of n2 positive, the excess photon energy is transferred to
the thermal reservoir associated with the material medium; for n2 negative, energy is extracted
from this thermal reservoir. We note that the extraction of energy from a thermal reservoir plays
a crucial role in the process of laser cooling of atoms.

Note that the ω2 wave experiences maximum gain (for n2 positive) for δτ = 1, in which
case Eq. (7.4.18) becomes

dI2

dz
= n2

ω

c
I1I2. (7.4.19)

Note also from Eq. (7.4.18) that in the limit of an infinitely fast nonlinearity, that is, in the limit
τ → 0, the coupling of intensity between the two waves vanishes. The reason for this behavior
is that only the imaginary part of the (total) refractive index can lead to a change in intensity of
the ω2 wave. We see from Eq. (7.4.10) that (for n2 real, as has been assumed throughout this
discussion) the only way in which nNL can become complex is for τ to be nonzero. When τ is
nonzero, the response can lag in phase behind the driving term, leading to a complex value of
the nonlinear contribution to the refractive index.

The theory just presented predicts that there will be no energy coupling if the product δτ

vanishes, either because the nonlinearity has a fast response or because the input waves are at
the same frequency. However, two-beam coupling can occur in certain photorefractive crystals
even between beams of the same frequency (Feinberg, 1983). In such cases, energy transfer
occurs as a result of a spatial phase shift between the nonlinear index grating and the opti-
cal intensity distribution. The direction of energy flow depends upon the orientation of the
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wavevectors of the optical beams with respect to some symmetry axis of the photorefractive
crystal. The photorefractive effect is described in greater detail in Chapter 11.

7.5 Pulse Propagation and Temporal Solitons

In this section we study some of the nonlinear optical effects that can occur when short opti-
cal pulses propagate through dispersive nonlinear optical media. We shall see that the spectral
content of the pulse can become modified by the nonlinear optical process of self-phase modu-
lation. This process is especially important for pulses of high peak intensity. We shall also see
that (even for the case of a medium with a linear response) the shape of the pulse can become
modified by means of propagation effects such as dispersion of the group velocity within the
medium. This process is especially important for very short optical pulses, which necessarily
have a broad spectrum. In general, self-phase modulation and group-velocity dispersion occur
simultaneously, and both tend to modify the shape of the optical pulse. However, under certain
circumstances, which are described below, an exact cancellation of these two effects can occur,
allowing a special type of pulse known as a temporal optical soliton to propagate through large
distances with no change in pulse shape.

7.5.1 Self-Phase Modulation

Self-phase modulation is the change in the phase of an optical pulse resulting from the nonlin-
earity of the refractive index of the material medium. In order to understand the origin of this
effect, let us consider the propagation of the optical pulse

Ẽ(z, t) = Ã(z, t)ei(k0z−ω0t) + c.c. (7.5.1)

through a medium characterized by a nonlinear refractive index of the sort

n(t) = n0 + n2I (t), (7.5.2)

where I (t) = 2n0ε0c|Ã(z, t)|2. Note that for the present we are assuming that the medium can
respond essentially instantaneously to the pulse intensity. We also assume that the length of the
nonlinear medium is sufficiently small that no reshaping of the optical pulse can occur within
the medium; the only effect of the medium is to change the phase of the transmitted pulse by
the amount

φNL(t) = −n2I (t)ω0L/c. (7.5.3)

As a result of the time-varying phase of the wave, the spectrum of the transmitted pulse will
be modified and typically will be broader than that of the incident pulse. From a formal point
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of view, we can determine the spectral content of the transmitted pulse by calculating its energy
spectrum

S(ω) =
∣∣∣∣
∫ ∞

−∞
Ã(t)e−iω0t−iφNL(t)eiωt dt

∣∣∣∣
2

. (7.5.4)

Self-phase modulation was studied initially by Brewer (1967), Shimizu (1967), and Cheung et
al. (1968).

We shall return later in this section to an examination of the structure of Eq. (7.5.4). How-
ever, let us first develop an intuitive picture of the nature of the modification of the spectral
content of the transmitted pulse by introducing the concept of the instantaneous frequency ω(t)

of the pulse, which is given by

ω(t) = ω0 + δω(t), (7.5.5a)

where

δω(t) = d

dt
φNL(t) (7.5.5b)

denotes the variation of the instantaneous frequency. The instantaneous frequency is a well-
defined concept and is given by Eqs. (7.5.5) whenever the amplitude Ã(t) varies slowly com-
pared to an optical period.

As an example of the use of these formulas, we consider the case illustrated in part (a) of
Fig. 7.5.1, in which the pulse shape is given by the form

I (t) = I0 sech2(t/τ0). (7.5.6)

We then find from Eq. (7.5.3) that the nonlinear phase shift is given by

φNL(t) = −n2
ω0

c
LI0 sech2(t/τ0), (7.5.7)

and from Eq. (7.5.5b) that the change in instantaneous frequency is given by

δω(t) = 2n2
ω0

cτ0
LI0 sech2(t/τ0) tanh(t/τ0). (7.5.8)

The variation in the instantaneous frequency is illustrated in part (b) of Fig. 7.5.1, under the
assumption that n2 is positive. We see that the leading edge of the pulse is shifted to lower
frequencies and that the trailing edge is shifted to higher frequencies. This conclusion is sum-
marized schematically in part (c) of the figure. The maximum value of the frequency shift is
given by

δωmax = −0.77�φ
(max)
NL

τ0
where �φ

(max)
NL = −n2

ω0

c
I0L. (7.5.9)
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FIGURE 7.5.1: (a) Time dependence of the incident pulse. (b) Change in instantaneous frequency of the
transmitted pulse. (c) Laboratory arrangement to observe self-phase modulation.

We expect that spectral broadening due to self-phase modulation will be very important
whenever δωmax exceeds the spectral width of the incident pulse, which for the case of a smooth
pulse is of the order of 1/τ0. We thus expect self-phase modulation to be important whenever
�φ

(max)
NL ≥ 2π .
Let use now turn to an examination of form of Eq. (7.5.4); we make use of a procedure

described by Shen and Yang (2006). We shall see that the nature of the resulting modification
of the spectrum of the transmitted pulse provides a convenient means for the measurement of
nonlinear optical coefficients such as n2, as implemented by Kim et al. (1994). We assume that
φNL(t) has a shape that is a Gaussian in time, and that as above the instantaneous frequency
shift is given by dφNL/dt . Except at the points of inflection of the Gaussian function, there
will be two contributions to the integral in Eq. (7.5.4) that give the same frequency shift. These
contributions will add either constructively or destructively depending on the relative phases
of these contributions. We take φmax

NL to represent the maximum value of the nonlinear phase
shift experienced upon propagation through the nonlinear medium. The total number of inter-
ference peaks is then expected to be equal to φmax

NL /2π . We further expect that the spectrum will
be broadened to a total width of �ω = φmax

NL /T where T is a measure of the pulse duration.
An example of such behavior is shown in Fig. 7.5.2, which was obtained by direct numerical
integration of Eq. (7.5.4).
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FIGURE 7.5.2: Modification of a laser pulse spectrum by the process of self-phase modulation (SPM).
For this example, the input pulse was assumed to possess a Gaussian time evolution with a peak intensity
chosen to produce φmax

NL = 30π radians of nonlinear phase shift. The pulse half width to the e−2 intensity
point is take to be T . We see that the spectral width is equal to 30π � 100 in the dimensionless units
of the plot and that the number of peaks is equal to φmax

NL /2π = 15, in agreement with the simple model
presented in the text.

7.5.2 Pulse Propagation Equation

Let us next consider the equations that govern the propagation of the pulse

Ẽ(z, t) = Ã(z, t)ei(k0z−ω0t) + c.c., (7.5.10)

where k0 = nlin(ω0)ω0/c, through a dispersive, nonlinear optical medium. In particular, we
seek an equation that describes how the pulse envelope function Ã(z, t) propagates through the
medium. We begin with the wave equation in the form (see also Eq. (2.1.9a))

∂2Ẽ

∂z2
− 1

ε0c2

∂2D̃

∂t2
= 0, (7.5.11)

where D̃ represents the total displacement field, including both linear and nonlinear contri-
butions. We now introduce the Fourier transforms Ẽ(z, t) and D̃(z, t) by means of the equa-
tions

Ẽ(z, t) =
∫ ∞

−∞
E(z,ω)e−iωt dω

2π
, D̃(z, t) =

∫ ∞

−∞
D(z,ω)e−iωt dω

2π
. (7.5.12)
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The Fourier amplitudes E(z,ω) and D(z,ω) are related by

D(z,ω) = ε0ε(ω)E(z,ω), (7.5.13)

where ε(ω) is the effective dielectric constant that describes both the linear and nonlinear con-
tributions to the response.

Eqs. (7.5.12) and (7.5.13) are now introduced into the wave equation (7.5.11), which leads
to the result that each Fourier component of the field must obey the equation

∂2E(z,ω)

∂z2
+ ε(ω)

ω2

c2
E(z,ω) = 0. (7.5.14)

This frequency-domain form of the wave equation is known as a Helmholtz equation.
We now write this equation in terms of the Fourier transform of Ã(z, t), which is given by

A(z,ω′) =
∫ ∞

−∞
Ã(z, t)eiω′t dt. (7.5.15)

Here we represent the transform variable as ω′ rather than as ω to emphasize the fact that the
frequency content of Ã(z, t) does not extend to optical frequencies. We next need to relate
A(z,ω′) to E(z,ω), because it is the latter quantity that appears in the frequency-domain wave
equation (7.5.14). We express E(z,ω) as

E(z,ω) =
∫ ∞

−∞
Ẽ(z, t)eiωtdt

=
∫ ∞

−∞
Ã(z, t)eik0zei(ω−ω0)t dt +

∫ ∞

−∞
Ã∗(z, t)e−ik0zei(ω+ω0)t dt

and which can be expressed as

E(z,ω) = A(z,ω − ω0)e
ik0z + A∗(z,ω + ω0)e

−ik0z

� A(z,ω − ω0)e
ik0z. (7.5.16)

Here the second, approximate, form is obtained by noting that a quantity such as Ã(z, t) that
varies slowly in time cannot possess high-frequency Fourier components. This expression for
E(z,ω) is now introduced into Eq. (7.5.14), and the slowly-varying amplitude approximation
is made so that the term containing ∂2A/∂z2 can be dropped. One obtains

2ik0
∂A(z,ω − ω0)

∂z
+ (

k2 − k2
0

)
A(z,ω − ω0) = 0, (7.5.17)

where

k(ω) = √
ε(ω)ω/c. (7.5.18)
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In practice, k typically differs from k0 by only a small fractional amount, and thus to good
approximation k2 − k2

0 can be replaced by 2k0(k − k0) so that Eq. (7.5.17) becomes

∂A(z,ω − ω0)

∂z
− i(k − k0)A(z,ω − ω0) = 0. (7.5.19)

Recall that the propagation constant k depends both on the frequency and (through the
intensity dependence of ε) on the intensity of the optical wave. It is often adequate to describe
this dependence in terms of a truncated power series expansion of the form

k = k0 + �kNL + k1(ω − ω0) + 1
2k2(ω − ω0)

2, (7.5.20)

where, as before, k0 = nlin(ω0)/c. In this expression, we have introduced the nonlinear contri-
bution to the propagation constant given by

�kNL = �nNLω0/c (7.5.21)

and have introduced the quantities

k1 =
(

dk

dω

)
ω=ω0

= d

dω

[
nlin(ω)ω

c

]
ω=ω0

= 1

c

[
nlin(ω) + ω

dnlin(ω)

dω

]
ω=ω0

≡ ng

c
≡ 1

vg(ω0)

(7.5.22)

and

k2 =
(

d2k

dω2

)
ω=ω0

= d

dω

[
1

vg(ω)

]
ω=ω0

=
(

− 1

v2
g

dvg

dω

)
ω=ω0

. (7.5.23)

Here k1 is the reciprocal of the group velocity vg = c/ng , where ng is the group index, and
where k2 is a measure of the dispersion of the group velocity. It is routinely known as the group
velocity dispersion (GVD) parameter.∗ As illustrated in Fig. 7.5.3, the long-wavelength com-
ponents of an optical pulse propagate faster than the short-wavelength components when the
group velocity dispersion parameter k2 is positive, and travel more slowly when k2 is nega-
tive.

∗ In the field of guided-wave photonics, k2 is often denoted as β2. Also, in many circumstances it is useful to
describe GVD in terms of wavelength units rather than frequency units. This GVD parameter is defined as Dλ =
(d/dλ)(1/vg), where by convention λ is the vacuum wavelength of the light given by the standard relation ω =
2πc/λ. One then finds from straightforward differentiation that Dλ = (−2πc/λ2)k2. One can express the GVD
parameter Dλ in terms of the refractive index as Dλ = (d/dλ)(1/vg) = (d/dλ)(ng/c) = (d/dλ)(n−λdn/dλ) =
−(λ/c)(d2n/dλ2). For fused silica, Dλ = 35 fs2/mm at 800 nm and Dλ = −26 fs2/mm at 1500 nm. Dλ vanishes
at a wavelength of approximately 1300 nm.
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FIGURE 7.5.3: Pulse spreading resulting from group velocity dispersion.

The expression (7.5.20) for k is next introduced into the reduced wave equation (7.5.19),
which becomes[

∂

∂z
− i�kNL − ik1(ω − ω0) − 1

2 ik2(ω − ω0)
2
]

A(z,ω − ω0) = 0. (7.5.24)

This equation is now transformed from the frequency domain to the time domain. To do so, we
multiply each term by the factor exp[−i(ω − ω0)t] and integrate the resulting equation over all
values of ω −ω0. We next evaluate the resulting integrals. First, by the definition of the Fourier
transform, we find that∫ ∞

−∞
A(z,ω − ω0)e

−i(ω−ω0)t
d(ω − ω0)

2π
= Ã(z, t). (7.5.25a)

Next, by formal differentiation with respect to the time variable, we find that∫ ∞

−∞
(ω − ω0)A(z,ω − ω0)e

−i(ω−ω0)t
d(ω − ω0)

2π

= 1

−i

∂

∂t

∫ ∞

−∞
A(z,ω − ω0)e

−i(ω−ω0)t
d(ω − ω0)

2π
= i

∂

∂t
Ã(z, t), (7.5.25b)

and similarly that∫ ∞

−∞
(ω − ω0)

2A(z,ω − ω0)e
−i(ω−ω0)t

d(ω − ω0)

2π
= − ∂2

∂t2
Ã(z, t). (7.5.25c)

Eq. (7.5.24) then becomes

∂Ã

∂z
+ k1

∂Ã

∂t
+ 1

2 ik2
∂2Ã

∂t2
− i�kNLÃ = 0. (7.5.26)
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This equation can be simplified by means of a coordinate transformation. In particular, we
introduce the retarded time τ by the substitution

τ = t − z

vg

= t − k1z, (7.5.27)

and we describe the optical pulse by the function Ãs(z, τ ), which is related to the function
Ã(z, t) by

Ãs(z, τ ) = Ã(z, t). (7.5.28)

We next use the chain rule of differentiation to establish that

∂Ã

∂z
= ∂Ãs

∂z
+ ∂Ãs

∂τ

∂τ

∂z
= ∂Ãs

∂z
− k1

∂Ãs

∂τ
, (7.5.29a)

∂Ã

∂t
= ∂Ãs

∂z

∂z

∂t
+ ∂Ãs

∂τ

∂τ

∂t
= ∂Ãs

∂τ
, (7.5.29b)

and analogously that ∂2Ã/∂t2 = ∂2Ãs/∂τ 2. These expressions are now introduced into
Eq. (7.5.26), which becomes

∂Ãs(z, τ )

∂z
+ 1

2 ik2
∂2Ãs(z, τ )

∂τ 2
− i�kNLÃs(z, τ ) = 0. (7.5.30)

Finally, we express the nonlinear contribution to the propagation constant as

�kNL = n2
ω0

c
I = 2n0ε0n2ω0|Ãs(z, τ )|2 ≡ γ |Ãs(z, τ )|2, (7.5.31)

so that Eq. (7.5.30) can be expressed as

∂Ãs(z, τ )

∂z
+ 1

2 ik2
∂2Ãs(z, τ )

∂τ 2
= iγ |Ãs(z, τ )|2Ãs(z, τ ). (7.5.32)

This equation describes the propagation of optical pulses through dispersive, nonlinear op-
tical media. Note that the second term on the left-hand side shows how pulses tend to broaden
in time because of group velocity dispersion, and that the term on the right-hand side shows
how pulses tend to broaden in frequency because of self-phase modulation. Eq. (7.5.32) is
sometimes referred to as the nonlinear Schrödinger equation.

7.5.3 Temporal Optical Solitons

Note from the form of the pulse propagation equation (7.5.32) that it is possible for the effects of
group velocity dispersion to compensate for the effects of self-phase modulation. In fact, under



Processes Resulting from the Intensity-Dependent Refractive Index 373

appropriate circumstances the degree of compensation can be complete, and optical pulses can
propagate through a dispersive, nonlinear optical medium with an invariant shape. Such pulses
are known as temporal optical solitons.

As an example of a temporal optical soliton, note that Eq. (7.5.32) is satisfied identically by
a pulse whose amplitude is of the form

Ãs(z, τ ) = A0
s sech(τ/τ0)e

iκz, (7.5.33a)

where the pulse amplitude A0
s and pulse width τ0 must be related according to

|A0
s |2 = −k2

γ τ 2
0

= −k2

2n0ε0n2ω0τ
2
0

(7.5.33b)

and where

κ = −k2/2τ 2
0 = 1

2γ |A0
s |2 (7.5.33c)

represents the phase shift experienced by the pulse on propagation. One can verify by direct
substitution that Eqs. (7.5.33) do in fact satisfy the pulse propagation equation (7.5.32) (see
Problem 16 at the end of this chapter).

Note that condition (7.5.33b) shows that k2 and n2 must have opposite signs in order for
Eq. (7.5.33a) to represent a physical pulse in which the intensity |A0

s |2 and the square of the
pulse width τ 2

0 are both positive.
We can understand this result by referring back to the pulse propagation equation (7.5.32).

Only if k2 and n2 have opposite signs can the second term on the left cancel the term on the
right. In reaching this conclusion we should note that the term ∂2Ãs/∂τ 2 will be negative near
the peak of the pulse, where the contribution iγ |Ãs |2Ãs is most important.

Expressions (7.5.33) give what is known as the fundamental soliton solution to the pulse
propagation equation (7.5.32). Higher-order soliton solutions also are known. These solutions
were first obtained through use of inverse scattering methods by Zakharov and Shabat (1972)
and are described in more detail by Agrawal (1989).

One circumstance under which k2 and γ have opposite signs occurs in fused-silica opti-
cal fibers. In this case, the nonlinearity in the refractive index occurs as the result of electronic
polarization, and n2 is consequently positive. The group velocity dispersion parameter k2 is pos-
itive for visible light but becomes negative for wavelengths longer than approximately 1.3 µm.
This effect is illustrated in Fig. 7.5.4, in which the linear refractive index nlin and the group
index ng ≡ c/vg are plotted as functions of the vacuum wavelength of the incident radiation.
Optical solitons of the sort described by Eq. (7.5.33a) have been observed by Mollenauer et
al. (1980) in the propagation of light pulses at a wavelength of 1.55 µm obtained from a color
center laser.
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FIGURE 7.5.4: Dependence of the linear refractive index n, group index ng = c/vg , and the GVD pa-
rameter k2 on the vacuum wavelength for fused silica.

Problems

1. Spatial solitons. Verify that Eqs. (7.1.19) through (7.1.21) do indeed satisfy Eq. (7.1.18).
2. Self-focusing and beam breakup. Read carefully the subsection that includes Eqs. (7.1.42)

through (7.1.44) and write a short essay (one or two paragraphs) describing how you
would proceed to observe beam breakup in the laboratory making use of a laser pulse of
10 nsec duration (assumed for simplicity to have a square-top time evolution) and making
use of the nonlinear response of carbon disulfide. Describe issues such as the pulse en-
ergy that is required, the length of the interaction region you would use, and the focusing
characteristics of your laser beam.

3. Z-scan. In this problem we develop a mathematical description of the Z-scan procedure
for measuring the nonlinear refractive index. The basis of this procedure is that a sample is
translated longitudinally through the beam-waist region of a focused gaussian laser beam,
and the variation of the on-axis intensity in the far field is measured as a function of
sample position. The on-axis intensity in the far field is usually determined by measuring
the power transmitted through a small aperture placed on the system axis. The variation of
measured power with sample position is found to be proportional to the nonlinear phase
shift experienced in passing through the sample, and from this measured phase shift the
value of n2 of the sample can be determined from the known sample thickness L and laser
intensity at the sample.
In detail, you are to derive an expression for the dependence of the fractional change in
on-axis intensity �I/I on the sample position z relative to the position z0 of the beam
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waist of the incident laser beam. This expression will also depend on the values of n2,
of L, and on the parameters of the incident laser beam. For simplicity, assume that the
sample is thin both in the sense that L is much smaller than the confocal parameter b of
the incident laser beam and in that the maximum nonlinear phase shift acquired in passing
through the sample is much smaller than unity.
Here are some suggestions on how to proceed. Begin with the expression for a gaussian
laser beam. Determine first how the beam will be modified in passing thought the nonlin-
ear material. Note that under the assumed conditions the beam diameter at the sample will
be unchanged, but that the wavefront curvature will be modified by nonlinear refraction.
Note that the modified beam itself approximates a gaussian beam, but with a different
value of the wavefront radius of curvature. By assuming that this beam propagates ac-
cording to the same laws that govern the propagation of a gaussian beam, determine its
on-axis intensity in the far field as a function of z − z0.
Note that a more detailed analysis of the z-scan procedure (Sheik-Bahae et al., IEEE J.
Quantum Electron. 26, 760, (1990)) leads to the somewhat different result

�I

I
= 4�maxx

(x2 + 1)(x2 + 9)
, x = 2(z − z0)/b, (7.5.34)

where �max is the nonlinear phase shift on-axis when the sample is at the beam waist
of the incident laser beam. Plot the functional dependence of both your result and the
literature result.

4. Optical phase conjugation. Solve the following coupled equations for the boundary con-
ditions that A3(0) and A4(L) are arbitrary:

dA3

dz
= −α3A3 − iκ∗

4 A∗
4,

dA4

dz
= α4A4 + iκ∗

3 A∗
3.

(These equations generalize Eqs. (7.2.31) and describe four-wave mixing in the usual
phase conjugation geometry for the case of a lossy medium.)

5. Optical phase conjugation. Same as Problem 4, but with the inclusion of phase-mismatch
factors so that the coupled equations are given by

dA3

dz
= −α3A3 − iκ∗

4 A∗
4e

i�kz,

dA4

dz
= α4A4 + iκ∗

3 A∗
3e

−i�kz

where �k = (k1 + k2 − k3 − k4) · ẑ, and k1 and k2 are the wavevectors of the two pump
waves.
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6. Optical phase conjugation. Derive an expression for the phase-conjugate reflectivity ob-
tained by degenerate four-wave mixing utilizing the nonlinear response of a collection
of “two-level” atoms. You may make the rotating wave and slowly-varying amplitude
approximations and may assume that the amplitudes of the strong pump waves are not
modified by the nonlinear interaction.
[Hint: This problem can be solved using the formalism developed in Section 6.3.
This problem has been solved in the scientific literature, and the solution is given by
R.L. Abrams and R.C. Lind, Opt. Lett. 2, 94 (1978) and 3, 205 (1978).]

7. Polarization properties of phase conjugation. Verify Eq. (7.2.41).
8. Optical bistability. The discussion of absorptive optical bistability presented in the text

assumed that the incident laser frequency was tuned to a cavity resonance. Generalize this
treatment by allowing the cavity to be mistuned from resonance, so that the factor ρ2e2ikl

appearing in the denominator of Eq. (7.3.3) can be set equal to Reiδ0 , where δ0 is the
cavity mistuning in radians.
[Ans.: Eq. (7.3.10) must be replaced by

T I1 = I2

[
1 − 2R

(
1 − C0T/R

1 + 2I2/Is

)
cos δ0 + R2

(
1 − C0T/R

1 + 2I2/Is

)2
]

.

Examination of this expression shows that larger values of C0 and I2 are required in order
to obtain optical bistability for δ0 �= 0.]

9. Optical bistability. The treatment of absorptive bistability given in the text assumed that
the absorption decreased with increasing laser intensity according to

α = α0

1 + I/Is

.

In fact, many saturable absorbers are imperfect in that they do not saturate all the way to
zero; the absorption can better be represented by

α = α0

1 + I/Is

+ α1,

where α1 is constant. How large can α1 be (for given α0) and still allow the occurrence
of bistability? Use the same approximations used in the text, namely that α � 1 and that
the cavity is tuned to exact resonance. How are the requirements on the intensity of the
incident laser beam modified by a nonzero value of α1?

10. Optical bistability. By means of a graphical analysis of the sort illustrated in Fig. 7.3.5,
make a plot of the transmitted intensity I3 as a function of the incident intensity I1. Note
that more than two stable solutions can occur for a device that displays refractive bistabil-
ity.



Processes Resulting from the Intensity-Dependent Refractive Index 377

11. Optical bistability. Consider refractive bistability in a nonlinear Fabry–Perot interferom-
eter. Assume that the nonlinear material also displays (linear) absorption. How are the
intensity requirements for switching modified by the inclusion of loss, and how large can
the absorption be and still allow the existence of bistability?

12. Optical switching. Show that any physically realizable beam splitter must obey the relation
(7.3.21).

13. Two-beam coupling. According to Section 7.4, the equations governing the growth of two
beams subject to two-beam coupling can be written

dI1

dz
= βI1I2,

dI2

dz
= −βI1I2.

Solve this system for I2(z) in terms of I2(0) and the total intensity I = I1 + I2. (This is not
difficult, but you may need to refer to a textbook on differential equations.) Make a sketch
of I2(z) for the cases β > 0 and β < 0. What is β, both mathematically and physically?

14. Self-phase modulation. The analysis of self-phase modulation that led to Fig. 7.5.1 as-
sumed that the medium had instantaneous response and that the temporal evolution of
the pulse had a symmetric waveform. In this case the spectrum of the pulse is seen to
broaden symmetrically. How is the spectrum modified for a medium with a sluggish re-
sponse (given, for example, by Eq. (7.4.7) with τ much longer than the pulse duration)?
How is the spectrum modified if the pulse waveform is not symmetric (a sawtooth wave-
form, for example)?

15. Pulse propagation. How is the pulse propagation equation (7.5.32) modified if the quantity
k2 − k2

0 is not approximated by 2k0(k − k0), as was done in going from Eq. (7.5.18) to
Eq. (7.1.19)?
[Ans.: k2 in Eq. (7.5.32) must be replaced by (k2

1 + 2k0k2)/2k0.]
Why is it that this new equation seems to predict that pulses will spread as they propagate,
even when both k2 and γ vanish?

16. Temporal solitons. Verify that the solution given by Eqs. (7.5.33) does in fact satisfy the
pulse propagation equation (7.5.32).

17. Temporal solitons. Calculate the peak power and energy of an optical soliton with τ0 =
10 psec propagating in a silica-core optical fiber of 8 µm core diameter at a wavelength of
1.55 µm.
[Solution: Using the typical values k2 = −20 psec2/km and n2 = 3 × 10−16 cm2/W, we
find that P = 80 mW and Q = 0.8 pJ. Note also that the full width of the pulse measured
at half intensity points is equal to 1.76τ0.]
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18. Self-induced transparency. Optical solitons can also be formed as a consequence of the
resonant nonlinear optical response of a collection of two-level atoms. Show that, in the
absence of damping effects and for the case of exact resonance, the equations describing
the propagation of an optical pulse through such a medium are of the form

∂Ã

∂z
+ 1

c

∂Ã

∂t
= 2πiωN

c
p,

dp

dt
= − i

�
|μ|2Ãw,

dw

dt
= −4i

�
Ãp

(where the atomic response is described as in Section 6.4). Show that these equations yield
soliton-like solutions of the form

Ã(z, t) = �

μτ0
sech

(
t − z/v

τ0

)
,

w(z, t) = −1 + 2 sech2
(

t − z/v

τ0

)
,

p(z, t) = −iμ sech

(
t − z/v

τ0

)
tanh

(
t − z/v

τ0

)
as long as the pulse width and pulse velocity are related by

c

v
= 1 + 2πNμ2ωτ 2

0

�
.

What is the value (and the significance) of the quantity∫ ∞

−∞
2μ

�
Ã(z, t)dt?

(For the case of an inhomogeneously broadened medium, the equations are still satisfied
by a sech pulse, but the relation between v and τ0 is different. See, for example, Allen and
Eberly, 1975.)

19. Modulational instability. The intent of this problem is to determine the conditions under
which the propagation of a monochromatic laser field inside an optical fiber is unsta-
ble to the growth of new frequency components. Base your analysis on the nonlinear
Schrödinger equation (NLSE) in the form of Eq. (7.5.32). First note that the solution to
the NLSE for an input in the form of a cw monochromatic wave is the input field multi-
plied by an exponential phase factor describing a nonlinear phase shift.
One next wants to determine if this solution is stable to growth of weak perturbations.
Assume that the total field within the fiber has the form of the strong component of ampli-
tude A0 and frequency ω and two weak sidebands symmetrically displaced by frequency
δ such that the total field within the fiber can be represented as

A(z, τ ) = A0(z) + A1(z)e
−iδτ + A2(z)e

iδτ .
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(Here we have dropped the tilde and the subscript s for notational convenience.) Derive
the differential equations satisfied by each of the field amplitudes by linearizing the equa-
tions in A1 and A2. Note that A1 and A2 are coupled by four-wave mixing interactions.
Determine the conditions for instability to occur by determining when the simultaneous
solution to the equations for the A1 and A2 fields will experience exponential growth. For
what relative sign of n2 and k2 can this instability exist? Sketch the dependence of the
gain on the sideband detuning δ for various values of the pump amplitude A0. Also de-
termine the “eigenvector” associated with the exponentially growing solution, that is, the
particular linear combination of A1 and A2 that experiences exponential growth. Describe
the nature of the modulation present on the transmitted field for this particular eigenvec-
tor.
Thought question: Why does your solution depend on the group velocity, not the phase
velocity, considering that we have analyzed this situation under continuous-wave condi-
tions?
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Chapter 8

Spontaneous Light Scattering and
Acoustooptics

8.1 Features of Spontaneous Light Scattering

In this chapter, we describe spontaneous light scattering; Chapters 9 and 10 present descriptions
of various stimulated light-scattering processes. By spontaneous light scattering, we mean light
scattering under conditions such that the optical properties of the material system are unmodi-
fied by the presence of the incident light beam. We shall see in the following two chapters that
the character of the light-scattering process is profoundly modified whenever the intensity of
the incident light is sufficiently large to modify the optical properties of the material system.

Let us first consider the light-scattering experiment illustrated in part (a) of Fig. 8.1.1. Un-
der the most general circumstances, the spectrum of the scattered light has the form shown in
part (b) of the figure, in which Raman, Brillouin, Rayleigh, and Rayleigh-wing features are
present. By definition, those components of the scattered light that are shifted to lower fre-
quencies are known as Stokes components, and those components that are shifted to higher
frequencies are known as anti-Stokes components. Table 8.1.1 lists some of the physical pro-
cesses that can lead to light scattering of the sort shown in the figure and gives some of the
physical parameters that describe these processes.

One of these light-scattering processes is Raman scattering. Raman scattering results from
the interaction of light with the vibrational modes of the molecules constituting the scattering
medium. Raman scattering can equivalently be described as the scattering of light from optical
phonons.

Brillouin scattering is the scattering of light from sound waves—that is, from propagating
pressure (and thus density) waves. Brillouin scattering can also be considered to be the scatter-
ing of light from acoustic phonons.

Rayleigh scattering (or Rayleigh-center scattering) is the scattering of light from nonpropa-
gating density fluctuations. Formally, it can be described as scattering from entropy fluctuations.
It is known as quasielastic scattering because it induces no frequency shift.

Nonlinear Optics. https://doi.org/10.1016/B978-0-12-811002-7.00017-5
Copyright © 2020 Elsevier Inc. All rights reserved. 381
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FIGURE 8.1.1: Spontaneous light scattering. (a) Experimental setup. (b) Typical observed spectrum.

Rayleigh-wing scattering (i.e., scattering in the wing of the Rayleigh line) is scattering from
fluctuations in the orientation of anisotropic molecules. Since the molecular reorientation pro-
cess is very rapid, this component is spectrally very broad. Rayleigh-wing scattering does not
occur for molecules with an isotropic polarizability tensor.

8.1.1 Fluctuations as the Origin of Light Scattering

Light scattering occurs as a consequence of fluctuations in the optical properties of a material
medium; a completely homogeneous material can scatter light only in the forward direction
(see, for example, Fabelinskii, 1968). This conclusion can be demonstrated with the aid of

TABLE 8.1.1: Typical values of the parameters describing several light-
scattering processes.

Process Shift
(cm−1)

Linewidth
(cm−1)

Relaxation time
(sec)

Gaina

(m/MW)

Raman 1000 5 10−12 5 × 10−5

Brillouin 0.1 5 × 10−3 10−9 10−4

Rayleigh 0 5 × 10−4 10−8 10−6

Rayleigh-wing 0 5 10−12 10−5

a Gain of the stimulated version of the process.
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FIGURE 8.1.2: Light scattering cannot occur in a completely homogeneous medium.

Fig. 8.1.2, which shows a completely homogeneous medium being illuminated by a plane wave.
We suppose that the volume element dV1 scatters light into the θ direction. However, for any
direction, except the exact forward direction (θ = 0), there must be a nearby volume element
(labeled dV2) whose scattered field interferes destructively with that from dV1. Since the same
argument can be applied to any volume element in the medium, we conclude that there can
be no scattering in any direction except θ = 0. Scattering in the direction θ = 0 is known as
coherent forward scattering and is the origin of the index of refraction. (See, for example, the
discussion in Section 31 of Feynman et al., 1963.)

Note that the argument that scattering cannot occur (except in the forward direction) requires
that the medium be completely homogeneous. Scattering can occur as the result of fluctuations
in any of the optical properties of the medium. For example, if the density of the medium is
nonuniform, then the total number of molecules in the volume element dV1 may not be equal
to the number of molecules in dV2, and consequently the destructive interference between the
fields scattered by these two elements will not be exact.

Since light scattering results from fluctuations in the optical properties of a material
medium, it is useful to represent the dielectric tensor of the medium (which for simplicity
we assume to be isotropic in its average properties) as (Landau and Lifshitz, 1960)

εik = ε̄δik + �εik, (8.1.1)

where ε̄ represents the mean dielectric constant of the medium and where �εik represents
the (temporally and/or spatially varying) fluctuations in the dielectric tensor that lead to light
scattering. It is convenient to decompose the fluctuation �εik in the dielectric tensor into the
sum of a scalar contribution �εδik and a (traceless) tensor contribution �ε

(t)
ik as

�εik = �εδik + �ε
(t)
ik . (8.1.2)
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The scalar contribution �ε arises from fluctuations in thermodynamic quantities such as the
pressure, entropy, density, or temperature. In a chemical solution it also has a contribution from
fluctuations in concentration. Scattering that results from �ε is called scalar light scattering;
examples of scalar light scattering include Brillouin and Rayleigh scattering.

Scattering that results from �ε
(t)
ik is called tensor light scattering. The tensor �ε

(t)
ik has been

taken to be traceless (i.e.,
∑

i �ε
(t)
ii = 0), since the scalar contribution �ε has been separated

out. It is useful to express �ε
(t)
ik as

�ε
(t)
ik = �ε

(s)
ik + �ε

(a)
ik , (8.1.3)

where �ε
(s)
ik is the symmetric part of �ε

(t)
ik (symmetric in the sense that �ε

(s)
ik = �ε

(s)
ki ) and

gives rise to Rayleigh-wing scattering, and where �ε
(a)
ik is the antisymmetric part of �ε

(t)
ik (that

is, �ε
(a)
ik = −�ε

(a)
ki ) and gives rise to Raman scattering.

It can be shown that the fluctuations �ε, �ε
(s)
ik , and �ε

(a)
ik are statistically independent.

Scattering due to �ε
(t)
ik is called depolarized scattering, because in general the degree of polar-

ization in the scattered light is smaller than that of the incident light.

8.1.2 Scattering Coefficient

A quantity that is used to describe the efficiency of the scattering process is the scattering
coefficient R, which is defined in terms of the quantities shown in Fig. 8.1.3. Here a beam of
light of intensity I0 (in units of power per unit area, that is, W m−2) illuminates a scattering
region of volume V , and the intensity Is of the scattered light is measured at a distance L

from the interaction region. It is reasonable to assume that the intensity of the scattered light
increases linearly with the intensity I0 of the incident light and with the volume V of the
interaction region and that it obeys the inverse square law with respect to the distance L to the
point of observation. We can hence represent Is as

Is = I0RV

L2
, (8.1.4)

where the constant of proportionality R is known as the scattering coefficient R.
We now assume that the scattered light falls onto a small detector of projected area dA. The

power hitting the detector is given by dP = IsdA. Since the detector subtends a solid angle at
the scattering region given by d� = dA/L2, the scattered power per unit solid angle is given
by dP/d� = IsL

2, or by

dP

d�
= I0RV. (8.1.5)
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FIGURE 8.1.3: Quantities used to define the scattering coefficient.

Either Eq. (8.1.4) or (8.1.5) can be taken as the definition of the scattering coefficient R. For
scattering of visible light through an angle of 90◦, R has the value 2 × 10−8 cm−1 for air and
1.4 × 10−4 m−1 for water.

8.1.3 Scattering Cross Section

It is also useful to define the scattering cross section. We consider a beam of intensity I0 falling
onto an individual molecule, as shown in Fig. 8.1.4. We let P denote the total power of the
radiation scattered by this molecule. We assume that P increases linearly with I0 according to

P = σI0, (8.1.6)

where the constant of proportionality σ is known as the (total) scattering cross section. Since I0

has the dimensions of power per unit area, we see that σ has the dimensions of an area, which
justifies it being called a cross section. The cross section can be interpreted as the effective
geometrical area of the molecule for removing light from the incident beam.

We also define a differential cross section. Rather than describing the total scattered power,
this quantity describes the power dP scattered in some particular direction into the element

FIGURE 8.1.4: Scattering of light by a molecule.
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of solid angle d�. We assume that the scattered power per unit solid angle dP/d� increases
linearly with the incident intensity according to

dP

d�
= I0

dσ

d�
, (8.1.7)

where dσ/d� is known as the differential cross section. Clearly, since P is equal to∫
(dP/d�)d�, it follows from Eqs. (8.1.6) and (8.1.7) that

σ =
∫

4π

dσ

d�
d�. (8.1.8)

Let us next see how to relate the differential scattering cross section dσ/d� to the scattering
coefficient R. If each of the N molecules contained in the volume V of Fig. 8.1.3 scatters
independently, then the total power per unit solid angle of the scattered light will be N times
larger than the result given in Eq. (8.1.7). Consequently, by comparison with Eq. (8.1.5), we
see that the scattering coefficient is given by

R = N
V

dσ

d�
. (8.1.9)

One should be wary about taking this equation to constitute a generally valid result. Recall
that a completely homogeneous medium does not scatter light at all, which implies that for such
a medium R would be equal to zero and not to (N /V )(dσ/d�). In the next section we examine
the conditions under which it is valid to assume that each molecule scatters independently. As
a general rule, Eq. (8.1.9) is valid for dilute media and is entirely invalid for condensed matter.

8.2 Microscopic Theory of Light Scattering

Let us now consider light scattering in terms of the field scattered by each molecule contained
within the interaction region. Such a treatment is particularly well suited to the case of scattering
from a dilute gas, where collective effects due to the interaction of the various molecules are
relatively unimportant. (Light scattering from condensed matter is more conveniently treated
using the thermodynamic formalism presented in the next section.) As illustrated in Fig. 8.2.1,
we assume that the optical field

Ẽ = E0e
−iωt + c.c. (8.2.1)

of intensity I0 = (2ncε0)|E0|2 is incident on a molecule whose linear dimensions are assumed
to be much smaller than the wavelength of light. In response to the applied field, the molecule
develops the dipole moment

p̃ = ε0α(ω)E0e
−iωt + c.c., (8.2.2)
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FIGURE 8.2.1: Geometry of light scattering from an individual molecule.

where α(ω) is the polarizability of the particle. Explicit formulas for α(ω) for certain types of
scatterers are given below, but for reasons of generality we leave the form of α(ω) unspecified
for the present.

As a consequence of the time-varying dipole moment given by Eq. (8.2.2), the particle
will radiate. The intensity of this radiation at a distance L from the scatterer is given by the
magnitude of the Poynting vector (see, for example, Jackson, 1982, Section 9.2) as

Is = n〈 ¨̃p2〉
16π2ε0c3L2

sin2 φ = nω4ε0|α(ω)|2 |E0|2
8π2c3L2

sin2 φ. (8.2.3)

The angular brackets in the first form imply that the time average of the enclosed quantity is
to be taken. As shown in Fig. 8.2.1, φ is the angle between the induced dipole moment of the
particle and the direction r to the point of observation.

We next use Eq. (8.2.3) to derive an expression for the differential scattering cross sec-
tion. As in the derivation of Eq. (8.1.5), the scattered power per unit solid angle is given
by dP/d� = IsL

2. We introduce the differential cross section of Eq. (8.1.7), dσ/d� =
(dP/d�)/I0 = IsL

2/I0, which through the use of Eq. (8.2.3) becomes

dσ

d�
= 1

16π2

ω4

c4

∣∣α(ω)
∣∣2 sin2 φ. (8.2.4)

We note that this expression for the differential cross section dσ/d� predicts a sin2 φ depen-
dence for any functional form for α(ω). This result is a consequence of our assumption that
the scattering particle is small compared to an optical wavelength and hence that the scattering
is due solely to electric dipole and not to higher-order multipole processes. Since the angular
dependence of dσ/d� is contained entirely in the sin2 φ term, we can immediately obtain an
expression for the total scattering cross section by integrating dσ/d� over all solid angles,
yielding

σ =
∫

4π

d�
dσ

d�
= 8π

3

1

16π2

ω4

c4

∣∣α(ω)
∣∣2 = 1

6π

ω4

c4

∣∣α(ω)
∣∣2

. (8.2.5)
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In deriving Eq. (8.2.4) for the differential scattering cross section, we assumed that the
incident light was linearly polarized, and for convenience we took the direction of polarization
to lie in the plane of Fig. 8.2.1. For this direction of polarization, the scattering angle θ and the
angle φ of Eq. (8.2.3) are related by θ + φ = 90◦, and thus for this direction of polarization
Eq. (8.2.4) can be expressed in terms of the scattering angle as

(
dσ

d�

)
p

= 1

16π2

ω4

c4

∣∣α(ω)
∣∣2 cos2 θ. (8.2.6)

Other types of polarization can be treated by allowing the incident field to have a component
perpendicular to the plane of Fig. 8.2.1. For this component φ is equal to 90◦ for any value of
the scattering angle θ , and thus for this component the differential cross section is given by

(
dσ

d�

)
s

= 1

16π2

ω4

c4

∣∣α(ω)
∣∣2 (8.2.7)

for any value of θ . Since unpolarized light consists of equal intensities in the two orthogonal po-
larization directions, the differential cross section for unpolarized light is obtained by averaging
Eqs. (8.2.6) and (8.2.7), giving

(
dσ

d�

)
unpolarized

= 1

32π2

ω4

c4

∣∣α(ω)
∣∣2(1 + cos2 θ

)
. (8.2.8)

As an example of the use of these equations, we consider scattering from an atom whose
optical properties can be described by the Lorentz model of the atom (that is, we model the
atom as a simple harmonic oscillator). According to Eqs. (1.4.17) and (1.4.10) and the relation
of χ(ω) = Nα(ω), the polarizability of such an atom is given by

α(ω) = e2/mε0

ω2
0 − ω2 − 2iωγ

, (8.2.9)

where ω0 is the resonance frequency and γ is the dipole damping rate. Through use of this
expression, the total scattering cross section given by Eq. (8.2.5) becomes

σ = 8π

3

(
e2

4πε0 mc2

)2
ω4

(ω2
0 − ω2)2 + 4ω2γ 2

. (8.2.10)

The frequency dependence of the scattering cross section predicted by this equation is illus-
trated in Fig. 8.2.2. Eq. (8.2.10) can be simplified under several different limiting conditions.
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FIGURE 8.2.2: Frequency dependence of the scattering cross section of a Lorentz oscillator.

In particular, we find that

σ = 8π

3

(
e2

4πε0 mc2

)2
ω4

ω4
0

for ω � ω0, (8.2.11a)

σ = 2π

3

(
e2

4πε0 mc2

)2 ω2
0

(ω0 − ω)2 + γ 2
for ω � ω0, (8.2.11b)

σ = 8π

3

(
e2

4πε0 mc2

)2

for ω � ω0. (8.2.11c)

Eq. (8.2.11a) shows that the scattering cross section increases as the fourth power of the optical
frequency ω in the limit ω � ω0. This result leads, for example, to the prediction that the sky
is blue, since the shorter wavelengths of sunlight are scattered far more efficiently in the earth’s
atmosphere than are the longer wavelengths. Scattering in this limit is often known as Rayleigh
scattering. Eq. (8.2.11b) shows that near the atomic resonance frequency the dependence of
the scattering cross section on the optical frequency has a Lorentzian lineshape. Eq. (8.2.11c)
shows that for very large frequencies the scattering cross section approaches a constant value.
This value is of the order of the square of the “classical” electron radius, re = e2/4πε0 mc2 =
2.82 × 10−15 m. Scattering in this limit is known as Thompson scattering.

As a second example of the application of Eq. (8.2.5), we consider scattering from a collec-
tion of small dielectric spheres. We take ε1 to be the dielectric constant of the material within
each sphere and ε to be that of the surrounding medium. We assume that each sphere is small in
the sense that its radius a is much smaller than the wavelength of the incident radiation. We can
then calculate the polarizability of each sphere using the laws of electrostatics. It is straight-
forward to show (see, for example, Stratton, 1941, p. 206; or Jackson, 1982, p. 158) that the
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polarizability is given by the expression

α = 4πε
ε1 − ε

ε1 + 2ε
a3. (8.2.12)

Note that α depends on frequency only through any possible frequency dependence of ε or
of ε1. Through the use of Eq. (8.2.5), we find that the scattering cross section is given by

σ = 8π

3

ω4

c4
a6ε2

(
ε1 − ε

ε1 + 2ε

)2

. (8.2.13)

Note that, as in the low-frequency limit of the Lorentz atom, the cross section scales as the
fourth power of the frequency. Note also that the cross section scales as the square of the
volume of each particle.

Let us now consider the rather subtle problem of calculating the total intensity of the light
scattered from a collection of molecules. We recall from the discussion of Fig. 8.1.2 that only
the fluctuations in the optical properties of the medium can lead to light scattering. As shown
in Fig. 8.2.3, we divide the total scattering volume V into a large number of identical small
regions of volume V ′. We assume that V ′ is sufficiently small that all of the molecules within
V ′ radiate essentially in phase. The intensity of the light emitted by the atoms in V ′ in some
particular direction can thus be represented as

IV ′ = ν2Imol, (8.2.14)

where ν represents the number of molecules in V ′ and Imol denotes the intensity of the light
scattering by a single molecule.

FIGURE 8.2.3: Light scattering from a collection of molecules.

We next calculate the total intensity of the scattered radiation from the entire volume V .
We recall from the discussion of Section 8.1 that, for each volume element V ′, there will be
another element whose radiated field tends to interfere destructively with that from V ′. Insofar
as each volume element contains exactly the same number of molecules, the cancellation will
be complete. However, any deviation of ν from its mean value ν̄ can lead to a net intensity
of the scattered radiation. The contribution to the net scattered intensity from volume element
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V ′ is thus given by �ν2Imol, where �ν2 denotes the mean-square fluctuation given by �ν2 =
(ν − ν̄)2 = ν2 − ν̄2. The intensity of the radiation scattered from the total volume V is then
given by

IV = Imol�ν2 V

V ′ , (8.2.15)

where the last factor V/V ′ gives the total number of regions of volume V ′ contained within
the interaction volume V . This result shows how the total scattered intensity IV depends on
the fluctuations in the number density of molecules. We also see that the scattered intensity IV

vanishes if the fluctuation �ν2 vanishes.
For the case of a medium sufficiently dilute that the locations of the individual molecules

are uncorrelated (that is, for an ideal gas), we can readily calculate the mean fluctuation �ν2

in the number of particles. If N denotes the mean number density of particles, then the mean
number of particles in the volume element V ′ is given by

ν̄ = NV ′, (8.2.16)

and the mean-square fluctuation is given by

�ν2 = ν2 − ν̄2 = ν̄, (8.2.17)

where the last equality follows from the properties of the Poisson probability distribution, which
are obeyed by uncorrelated particles. We hence find from Eqs. (8.2.15) through (8.2.17) that

IV = ν̄
V

V ′ Imol = NV Imol =N Imol. (8.2.18)

Hence, for an ideal gas the total intensity is simply the intensity of the light scattered by
a single molecule multiplied by the total number of molecules, N = NV . Consequently the
scattering coefficient R and differential cross section dσ/d� introduced in Section 8.1 are
related by Eq. (8.1.9)—that is, by

R = N
dσ

d�
. (8.2.19)

By introducing Eq. (8.2.4) into this expression, we find that the scattering coefficient is given
by

R = N

16π2

ω4

c4

∣∣α(ω)
∣∣2 sin2 φ. (8.2.20)

If the scattering medium is sufficiently dilute that its refractive index can be represented as

n = 1 + 1
2Nα(ω), (8.2.21)
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Eq. (8.2.20) can be rewritten as

R = ω4

c4

|n − 1|2
4π2N

sin2 φ. (8.2.22)

This result can be used to determine the number density N of molecules in a gaseous sample
in terms of two optical constants: the refractive index n and scattering coefficient R at a fixed
angle φ. In fact, the first accurate measurement of Loschmidt’s number (the number density of
molecules at standard temperature and pressure, N0 = 2.686×1019 cm−3 = 2.686×1025 m−3)
was performed through application of Eq. (8.2.22).

8.3 Thermodynamic Theory of Scalar Light Scattering

We next develop a macroscopic description of the light scattering process. We consider the case
in which light scattering occurs as the result of fluctuations in the (scalar) dielectric constant
and in which these fluctuations are themselves the result of fluctuations in thermodynamic
variables, such as the material density and temperature. We assume, as in Fig. 8.2.3 in the
preceding section, that the scattering volume V can be divided into a number of smaller volumes
V ′ having the property that all atoms in V ′ radiate essentially in phase in the θ direction. We
let �ε denote the fluctuation of the dielectric constant averaged over the volume V ′. Since
ε = 1 + χ , the fluctuation in the susceptibility is then given by �χ = �ε. Because of this
change in the susceptibility, the volume V ′ develops the additional polarization

P̃ = �χẼ0 = �εẼ0 (8.3.1)

and hence the additional dipole moment

p̃ = ε0V
′P̃ = ε0�εV ′Ẽ0. (8.3.2)

The intensity Is = (ncε0)〈Ẽ2
s 〉 of the radiation emitted by this oscillating dipole moment is

obtained by introducing Eq. (8.3.2) into Eq. (8.2.3), to obtain

Is = I0
ω4V ′2〈�ε2〉 sin2 φ

16π2L2c4
, (8.3.3)

where, as before, φ is the angle between p̃ and the direction to the point of observation, and
where we have introduced the intensity I0 = (ncε0)〈Ẽ2

0〉 of the incident light. Eq. (8.3.3) gives
the intensity of the light scattered from one cell. The total intensity from all the cells is V/V ′
times as large, since the fluctuations in the dielectric constant for different cells are uncorrelated.
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We next calculate the mean-square fluctuation in the dielectric constant, 〈�ε2〉, for any one
cell. We take the density ρ and temperature T as independent thermodynamic variables. We
then express the change in the dielectric constant as

�ε =
(

∂ε

∂ρ

)
T

�ρ +
(

∂ε

∂T

)
ρ

�T . (8.3.4)

To good accuracy (the error is estimated to be of the order of 2%; see Fabelinskii, 1968), we
can usually ignore the second term, since the dielectric constant typically depends much more
strongly on density than on temperature.∗ We thus find

〈
�ε2〉 = (

∂ε

∂ρ

)2〈
�ρ2〉,

which can be expressed as

〈
�ε2〉 = γ 2

e

〈�ρ2〉
ρ2

0

, (8.3.5)

where ρ0 denotes the mean density of the material and where we have introduced the elec-
trostrictive constant γe, which is defined by†

γe =
(

ρ
∂ε

∂ρ

)
ρ=ρ0

. (8.3.6)

The quantity 〈�ρ2〉/ρ2
0 appearing in Eq. (8.3.5) can be calculated using the laws of sta-

tistical mechanics. The result (see, for example, Fabelinskii, 1968, Appendix I, Eq. (I.13); or
Landau and Lifshitz, 1969) is

〈�ρ2〉
ρ2

0

= kT CT

V ′ (8.3.7)

where

CT = − 1

V

(
∂V

∂p

)
T

(8.3.8)

is the isothermal compressibility. Note that the result given by Eq. (8.3.7) (whose proof lies
outside the subject area of this book) makes sense: Fluctuations are driven by thermal excita-
tion; the larger the compressibility, the larger will be the resulting excursion; and the smaller
the volume under consideration, the easier it is to change its mean density.

∗ For this reason, it is not crucial that we retain the subscript T on ∂ε/∂ρ.
† The reason why γe is called the electrostrictive constant will be described in Section 9.1.
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By introducing Eqs. (8.3.5) and (8.3.7) into Eq. (8.3.3) and multiplying the result by the
total number of cells, V/V ′, we find that the total intensity of the scattered radiation is given
by

Is = I0
ω4V

16π2L2c4
γ 2
e CT kT sin2 φ. (8.3.9a)

We can use this result to find that the scattering coefficient R defined by Eq. (8.1.4) is given by

R = ω4

16π2c4
γ 2
e CT kT sin2 φ. (8.3.9b)

8.3.1 Ideal Gas

As an example, let us apply the result given by Eq. (8.3.9a) to light scattering from an ideal gas,
for which the equation of state is of the form

pV = N kT , (8.3.10)

where N denotes the total number of molecules in the gas. We then find that (∂V/∂p)T =
−N kT /p2 and thus that the isothermal compressibility is given by

CT = N kT

Vp2
= 1

p
= V

N kT
. (8.3.11)

We next assume that ε −1 is linearly proportional to ρ, so that we can represent ε as ε = 1+Aρ

for some constant A. We hence find that ∂ε/∂ρ = A, or that ∂ε/∂ρ = (ε − 1)/ρ, and that the
electrostrictive constant is given by

γe = ε − 1. (8.3.12)

If we now introduce Eqs. (8.3.11) and (8.3.12) into Eq. (8.3.9a), we find that the scattered
intensity can be expressed as

Is = I0
ω4V

16π2L2c4

(ε − 1)2

N
sin2 φ, (8.3.13)

where we have introduced the mean density of particles N = N /V . Through use of Eq. (8.1.4),
we can write this result in terms of the scattering coefficient as

R = (ε − 1)2ω4 sin2 φ

16π2c4N
. (8.3.14)

Note that, since ε − 1 is equal to 2(n − 1) for a dilute gas (i.e., for ε − 1 � 1), this result is
in agreement with the prediction of the microscopic model of light scattering for an ideal gas,
given by Eq. (8.2.22).
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8.3.2 Spectrum of the Scattered Light

The analysis just presented has led to an explicit prediction (8.3.9a) for the total intensity of the
light scattered as the result of the fluctuations in the density (and hence the dielectric constant)
of a material system in thermal equilibrium. In order to determine the spectrum of the scattered
light, we have to examine the dynamical behavior of the density fluctuations that give rise to
light scattering. As before (see the discussion associated with Eq. (8.3.4)), we represent the
fluctuation in the dielectric constant as

�ε̃ =
(

∂ε

∂ρ

)
�ρ̃. (8.3.15)

We now choose the entropy s and pressure p to be the independent thermodynamic variables.
We can then represent the variation in density, �ρ̃, as

�ρ̃ =
(

∂ρ

∂p

)
s

�p̃ +
(

∂ρ

∂s

)
p

�s̃. (8.3.16)

Here the first term describes adiabatic density fluctuations (that is, acoustic waves) and leads to
Brillouin scattering. The second term describes isobaric density fluctuations (that is, entropy or
temperature fluctuations) and leads to Rayleigh-center scattering. The two contributions to �ρ̃

are quite different in character and lead to very different spectral distributions of the scattered
light, because (as we shall see) the equations of motion for �p̃ and �s̃ are very different.

8.3.3 Brillouin Scattering

The equation of motion for a pressure wave is well known from the field of acoustics and is
given by (see, e.g., Fabelinskii, 1968, Section 34.9)

∂2�p̃

∂t2
− �′∇2 ∂�p̃

∂t
− v2∇2�p̃ = 0. (8.3.17)

Here v denotes the velocity of sound, which is given in terms of thermodynamic variables by

v2 =
(

∂p

∂ρ

)
s

. (8.3.18)

The equation for the velocity of sound is conveniently expressed in terms of the compressibility
C or in terms of its reciprocal, the bulk modulus K , which are defined by

C ≡ 1

K
= − 1

V

∂V

∂p
= 1

ρ

∂ρ

∂p
. (8.3.19)
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The compressibility can be measured either at constant temperature or at constant entropy. The
two values of the compressibility, denoted respectively as CT and Cs , are related by

CT

Cs

= cp

cV

≡ γ, (8.3.20)

where cp is the specific heat (i.e., the heat capacity per unit mass, whose units are J/kg K) at
constant pressure, cV is the specific heat at constant volume, and where their ratio γ is known
as the adiabatic index. The velocity of sound as defined by Eq. (8.3.18) can thus be written as

v2 = Ks

ρ
= 1

Csρ
. (8.3.21)

An important special case of the use of this formula is that of an ideal gas, for which
the equation of state is given by Eq. (8.3.10) and the isothermal compressibility is given by
Eq. (8.3.11). The adiabatic compressibility is thus given by Cs = CT /γ = 1/γp. We hence
find from Eq. (8.3.21) that the velocity of sound is given by

v =
(

γp

ρ

)1/2

=
(

γN kT

ρV

)1/2

=
(

γ kT

μ

)1/2

, (8.3.22)

where μ denotes the molecular mass. We thus see that the velocity of sound is of the order of
the mean thermal velocity of the molecules of the gas. The velocity of sound for some common
optical materials is listed in Table 8.3.1.

TABLE 8.3.1: Typical sound velocities.

Material v (m/sec)
Gases

Dry air 3.31×102

He 9.65×102

H2 12.84×102

Water vapor 4.94×102

Liquids

CS2 1.15×103

CCl4 0.93×103

Ethanol 1.21×103

Water 1.50×103

Solids

Fused silica 5.97×103

Lucite 2.68×103
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The parameter �′ appearing in the wave equation (8.3.17) is a damping parameter that can
be shown to be expressible as

�′ = 1

ρ

[
4

3
ηs + ηb + κ

Cp

(γ − 1)

]
, (8.3.23)

where ηs is the shear viscosity coefficient, ηb is the bulk viscosity coefficient, and κ is the
thermal conductivity. For most materials of interest in optics, the last contribution to �′ is much
smaller than the first two. Conventions involving the naming of the viscosity coefficients are
discussed briefly in the Appendix to Section 9.6.

As an illustration of the nature of the acoustic wave equation (8.3.17), we consider the
propagation of the wave

�p̃ = �pei(qz−�t) + c.c. (8.3.24)

through an acoustic medium. By substituting this form into the acoustic wave equation
(Eq. (8.3.17)), we find that q and � must be related by a dispersion relation of the form

�2 = q2(v2 − i��′). (8.3.25)

We rewrite this relation as

q2 = �2

v2 − i��′ = �2/v2

1 − i��′/v2
� �2

v2

(
1 + i��′

v2

)
, (8.3.26)

which shows that

q � �

v
+ i�

2v
, (8.3.27)

where we have introduced the phonon decay rate

� = �′q2. (8.3.28)

We find by introducing the form for q given by Eq. (8.3.27) into Eq. (8.3.24) that the intensity
of the acoustic wave varies spatially as∣∣�p(z)

∣∣2 = ∣∣�p(0)
∣∣2

e−αsz, (8.3.29)

where we have introduced the sound absorption coefficient

αs = q2�′

v
= �

v
. (8.3.30)

It is also useful to define the phonon lifetime as

τp = 1

�
= 1

q2�′ . (8.3.31)
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Next, we calculate the rate at which light is scattered out of a beam of light by these acoustic
waves. We assume that the incident optical field is described by

Ẽ0(z, t) = E0e
i(k·r−ωt) + c.c. (8.3.32)

and that the scattered field obeys the driven wave equation

∇2Ẽ − n2

c2

∂2Ẽ

∂t2
= 1

ε0c2

∂2P̃

∂t2
. (8.3.33)

We take the polarization P̃ of the medium to be given by Eq. (8.3.1) with the variation �ε̃

in dielectric constant given by Eq. (8.3.15)—that is, we take P̃ = ε0(∂ε/∂ρ)�ρ̃Ẽ0. We take
the variation in density to be given by the first contribution to Eq. (8.3.16)—that is, by �ρ̃ =
(∂ρ/∂p)�p̃, where �p̃ denotes the incremental pressure. We thus find that

P̃ (r, t) = ε0

(
∂ε

∂ρ

)(
∂ρ

∂p

)
s

�p̃(r, t)Ẽ0(z, t)

= ε0γeCs�p̃(r, t)Ẽ0(z, t), (8.3.34)

where we have introduced the adiabatic compressibility Cs of Eq. (8.3.19) and the electrostric-
tive constant of Eq. (8.3.6). We take a typical component of the thermally excited pressure
disturbance within the interaction region to be given by

�p̃(r, t) = �pei(q·r−�t) + c.c. (8.3.35)

By combining Eqs. (8.3.33) through (8.3.35), we find that the scattered field must obey the
wave equation

∇2Ẽ − n2

c2

∂2Ẽ
∂t2

= −γeCs

c2

[
(ω − �)2E0�p∗ei(k−q)·r−i(ω−�)t

+ (ω + �)2E0�pei(k+q)·r−i(ω+�)t + c.c.
]
. (8.3.36)

The first term in this expression leads to Stokes scattering; the second to anti-Stokes scattering.
We study these two contributions in turn.

8.3.4 Stokes Scattering (First Term in Eq. (8.3.36))

The polarization is seen to have a component with wavevector

k′ ≡ k − q (8.3.37)
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and frequency

ω′ ≡ ω − �, (8.3.38)

where the frequency ω and wavevector k of the incident optical field are related according to

ω = |k|c/n, (8.3.39)

and where the frequency � and wavevector q of the acoustic wave are related according to

� = |q|v. (8.3.40)

This component of the polarization can couple efficiently to the scattered optical wave only
if its frequency ω′ and wavevector k′ are related by the dispersion relation for optical waves,
namely

ω′ = |k′|c/n. (8.3.41)

In order for Eqs. (8.3.37) through (8.3.41) to be satisfied simultaneously, the sound-wave
frequency and wavevector must each have a particular value for any scattering direction. For the
case of scattering at the angle θ , we have the situation illustrated in Fig. 8.3.1. Part (a) of this
figure shows the relative orientations of the wavevectors of the incident and scattered fields.
Part (b) illustrates Eq. (8.3.37) and shows how the wavevector of the acoustic disturbance is
related to those of the incident and scattered optical radiation.

FIGURE 8.3.1: Illustration of Stokes Brillouin scattering.
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Since |k| is very nearly equal to |k′| (because � is much smaller than ω), diagram (b) shows
that

|q| = 2|k| sin(θ/2). (8.3.42)

The dispersion relation (8.3.40) then shows that the acoustic frequency is given by

� = 2|k|v sin(θ/2) = 2nω
v

c
sin(θ/2). (8.3.43)

We note that the Stokes shift � is equal to zero for forward scattering and is maximum for
backscattering (i.e., for θ = 180◦). The maximum frequency shift is thus given by

�max = 2n
v

c
ω. (8.3.44)

For ω/2π = 3 × 1014 Hz (i.e., at λ = 1 µm), v = 1 × 103 m/sec (a typical value), and n = 1.5,
we obtain �max/2π = 3 × 109 Hz.

Stokes scattering can be visualized as the scattering of light from a retreating acoustic wave,
as illustrated in part (c) of Fig. 8.3.1.

8.3.5 Anti-Stokes Scattering (Second Term in Eq. (8.3.36))

The analysis here is analogous to that for Stokes scattering. The polarization is seen to have a
component with wavevector

k′ ≡ k + q (8.3.45)

and frequency

ω′ ≡ ω + �, (8.3.46)

where, as before, ω = |k|c/n and � = |q|v. This component of the polarization can couple
efficiently to an electromagnetic wave only if ω′ and |k′| are related by ω′ = |k′|c/n. We again
assume that θ denotes the scattering angle, as illustrated in Fig. 8.3.2. The condition (8.3.45) is
illustrated as part (b) of the figure. Since (as before) |k| is very nearly equal to |k′|, the length
of the acoustic wavevector is given by

|q| = 2|k| sin(θ/2). (8.3.47)

Hence, by Eq. (8.3.40), the acoustic frequency is given by

� = 2nω
v

c
sin(θ/2). (8.3.48)
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FIGURE 8.3.2: Illustration of anti-Stokes Brillouin scattering.

Anti-Stokes scattering can be visualized as scattering from an oncoming sound wave, as shown
in part (c) of Fig. 8.3.2.

We have thus far ignored attenuation of the acoustic wave in our analysis. If we include this
effect, we find that the light scattered into direction θ is not monochromatic but has a spread in
angular frequency whose width (FWHM) is given by

δω = 1/τp = �′q2, (8.3.49)

which becomes, through use of Eq. (8.3.42),

δω = 4�′|k|2 sin2(θ/2) = 4n2�′ ω2

c2
sin2(θ/2). (8.3.50)

For the case of backscattering (θ = 180◦), δω/2π is typically of the order of 100 MHz for
organic liquids. Since the acoustic frequency is given by Eq. (8.3.43), we see that the ratio of
the linewidth to the Brillouin frequency shift is given by

δω

�
= 2n�′ω

vc
sin(θ/2). (8.3.51)

We see that the linewidth normalized in this manner is largest for back scattering (θ = 180◦)
and becomes vanishingly small for forward scattering (θ = 0). The spectrum of the scattered
light has the form shown in Fig. 8.3.3.
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FIGURE 8.3.3: Spectrum showing Brillouin and Rayleigh scattering.

8.3.6 Rayleigh Center Scattering

We now consider the contribution to �ρ̃ (and hence to �ε̃) resulting from isobaric density
fluctuations, which are described by the second term in Eq. (8.3.16) and are proportional to
the entropy fluctuation �s̃. Entropy fluctuations are described by the same equation as that
describing temperature variations:

ρcp

∂�s̃

∂t
− κ∇2�s̃ = 0, (8.3.52)

where, as before, cp denotes the specific heat at constant pressure, and where κ denotes the
thermal conductivity. Note that these fluctuations obey a diffusion equation and not a wave
equation. A solution to the diffusion equation (8.3.52) is

�s̃ = �s0e
−δt e−iq·r, (8.3.53)

where the damping rate of the entropy disturbance is given by

δ = κ

ρcp

q2. (8.3.54)

We see that, unlike pressure waves, entropy waves do not propagate. As a result, the nonlinear
polarization proportional to �s can give rise only to an unshifted component of the scattered
light. The width (FWHM) of this component is given by δωc = δ, that is, by

δωc = 4κ

ρcp

|k|2 sin2(θ/2). (8.3.55)

As a representative case, for liquid water κ = 6 mW/cm K, ρ = 1 g/cm3, cp = 4.2 J/g K,
and the predicted width of the central component for backscattering (θ = 180◦) of radiation at
500 nm is δωc/2π = 1.4 × 107 Hz.

It can be shown (Fabelinskii, 1968, Eq. 5.39) that the relative intensities of the Brillouin and
Rayleigh center components are given by

Ic

2IB

= cp − cv

cv

= γ − 1. (8.3.56)
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Here Ic denotes the integrated intensity of the central component, and IB that of either of the
Brillouin components. This result is known as the Landau–Placzek relation.

8.4 Acoustooptics

The analysis just presented of the scattering of light from a sound wave can be applied to the
situation in which the sound wave is applied to the interaction region externally by means of a
transducer. Such acoustooptic devices are useful as intensity or frequency modulators for laser
beams or as beam deflectors.

Acoustooptic devices are commonly classified as falling into one of two regimes, each of
which will be discussed in greater detail below. These regimes are as follows:
Bragg scattering. This type of scattering occurs for the case of interaction lengths that are

sufficiently long that phase-matching considerations become important. Bragg scattering
leads to a single diffracted beam. The name is given by analogy to the scattering of X-rays
from the atomic planes in a crystal. Bragg scattering can lead to an appreciable scattering
efficiency (>50%).

Raman–Nath scattering. This type of scattering occurs in cells with a short interaction
length. Phase-matching considerations are not important, and several scattered orders are
usually present.

We shall first consider the case of Bragg scattering of light waves; a more precise statement
of the conditions under which each type of scattering occurs is given below in connection with
the discussion of Raman–Nath scattering.

8.4.1 Bragg Scattering of Light by Sound Waves

The operation of a typical Bragg scattering cell is shown schematically in Fig. 8.4.1. A travel-
ing acoustic wave of frequency � and wavelength � = 2πv/� (where v denotes the velocity
of sound) is established in the scattering medium. The density variation associated with this
acoustic wave produces a variation in the dielectric constant of the medium, and the incident
optical wave scatters from this variation. Although the amplitude of the wave scattered from
each acoustic wavefront is typically rather small, the total scattered field can become quite
intense if the various contributions add in phase to produce constructive interference. The con-
dition for constructive interference to occur is obtained with the help of the construction shown
in Fig. 8.4.2 and is given by the relation

λ = 2� sin θ, (8.4.1)

where λ is the wavelength of light in the medium. This condition is known as the Bragg condi-
tion. It ensures that the path length difference between rays that reflect from successive acoustic
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FIGURE 8.4.1: Bragg-type acoustooptic modulator.

FIGURE 8.4.2: The Bragg condition for acoustooptic scattering.

maxima is equal to an optical wavelength. In a typical acoustooptic device, relevant parameters
might be v = 1.5 × 105 cm/sec and �/2π = 200 MHz, which imply that the acoustic wave-
length is equal to � = 2πv/� = 7.5 µm. If the optical wavelength is 0.5 µm, we see from
Eq. (8.4.1) that sin θ = 1/30 and thus the deflection angle is given by 2θ = 4◦.

The Bragg condition given by Eq. (8.4.1) can alternatively be understood as a phase-
matching condition. If k1 denotes the wavevector of the incident optical wave, k2 that of the
diffracted optical wave, and q that of the acoustic wave, the Bragg condition can be seen with
the help of Fig. 8.4.3(a) to be a statement that

k2 = k1 + q. (8.4.2)

By comparison with the analysis of Section 8.3 for spontaneous Brillouin scattering (and as
shown explicitly below), we see that the frequency of the scattered beam is shifted upward to

ω2 = ω1 + �. (8.4.3)
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FIGURE 8.4.3: The Bragg condition described as a phase-matching relation.

Since � is much smaller than ω1, we see that ω2 is approximately equal to ω1, and hence that
|k2| � |k1|. The configuration shown in Fig. 8.4.1 shows the case in which the acoustic wave
is advancing toward the incident optical wave. For the case of a sound wave propagating in the
opposite direction, Eqs. (8.4.2) and (8.4.3) must be replaced by

k2 = k1 − q, (8.4.4a)

ω2 = ω1 − �. (8.4.4b)

Figs. 8.4.1 and 8.4.2 are unchanged except for the reversal of the direction of the sound velocity
vector, although Fig. 8.4.3(a) must be replaced by Fig. 8.4.3(b).

Bragg scattering of light by sound waves can be treated theoretically by considering the
time-varying change �ε̃ in the dielectric constant induced by the acoustic density variation
�ρ̃. It is usually adequate to assume that �ε̃ scales linearly with �ρ̃, so that

�ε̃ = ∂ε

∂ρ
�ρ̃ = γe

�ρ̃

ρ0
. (8.4.5)

Here ρ0 denotes the mean density of the material, and γe denotes the electrostrictive constant
defined by Eq. (8.3.6). Eq. (8.4.5) applies rigorously to the case of liquids, and it predicts
the correct qualitative behavior for other materials. For the case of anisotropic materials, the
change in the optical properties is described more precisely by means of a tensor relation,
which conventionally is given by [

�
(
ε−1)]

ij
=

∑
kl

pijklSkl, (8.4.6)

where the quantity pijkl is known as the strain-optic tensor and where

Skl = 1

2

(
∂dk

∂xl

+ ∂dl

dxk

)
(8.4.7)

is the strain tensor, in which dk is the k component of the displacement of a particle from its
equilibrium position. Whenever the change in the inverse of the dielectric tensor (ε−1)ij given



406 Chapter 8

FIGURE 8.4.4: Geometry of a Bragg-type acoustooptic modulator.

by the right-hand side of Eq. (8.4.6) is small, the change in the dielectric tensor εij is given by

(�ε)il = −
∑
jk

εij

[
�

(
ε−1)]

jk
εkl. (8.4.8)

Our theoretical treatment of Bragg scattering assumes the geometry shown in Fig. 8.4.4.
The interaction of the incident field

Ẽ1 = A1e
i(k1·r−ω1t) + c.c. (8.4.9)

with the acoustic wave of wavevector q produces the diffracted wave

Ẽ2 = A2e
i(k2·r−ω2t) + c.c. (8.4.10)

with ω2 = ω1 +�. The interaction is assumed to be nearly Bragg-matched (i.e., phase-matched)
in the sense that

k2 � k1 + q. (8.4.11)

The variation of the dielectric constant induced by the acoustic wave is represented as

�ε̃ = �εei(q·r−�t) + c.c., (8.4.12)

where the complex amplitude �ε is given by �ε = γe�ρ/ρ0 under those conditions where
the change in dielectric constant is accurately predicted by Eq. (8.4.5). More generally, for
anisotropic interactions, �ε is the amplitude of the appropriate tensor component of �ε̃ij given
by Eq. (8.4.6). The total optical field Ẽ = Ẽ1 + Ẽ2 is required to satisfy the wave equation

∇2Ẽ − n2 + �ε̃

c2

∂2Ẽ

∂t2
= 0, (8.4.13)

where n denotes the refractive index of the material in the absence of the acoustic wave. Since
according to Eq. (8.4.12) �ε̃ oscillates at frequency �, it couples the optical waves of frequen-
cies ω1 and ω2 = ω1 + �.
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We first consider the portion of Eq. (8.4.13) that oscillates at frequency ω1. This part is
given by

∂2A1

∂x2
+ ∂2A1

∂z2
+ 2ik1x

∂A1

∂x
+ 2ik1z

∂A1

∂z
− (

k2
1x + k2

1z

)
A1

+ n2ω2
1

c2
A1 + ω2

2

c2
A2�ε∗ei(k2−k1−q)·r = 0. (8.4.14)

This equation can be simplified in the following manner: (1) We introduce the slowly varying
amplitude approximation, which entails ignoring the second-order derivatives; (2) we note that
A1 depends only on x and not on z, since the interaction is invariant to a translation in the z di-
rection, and so we set ∂A1/∂z equal to 0; and (3) we note that k2

1x +k2
1z = n2ω2

1/c
2. Eq. (8.4.14)

thus becomes

2ik1x

dA1

dx
= −ω2

2

c2
A2�ε∗ei(k2−k1−q)·r. (8.4.15)

Next, we note that the propagation vector mismatch k2 −k1 −q ≡ −�k can have a nonzero
component only in the x direction, because the geometry we are considering has infinite extent
in the z direction, and the z component of the k wavevector mismatch must therefore vanish.
We thus see that

(k2 − k1 − q) · r ≡ −�kx, (8.4.16)

and hence that Eq. (8.4.15) can be written as

dA1

dx
= iω2

2�ε∗

2k1xc2
A2e

−i�kx. (8.4.17)

By a completely analogous derivation, we find that the portion of the wave equation (8.4.13)
that describes a wave at frequency ω2 is given by

dA2

dx
= iω2

1�ε

2k2xc2
A1e

i�kx. (8.4.18)

Finally, we note that since ω1 � ω2 ≡ ω and k1x � k2x ≡ kx , the coupled equations (8.4.17)
and (8.4.18) can be written as

dA1

dx
= iκA2e

−i�kx, (8.4.19a)

dA2

dx
= iκ∗A1e

i�kx, (8.4.19b)

where we have introduced the coupling constant

κ = ω2�ε∗

2kxc2
. (8.4.20)
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The solution to these coupled-amplitude equations is particularly simple for the case in
which Ẽ1 is incident at the Bragg angle. In this case, the interaction is perfectly phase-matched,
so that �k = 0, and thus Eq. (8.4.19b) reduces to the set

dA1

dx
= iκA2,

dA2

dx
= iκ∗A1. (8.4.21)

These equations are easily solved using methods similar to those introduced in Chapter 2. The
solution appropriate to the boundary conditions illustrated in Fig. 8.4.4 is

A1(x) = A1(0) cos(|κ|x), (8.4.22a)

A2(x) = iκ∗

|κ| A1(0) sin(|κ|x). (8.4.22b)

Note that these solutions obey the relation

∣∣A1(x)
∣∣2 + ∣∣A2(x)

∣∣2 = ∣∣A1(0)
∣∣2

, (8.4.23)

which shows that the energy of the optical field is conserved in the Bragg scattering process
(since we have assumed that � � ω). We define the diffraction efficiency of the Bragg scatter-
ing process to be the ratio of the output intensity of the ω2 wave to the input intensity of the ω1

wave, and we find that the diffraction efficiency is given by

η ≡ |A2(L)|2
|A1(0)|2 = sin2(|κ|L)

. (8.4.24)

For practical purposes, it is useful to express the coupling constant κ defined by Eq. (8.4.20)
in terms of the intensity (i.e., power per unit area) of the acoustic wave. The intensity of a sound
wave is given by the relation

I = Kv
〈�ρ̃2〉

ρ2
0

= 2Kv

∣∣∣∣�ρ

ρ0

∣∣∣∣
2

, (8.4.25)

where, as before, K = 1/C is the bulk modulus, v is the sound velocity, and �ρ is the com-
plex amplitude of the density disturbance associated with the acoustic wave. It follows from
Eq. (8.4.5) that �ε is equal to γe�ρ/ρ, and thus the acoustic intensity can be written as
I = 2Kv|�ε|2/γ 2

e . The coupling constant |κ| (see Eq. (8.4.20)) can thus be expressed as

|κ| = ωγe

2nc cos θ

(
I

2Kv

)1/2

, (8.4.26)

where we have replaced kx by n(ω/c) cos θ .
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As an example, we evaluate Eq. (8.4.26) for the case of Bragg scattering in water, which is
characterized by the following physical constants: n = 1.33, γe = 0.82, v = 1.5 × 103 m/sec,
and K = 2.19 × 1011N m−2. We assume that cos θ � 1, as is usually the case; that the vacuum
optical wavelength is 0.5 µm, so that ω = 3.8 × 1015 rad/sec; and that the acoustic intensity is
1.0 W/cm2 (as might be obtained using 1 W of acoustic power and an acoustic beam diameter
of approximately 1 cm). Under these conditions, Eq. (8.4.26) gives the value |κ| = 1.5 cm−1.
According to Eq. (8.4.24), 100% conversion of the incident beam into the diffracted beam is
predicted for |κ|L = π/2, or under the present conditions for a path length through the acoustic
beam of L = 1.0 cm.

FIGURE 8.4.5: Wavevector diagrams for (a) incidence at the Bragg angle, so that �k = 0, and (b) non-
Bragg-angle incidence, so that �k �= 0.

For the case in which the incident beam does not intercept the acoustic wavefronts at the
Bragg angle, the theoretical analysis is more complicated because the wavevector mismatch �k

does not vanish. The phase-matching diagrams for the cases of Bragg-angle and non-Bragg-
angle incidence are contrasted in Fig. 8.4.5. As discussed in connection with Eq. (8.4.16), the
wavevector mismatch can have a component only in the x direction, since the medium is as-
sumed to have infinite extent in the z direction.

We first determine the relationship between the wavevector mismatch �k and the angle
of incidence θ1. We note that the x and z components of the vectors of diagram (b) obey the
relations

k cos θ1 − k cos θ2 = �k, (8.4.27a)

k sin θ1 + k sin θ2 = q, (8.4.27b)

where we have let k1 � k2 = k. We note that if the angle of incidence θ1 is equal to the Bragg
angle

θB = sin−1 q

2k
= sin−1 λ

2�
, (8.4.28)

then Eqs. (8.4.27b) imply that the diffraction angle θ2 is also equal to θB and that �k = 0. For
the case in which the light is not incident at the Bragg angle, we set

θ1 = θB + �θ, (8.4.29a)
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where we assume that �θ � 1. We note that Eq. (8.4.27b) will be satisfied so long as

θ2 = θB − �θ. (8.4.29b)

These values of θ1 and θ2 are now introduced into Eq. (8.4.27a). The cosine functions are
expanded to lowest order in �θ as

cos(θB ± �θ) = cos θB ∓ (sin θB)�θ,

and we obtain (2k sin θB)�θ = �k, which through use of Eq. (8.4.28) shows that the wavevec-
tor mismatch �k that occurs as the result of an angular misalignment �θ is given by

�k = −�θq. (8.4.30)

We next solve Eqs. (8.4.19b) for arbitrary values of �k. The solution for the case in which
no field at frequency ω2 is applied externally is

A1(x) = e−i(1/2)�kxA1(0)

(
cos sx + i

�k

2s
sin sx

)
, (8.4.31a)

A2(x) = iei(1/2)�kxA1(0)
κ∗

s
sin sx, (8.4.31b)

where

s2 = |κ|2 + (1
2�k

)2
. (8.4.32)

The diffraction efficiency for arbitrary �k is now given by

η(�k) ≡ |A2(L)|2
|A1(0)|2 = |κ|2

|κ|2 + (1
2�k)2

sin2 {[|κ|2 + (1
2�k

)2]1/2
L

}
. (8.4.33)

We see that for �k �= 0 the maximum efficiency is always less than 100%. Let us examine the
rate at which the efficiency decreases as the phase mismatch �k is increased. We expand η(�k)

as a power series in �k as

η(�k) = η(0) + �k
dη

d(�k)

∣∣∣∣
�k=0

+ 1

2
(�k)2 d2η

d(�k)2

∣∣∣∣
�k=0

+ · · · . (8.4.34)

By calculating these derivatives, we find that, correct to second order in �k, the efficiency is
given by

η(�k) = η(0)

[
1 − (�k)2

4|κ|2
(

1 − |κ|K cos(|κ|L)

sin(|κ|L)

)]
, (8.4.35a)
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FIGURE 8.4.6: Acoustooptic amplitude modulator.

FIGURE 8.4.7: Acoustooptic beam deflector. The angle θ2 depends on the frequency of � of the electri-
cal signal.

where

η(0) = sin2(|κ|L)
. (8.4.35b)

One common use of the Bragg acoustooptic effect is to produce an amplitude-modulated
laser beam, as illustrated in Fig. 8.4.6. In such a device, the frequency of the electrical signal
that is fed to the acoustic transducer is held fixed, but the amplitude of this wave is modulated.
As a result, the depth of modulation of the acoustic grating is varied, leading to a modulation
of the intensity of the scattered wave.

Another application of Bragg acoustooptic scattering is to produce a beam deflector
(Fig. 8.4.7). In such a device, the frequency � of the electrical signal that is fed to the acous-
tic transducer is allowed to vary. As a result, the acoustic wavelength � varies, and thus the
diffraction angle θ2 given by Eq. (8.4.29b) can be controlled. It should be noted that the diffrac-
tion efficiency given by Eq. (8.4.33) decreases for diffraction at angles different from the Bragg
angle, and this effect places limitations on the range of deflection angles that are achievable by
means of this technique.
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FIGURE 8.4.8: Illustration of the condition under which Bragg scattering occurs.

8.4.2 Raman–Nath Effect

The description of Bragg scattering given in the preceding subsection implicitly assumed that
the width L of the interaction region was sufficiently large that an incident ray of light would
interact with a large number of acoustic wavefronts. As illustrated in Fig. 8.4.8, this condition
requires that

L tan θ1 � �, (8.4.36)

where � is the acoustic wavelength. However, the angle of incidence θ1 must satisfy the Bragg
condition

sin θ1 = λ

2�
(8.4.37)

if efficient scattering is to occur. In most cases of interest, θ1 is much smaller than unity, and
hence tan θ1 � θ1. Eq. (8.4.37) can then be used to eliminate θ1 from Eq. (8.4.36), which be-
comes

λL

�2
� 1. (8.4.38)

If this condition is satisfied, Bragg scattering can occur. Scattering in the opposite limit is
known as Raman–Nath scattering.

Raman–Nath scattering can be understood in terms of the diagram shown in Fig. 8.4.9.
A beam of light falls onto the scattering cell, typically at near-normal incidence. Because of
the presence of the acoustic wave, whose wavelength is denoted �, the refractive index of the
medium varies spatially with period �. The incident light diffracts off this index grating; the
characteristic angular spread of the diffracted light is

δθ = λ

�
. (8.4.39)
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FIGURE 8.4.9: Raman–Nath diffraction.

We now assume that the cell is sufficiently thin that multiple scattering cannot occur. This
condition can be stated as

δθL < �. (8.4.40)

If δθ is eliminated from this inequality through use of Eq. (8.4.39), we find that

λL

�2
< 1. (8.4.41)

We note that this condition is the opposite of the inequality (8.4.38) for the occurrence of Bragg
scattering.

We now present a mathematical analysis of Raman–Nath scattering. We assume that the
acoustic wave within the scattering cell can be represented as the density variation

�ρ̃ = �ρei(qz−�t) + c.c. (8.4.42)

A refractive index variation

�ñ = �nei(qz−�t) + c.c. (8.4.43)

is associated with this acoustic wave. We relate the complex amplitude �n of the refractive
index disturbance to the amplitude �ρ of the acoustic wave as follows: We let ñ = n0 + �ñ,
where ñ = ε̃1/2 with ε̃ = εb + �ε̃. We thus find that n0 = ε

1/2
b and that �ñ = �ε̃/2n0. We now

represent �ε̃ as �ε̃ = (∂ε/∂ρ)�ρ̃ = γe�ρ̃/ρ0 and find that �ñ = γe�ρ̃/2n0ρ0, and thus that

�n = γe�ρ

2n0ρ0
. (8.4.44)
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The ensuing analysis is simplified by representing �ñ using real quantities; we assume that
the phase conventions are chosen such that

�ñ(z, t) = 2�n sin(qz − �t). (8.4.45)

The electric field of the incident optical wave is represented as

Ẽ(r, t) = Aei(kx−ωt) + c.c. (8.4.46)

After passing through the acoustic wave, the optical field will have experienced a phase shift

φ = �ñ
ω

c
L = 2�n

ω

c
L sin(qz − �t) ≡ δ sin(qz − �t), (8.4.47)

where the quantity

δ = 2�nωL/c (8.4.48)

is known as the modulation index. The transmitted field can hence be represented as Ẽ(r, t) =
A exp[i(kx − ωt + φ)] + c.c., or as

Ẽ(r, t) = Aei[kx−ωt+δ sin(qz−�t)] + c.c. (8.4.49)

We see that the transmitted field is phase-modulated in time. To determine the consequences
of this form of modulation, we note that Eq. (8.4.49) can be transformed through use of the
Bessel function identity

eiδ sin y =
∞∑

l=−∞
Jl(δ)e

ily (8.4.50)

so that the transmitted field can be expressed as

Ẽ(r, t) = A

∞∑
l=−∞

Jl(δ)e
i[(kx+lqz)−(ω+l�)t] + c.c. (8.4.51)

We see that the transmitted field is a linear superposition of plane wave components with fre-
quencies ω + l� and wavevectors k + lq. As shown in Fig. 8.4.10 (for the case l = 2), the
lth-order diffracted wave is emitted at angle

θl = tan−1
(

lq

k

)
� lq

k
= lλ

�
. (8.4.52)

The intensity of the light in this diffraction order is

Il = |A|2Jl(δ)
2, (8.4.53)
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FIGURE 8.4.10: Illustration of the l = 2 contribution to the transmitted field of Eq. (8.4.51) for Raman–
Nath scattering.

where, as before, δ ≡ 2�n(ω/c)L. Eqs. (8.4.48) and (8.4.53) constitute the Raman–Nath equa-
tions.

It is instructive to repeat this analysis for the case of a standing sound wave. For conve-
nience, we take the resulting modulation of the refractive index to be of the form

ñ(z, t) = 2�n cos�t sinqz. (8.4.54)

The phase shift induced in the optical wave is then given by

φ = 2�n
ω

c
L cos�t sinqz

≡ δ cos�t sinqz, (8.4.55)

and the transmitted optical field is given by

Ẽ(r, t) = Aei(kx−ωt+δ cos �t sin qz) + c.c. (8.4.56)

We now use the Bessel function identity (8.4.50) to transform the factor sinqz that appears
in the exponent of this expression. We find that

Ẽ(r, t) = A

∞∑
l=−∞

Jl(δ cos�t) exp
[
i(kx + lqz) − iωt

] + c.c. (8.4.57)

We see that once again the transmitted field is composed of plane wave components; the lth
diffracted order makes an angle

θl � lq

k
= lλ

�
(8.4.58)

with the forward direction. The intensity of the lth order is now given by

Il = |A|2Jl(δ cos�t)2. (8.4.59)

We see that in this case each component is amplitude-modulated.
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Problems

1. Light scattering in air. Estimate numerically, using the Lorentz model of the atom, the value
of the scattering cross section for molecular nitrogen (N2) for visible light at a wavelength
of 500 nm. Use this result to estimate the value of the scattering coefficient R for air at
STP. Compare this value with that obtained using Eq. (8.2.22) and the known refractive
index of air. (The measured value for 90-degree scattering of unpolarized light, Ru

90, is
approximately 2×10−8 cm−1.) Also, estimate numerically the attenuation distance of light
in air, that is, the propagation distance through which the intensity falls to 1/e of its initial
value due to scattering losses.
[Ans.: α = (16π/3)Ru

90 = 3 × 10−7 cm−1 = (33 km)−1.]
2. Light scattering in water. Through use of Eq. (8.3.9b) and handbook values of γe and CT ,

estimate numerically the value of the scattering coefficient R for liquid water at room tem-
perature for 90-degree scattering of visible light at a wavelength of 500 nm. Use this result
to estimate the attenuation distance of light in water.
[Ans: Using the values CT = 4.5 × 10−11 cm2/dyne, n = 1.33, γe = (n2 − 1)(n2 + 2)/3 =
0.98, and T = 300 K, we find that R = 2.8×10−6 sin2 φ cm−1, and hence that for 90-degree
scattering of unpolarized light Ru

90 = 1.4 × 10−6 cm−1. Thus the attenuation constant is
given by α = (16π/3)Ru

90 = 2.34 × 10−5 cm−1 = (426 m)−1.]
3. Polarizability of a dielectric sphere. Verify Eq. (8.2.12).
4. Acoustic attenuation in water. Estimate numerically the value of the acoustic absorption

coefficient αs for propagation through water at frequencies of 103, 106, and 109 Hz.
[Ans.: The low-frequency shear viscosity coefficient of water is ηs = 0.01 dyne sec/cm2,
and the Stokes relation tells us that ηd = −(2/3)ηs . We find that �′ = 0.66×10−2 cm2/sec.
Since αs = q2�′/v and q = �/v, where v = 1.5 × 106 cm/sec, we find that αs = 7.7 ×
10−14 cm−1 at 1 kHz and αs = 7.7 × 10−2 cm−1 at 1 GHz.]

5. Inverse dielectric tensor. Verify Eq. (8.4.8).
6. Solution of the Bragg acoustooptics equations. Verify Eqs. (8.4.31a) through (8.4.35b).
7. Acoustooptic beam deflector. Consider an acoustooptic beam deflector. The incidence angle

θ1 remains fixed while the acoustic frequency � is varied to control the deflection angle θ2.
Derive a formula that predicts the maximum useful deflection angle, defined arbitrarily to
be that deflection angle for which the diffraction efficiency drops to 50% of its maximum
value. Evaluate this formula numerically for the case treated following Eq. (8.4.26), where
|κ|L = π/2, L = 1.1 cm, and � = 30 µm.
[Ans.: Starting with Eq. (8.4.25), and the readily derived relation �k = −1

2q δθ , we find
that the efficiency drops by 50% when the incidence angle is increased by an amount

δθ = 2
√

2|κ|
q

[
1 − |κ|L cos |κ|L

sin |κ|L
]1/2

.
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For the case |κ|L = π/2, where the efficiency for �k = 0 is 100%, this result simplifies to
δθ = 2

√
2|κ|/q. For the numerical example, 2δθ = 0.22◦.]
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Chapter 9

Stimulated Brillouin and Stimulated
Rayleigh Scattering

9.1 Stimulated Scattering Processes

We saw in Section 8.1 that light scattering can occur only as the result of fluctuations in the
optical properties of a material system. A light-scattering process is said to be spontaneous if
the fluctuations (typically in the dielectric constant) that cause the light-scattering are excited by
thermal or by quantum-mechanical zero-point effects. In contrast, a light-scattering process is
said to be stimulated if the fluctuations are induced by the presence of the light field. Stimulated
light scattering is typically very much more efficient than spontaneous light scattering. For
example, approximately one part in 105 of the power contained in a beam of visible light would
be scattered out of the beam by spontaneous scattering in passing through 1 cm of liquid water.∗
In this chapter, we shall see that when the intensity of the incident light is sufficiently large,
essentially 100% of a beam of light can be scattered in a 1-cm path as the result of stimulated
scattering processes.

In the present chapter we study stimulated light scattering resulting from induced density
variations of a material system. The most important example of such a process is stimulated
Brillouin scattering (SBS), which is illustrated schematically in Fig. 9.1.1. This figure shows
an incident laser beam of frequency ωL scattering from the refractive index variation associated
with a sound wave of frequency �. Since the acoustic wavefronts are moving away from the
incident laser wave, the scattered light is shifted downward in frequency to the Stokes frequency
ωS = ωL − �. The reason why this interaction can lead to stimulated light scattering is that the
interference of the laser and Stokes fields contains a frequency component at the difference
frequency ωL − ωS, which of course is just equal to the frequency � of the sound wave. The
response of the material system to this interference term can act as a source that tends to increase
the amplitude of the sound wave. Thus the beating of the laser wave with the sound wave tends

∗ Recall that the scattering coefficient R is of the order of 10−6 cm−1 for water.

Nonlinear Optics. https://doi.org/10.1016/B978-0-12-811002-7.00018-7
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to reinforce the Stokes wave, whereas the beating of the laser wave and Stokes waves tends
to reinforce the sound wave. Under proper circumstances, the positive feedback described by
these two interactions leads to exponential growth of the amplitude of the Stokes wave. SBS
was first observed experimentally by Chiao et al. (1964).

FIGURE 9.1.1: Stimulated Brillouin scattering. Laser light of frequency ωL scatters from a retreating
sound wave of frequency � to generate light at the Stokes frequency ωS = ωL − �.

There are two different physical mechanisms by which the interference of the laser and
Stokes waves can drive the acoustic wave. One mechanism is electrostriction—that is, the ten-
dency of materials to become more dense in regions of high optical intensity; this process is
described in detail in the next section. The other mechanism is optical absorption. The heat
evolved by absorption in regions of high optical intensity tends to cause the material to expand
in those regions. The density variation induced by this effect can excite an acoustic distur-
bance. Absorptive SBS is less commonly used than electrostrictive SBS, since it can occur only
in lossy optical media. For this reason we shall treat the electrostrictive case first and return to
the case of absorptive coupling in Section 9.6.

There are two conceptually different configurations in which SBS can be studied. One is
the SBS generator shown in part (a) of Fig. 9.1.2. In this configuration only the laser beam
is applied externally, and both the Stokes and acoustic fields grow from noise within the in-
teraction region. The noise process that initiates SBS is typically the scattering of laser light
from thermally generated phonons. For the generator configuration, the Stokes radiation is cre-
ated at frequencies near that for which the gain of the SBS process is largest. We shall see in
Section 9.3 how to calculate this frequency.

Part (b) of Fig. 9.1.2 shows an SBS amplifier. In this configuration both the laser and Stokes
fields are applied externally. Strong coupling occurs in this case only if the frequency of the
injected Stokes wave is approximately equal to the frequency that would be created by an SBS
generator.

In Figs. 9.1.1 and 9.1.2, we have assumed that the laser and Stokes waves are counterprop-
agating. In fact, the SBS process leads to amplification of a Stokes wave propagating in any
direction except for the propagation direction of the laser wave.∗ However, SBS is usually ob-
served only in the backward direction, because the spatial overlap of the laser and Stokes beams
is largest under these conditions.

∗ We shall see in Section 9.3 that copropagating laser and Stokes waves could interact only by means of acoustic
waves of infinite wavelength, which cannot occur in a medium of finite spatial extent.
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FIGURE 9.1.2: (a) An SBS generator; (b) an SBS amplifier.

9.2 Electrostriction

Electrostriction is the tendency of materials to become compressed in the presence of an
electric field. Electrostriction is of interest both as a mechanism leading to a third-order non-
linear optical response and as a coupling mechanism that leads to stimulated Brillouin scatter-
ing.

The origin of the effect can be explained in terms of the behavior of a dielectric slab placed
in the fringing field of a plane-parallel capacitor. As illustrated in part (a) of Fig. 9.2.1, the slab

FIGURE 9.2.1: Origin of electrostriction: (a) a dielectric slab placed near a parallel-plate capacitor will
be drawn into the region between the capacitor plates. (b) A molecule placed in the fringing field of a
parallel-plate capacitor will develop a dipole moment p and will thus experience a force in the direction
of increasing field strength.



422 Chapter 9

will experience a force tending to pull it into the region of maximum field strength. The nature
of this force can be understood either globally or locally.

We can understand the origin of the electrostrictive force from a global point of view as
being a consequence of the maximization of stored energy. The potential energy per unit volume
of a material located in an electric field of field strength E is changed with respect to its value
in the absence of the field by the amount

u = 1
2εε0E

2, (9.2.1)

where ε is the relative dielectric constant of the material and ε0 is the permittivity of free space.
Consequently the total energy of the system,

∫
udV , is maximized by allowing the slab to

move into the region between the capacitor plates where the field strength is largest.
From a microscopic point of view, we can consider the force acting on an individual

molecule placed in the fringing field of the capacitor, as shown in part (b) of Fig. 9.2.1. In
the presence of the field E, the molecule develops the dipole moment p = ε0αE, where α is the
molecular polarizability. The energy stored in the polarization of the molecule is given by

U = −
∫ E

0
p · dE′ = −

∫ E

0
ε0αE′ · dE′ = −1

2ε0αE · E ≡ −1
2ε0αE2. (9.2.2)

The force acting on the molecule is then given by

F = −∇U = 1
2ε0α∇(

E2
)
. (9.2.3)

We see that each molecule is pulled into the region of increasing field strength.

FIGURE 9.2.2: Capacitor immersed in a dielectric liquid.

Next we consider the situation illustrated in Fig. 9.2.2, in which the capacitor is immersed
in the dielectric liquid. Molecules are pulled from the surrounding medium into the region
between the capacitor plates, thus increasing the density in this region by an amount that we
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shall call �ρ. We calculate the value of �ρ by means of the following argument: As a result of
the increase in density of the material, its dielectric constant changes from its original value ε

to the value ε + �ε, where

�ε =
(

∂ε

∂ρ

)
�ρ. (9.2.4)

Consequently, the field energy density of Eq. (9.2.1) changes by the amount

�u = 1
2ε0E

2�ε = 1
2ε0E

2
(

∂ε

∂ρ

)
�ρ. (9.2.5)

However, according to the first law of thermodynamics, this change in energy �u must be equal
to the work performed in compressing the material; the work done per unit volume is given by

�w = pst
�V

V
= −pst

�ρ

ρ
. (9.2.6)

Here the strictive pressure pst is the contribution to the pressure of the material that is due
to the presence of the electric field. Since �u = �w, by equating Eqs. (9.2.5) and (9.2.6), we
find that the electrostrictive pressure is given by

pst = −1
2ε0ρ

(
∂ε

∂ρ

)
E2 ≡ −1

2ε0γeE
2, (9.2.7)

where γe = ρ(∂ε/∂ρ) is known as the electrostrictive constant (see also Eq. (8.3.6)). Since pst

is negative, the total pressure is reduced in regions of high field strength. The fluid tends to
be drawn into these regions, and the density increases. We calculate the change in density as
�ρ = −(∂ρ/∂p)�p, where we equate �p with the electrostrictive pressure of Eq. (9.2.7). We
write this result as

�ρ = −ρ

(
1

ρ

∂ρ

∂p

)
pst ≡ −ρCpst, (9.2.8)

where C = ρ−1(∂ρ/∂p) is the compressibility. Combining this result with Eq. (9.2.7), we find
that

�ρ = 1
2ε0ρCγeE

2. (9.2.9)

This equation describes the change in material density �ρ induced by an applied electric field
of strength E.

The derivation of this expression for �ρ has implicitly assumed that the electric field E is a
static field. In such a case, the derivatives that appear in the expressions for C and γe are to be
performed with the temperature T held constant. However, our primary interest is for the case
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in which E represents an optical frequency field; in such a case Eq. (9.2.9) should be replaced
by

�ρ = 1
2ε0ρCγe

〈
Ẽ · Ẽ

〉
, (9.2.10)

where the angular brackets denote a time average over an optical period. If Ẽ(t) contains more
than one frequency component so that 〈Ẽ · Ẽ〉 contains both static components and hypersonic
components (as in the case of SBS), C and γe should be evaluated at constant entropy to deter-
mine the response for the hypersonic components and at constant temperature to determine the
response for the static components.

Let us consider the modification of the optical properties of a material system that occurs as
a result of electrostriction. We represent the change in the susceptibility in the presence of an
optical field as �χ = �ε, where �ε is calculated as (∂ε/∂ρ)�ρ, with �ρ given by Eq. (9.2.10).
We thus find that

�χ = 1
2ε0Cγ 2

e

〈
Ẽ · Ẽ

〉
. (9.2.11)

For the present, let us consider the case of a monochromatic applied field

Ẽ(t) = Ee−iωt + c.c.; (9.2.12)

the case in which Ẽ(t) contains two frequency components that differ by approximately the
Brillouin frequency is treated in the following section on SBS. Then, since 〈Ẽ · Ẽ〉 = 2E · E∗,
we see that

�χ = ε0CT γ 2
e E · E∗. (9.2.13)

The complex amplitude of the nonlinear polarization that results from this change in the sus-
ceptibility can be represented as P = �χE, that is, as

P = ε0CT γ 2
e |E|2E. (9.2.14)

If we write this result in terms of a conventional third-order susceptibility, defined through

P = 3ε0χ
(3)(ω = ω + ω − ω)|E|2E, (9.2.15)

we find that

χ(3)(ω = ω + ω − ω) = 1
3CT γ 2

e . (9.2.16)

For simplicity, we have suppressed the tensor nature of the nonlinear susceptibility in the
foregoing discussion. However, we can see from the form of Eq. (9.2.14) that, for an isotropic
material, the nonlinear coefficients of Maker and Terhune (see Eq. (4.2.10)) have the form
A = CT γ 2

e and B = 0.
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Let us estimate the numerical value of χ(3). We saw in Eq. (8.3.12) that for a dilute gas
the electrostrictive constant γe ≡ ρ(∂ε/∂ρ) is given by γe = n2 − 1. More generally, we can
estimate γe through use of the Lorentz–Lorenz law (Eq. (3.9.8a)), which leads to the prediction

γe = (
n2 − 1

)(
n2 + 2

)/
3. (9.2.17)

This result shows that γe is of the order of unity for condensed matter. The compressibility
CT = ρ−1(∂ρ/∂p) is approximately equal to 10−9 m2 Nt−1 for CS2 and is of the same order
of magnitude for all condensed matter. We thus find that χ(3)(ω = ω + ω − ω) is of the order
of 3 × 10−21 m2 V−2 for condensed matter. For ideal gases, the compressibility CT is equal to
1/p, where at 1 atmosphere p = 105 Nt/m2. The electrostrictive constant γe = n2 − 1 for air at
1 atmosphere is approximately equal to 6 × 10−4. We thus find that χ(3)(ω = ω + ω − ω) is of
the order of 1 × 10−23 m2 V−2 for gases at 1 atmosphere of pressure.

A very useful, alternative expression for χ(3)(ω = ω +ω −ω) can be deduced from expres-
sion (9.2.16) by expressing the electrostrictive constant in terms of the refractive index through
use of Eq. (9.2.17) and by expressing the compressibility in terms of the material density and
velocity of sound through use of Eq. (8.3.21), such that Cs = 1/v2ρ. Similarly, the isothermal
compressibility is given by CT = γCs where γ is the usual thermodynamic adiabatic index.
One thus finds that

χ(3)(ω = ω + ω − ω) = ε0γ

3v2ρ

[
(n2 − 1)(n2 + 2)

3

]2

. (9.2.18)

For pulses sufficiently short that heat flow during the pulse is negligible, the factor of γ in
the numerator of this expression is to be replaced by unity. As usual, the nonlinear refractive
index coefficient n2 for electrostriction can be deduced from this expression and the result
n2 = (3/4n2

0ε0c)χ
(3) obtained earlier (Eq. (4.1.19)).

In comparison with other types of optical nonlinearities, the value of χ(3) resulting from
electrostriction is not usually large. However, it can make an appreciable contribution to total
measured nonlinearity for certain optical materials. For the case of optical fibers, Buckland and
Boyd (1996, 1997) found that electrostriction can make an approximately 20% contribution to
the third-order susceptibility. Moreover, we shall see in the next section that electrostriction
provides the nonlinear coupling that leads to stimulated Brillouin scattering, which is often an
extremely strong process.

9.3 Stimulated Brillouin Scattering (Induced by Electrostriction)

Our discussion of spontaneous Brillouin scattering in Chapter 8 presupposed that the applied
optical fields are sufficiently weak that they do not alter the acoustic properties of the mate-
rial system. Spontaneous Brillouin scattering then results from the scattering of the incident
radiation off the sound waves that are thermally excited.
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FIGURE 9.3.1: Schematic representation of the stimulated Brillouin scattering process.

For an incident laser field of sufficient intensity, even the spontaneously scattered light can
become quite intense. This scattered light field can then beat with the incident laser beam,
and through the process of electrostriction∗ can thereby induce density variations. The inci-
dent laser field can then scatter off the refractive index variation that accompanies these density
variations. The scattered light will be at the Stokes frequency and will add constructively with
the Stokes radiation that produced the acoustic disturbance. In this manner, the acoustic and
Stokes waves mutually reinforce each other’s growth, and each can grow to a large amplitude.
This circumstance is depicted in Fig. 9.3.1. Here an incident wave of amplitude E1, angular fre-
quency ω1, and wavevector k1 scatters off a retreating sound wave of amplitude ρ, frequency �,
and wavevector q to form a scattered wave of amplitude E2, frequency ω2, and wavevector k2.†

Let us next deduce the frequency ω2 of the Stokes field that is created by the SBS process for
the case of an SBS generator (see also part (a) of Fig. 9.1.2). Since the laser field at frequency
ω1 is scattered from a retreating sound wave, the scattered radiation will be shifted downward
in frequency to

ω2 = ω1 − �B. (9.3.1)

Here �B is called the Brillouin frequency, and we shall now see how to determine its value. The
Brillouin frequency is related to the acoustic wavevector qB by the phonon dispersion relation

�B = |qB|v, (9.3.2)

where v is the velocity of sound. By assumption, this sound wave is driven by the beating of
the laser and Stokes fields, and its wavevector is therefore given by

qB = k1 − k2. (9.3.3)

∗ Stimulated Brillouin scattering can also be induced by absorptive effects. This less commonly studied case is
examined in Section 9.6.

† We denote the field frequencies as ω1 and ω2 rather than ωL and ωS so that we can apply the results of the present
treatment to the case of anti-Stokes scattering by identifying ω1 with ωaS and ω2 with ωL. The treatment of the
present section assumes only that ω2 < ω1.
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Since the wavevectors and frequencies of the optical waves are related in the usual manner,
that is, by |ki | = nωi/c, we can use Eq. (9.3.3) and the fact that the laser and Stokes waves are
counterpropagating to express the Brillouin frequency of Eq. (9.3.2) as

�B = v

c/n
(ω1 + ω2). (9.3.4)

Eqs. (9.3.1) and (9.3.4) are now solved simultaneously to obtain an expression for the Brillouin
frequency in terms of the frequency ω1 of the applied field only—that is, we eliminate ω2 from
these equations to obtain

�B =
2v

c/n
ω1

1 + v

c/n

. (9.3.5)

However, since v is very much smaller than c/n for all known materials, it is an excellent
approximation to take the Brillouin frequency to be simply

�B = 2v

c/n
ω1. (9.3.6)

At this same level of approximation, the acoustic wavevector is given by

qB = 2k1. (9.3.7)

For the case of the SBS amplifier configuration (see part (b) of Fig. 9.1.2), the Stokes wave
is imposed externally and its frequency ω2 is known a priori. The frequency of the driven
acoustic wave is then given by

� = ω1 − ω2, (9.3.8)

which in general will be different from the Brillouin frequency of Eq. (9.3.6). As we shall see
below, the acoustic wave will be excited efficiently under these circumstances only when ω2 is
chosen such that the frequency difference |� − �B| is less than or of the order of the Brillouin
linewidth �B, which is defined in Eq. (9.3.14b).

Let us next see how to treat the nonlinear coupling among the three interacting waves. We
represent the optical field within the Brillouin medium as Ẽ(z, t) = Ẽ1(z, t) + Ẽ2(z, t), where

Ẽ1(z, t) = A1(z, t)e
i(k1z−ω1t) + c.c. (9.3.9a)

and

Ẽ2(z, t) = A2(z, t)e
i(−k2z−ω2t) + c.c. (9.3.9b)
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Similarly, we describe the acoustic field in terms of the material density distribution

ρ̃(z, t) = ρ0 + [
ρ(z, t)ei(qz−�t) + c.c.

]
, (9.3.10)

where � = ω1 − ω2, q = 2k1, and ρ0 denotes the mean density of the medium.
We assume that the material density obeys the acoustic wave equation (see also Eq. (8.3.17))

∂2ρ̃

∂t2
− �′∇2 ∂ρ̃

∂t
− v2∇2ρ̃ = ∇ · f, (9.3.11)

where v is the velocity of sound and �′ is a damping parameter given by Eq. (8.3.23). The
source term on the right-hand side of this equation consists of the divergence of the force per
unit volume f, which is given explicitly by

f = ∇pst, pst = −1
2ε0γe

〈
Ẽ2

〉
. (9.3.12)

For the fields given by Eq. (9.3.9), this source term is given by

∇ · f = ε0γeq
2[A1A

∗
2e

i(qz−�t) + c.c.
]
. (9.3.13)

If we now introduce Eqs. (9.3.10) and (9.3.13) into the acoustic wave equation (9.3.11) and
assume that the acoustic amplitude varies slowly (if at all) in space and time, we obtain the
result

−2i�
∂ρ

∂t
+ (

�2
B − �2 − i��B

)
ρ − 2iqv2 ∂ρ

∂z
= ε0γeq

2A1A
∗
2, (9.3.14a)

where we have introduced the Brillouin linewidth

�B = q2�′; (9.3.14b)

its reciprocal τp = �−1
B gives the phonon lifetime.

Eq. (9.3.14a) can often be simplified substantially by omitting the last term on its left-
hand side. This term describes the propagation of phonons. However, hypersonic phonons are
strongly damped and thus propagate only over very short distances before being absorbed.∗
Since the phonon propagation distance is typically small compared to the distance over which
the source term on the right-hand side of Eq. (9.3.14a) varies significantly, it is conventional
to drop the term containing ∂ρ/∂z in describing SBS. This approximation can break down,
however, as discussed by Chiao (1965) and by Kroll and Kelley (1971). If we drop the spatial

∗ We can estimate this distance as follows: According to Eq. (8.3.30), the sound absorption coefficient is given

by αs = �B/v, whereby in Eqs. (8.3.23) and (8.3.28) �B is of the order of ηsq
2/ρ0. For the typical values v =

1×103 m/sec, ηs = 10−9 N m/sec2, q = 4π ×106 m−1, and ρ0 = 10 kg m−3, we find that �B = 1.6×108 sec−1

and α−1
s = 6.3 µm.
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derivative term in Eq. (9.3.14a) and assume steady-state conditions so that ∂ρ/∂t also vanishes,
we find that the acoustic amplitude is given by

ρ(z, t) = ε0γeq
2 A1A

∗
2

�2
B − �2 − i��B

. (9.3.15)

We turn now to the description of the spatial evolution of the optical fields, which is de-
scribed by the wave equation

∂2Ẽi

∂z2
− 1

(c/n)2

∂2Ẽi

∂t2
= 1

ε0c2

∂2P̃i

∂t2
, i = 1,2. (9.3.16)

The total nonlinear polarization, which gives rise to the source term in this equation, is given
by

P̃ = ε0�χẼ = ε0�εẼ = ε0ρ
−1
0 γeρ̃Ẽ. (9.3.17)

We next determine those parts of P̃ that can act as phase-matched source terms for the laser
and Stokes fields. These contributions are given by

P̃1 = p1e
i(k1z−ω1t) + c.c., P̃2 = p2e

i(−k2z−ω2t) + c.c., (9.3.18)

where

p1 = ε0γeρ
−1
0 ρA2, p2 = ε0γeρ

−1
0 ρ∗A1. (9.3.19)

We introduce Eqs. (9.3.9) into the wave equation (9.3.16) along with Eqs. (9.3.18) and (9.3.19),
make the slowly-varying amplitude approximation, and obtain the equations

∂A1

∂z
+ 1

c/n

∂A1

∂t
= iωγe

2ncρ0
ρA2, (9.3.20a)

−∂A2

∂z
+ 1

c/n

∂A2

∂t
= iωγe

2ncρ0
ρ∗A1. (9.3.20b)

In these equations ρ is given by the solution to Eq. (9.3.14a). Furthermore, we have dropped
the distinction between ω1 and ω2 by setting ω = ω1 � ω2.

Let us now consider steady-state conditions. In this case the time derivatives appearing in
Eqs. (9.3.20) can be dropped, and ρ is given by Eq. (9.3.15). The coupled-amplitude equations
then become

dA1

dz
= iε0ωq2γ 2

e

2ncρ0

|A2|2A1

�2
B − �2 − i��B

, (9.3.21a)

dA2

dz
= −iε0ωq2γ 2

e

2ncρ0

|A1|2A2

�2
B − �2 + i��B

. (9.3.21b)
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We see from the form of these equations that SBS is a pure gain process, that is, that the SBS
process is automatically phase-matched. For this reason, it is possible to introduce coupled
equations for the intensities of the two interacting optical waves. Defining the intensities as
Ii = 2nε0cAiA

∗
i , we find from Eqs. (9.3.21) that

dI1

dz
= −gI1I2 (9.3.22a)

and
dI2

dz
= −gI1I2. (9.3.22b)

In these equations g is the SBS gain factor, which to good approximation is given by

g = g0
(�B/2)2

(�B − �)2 + (�B/2)2
, (9.3.23)

where the line-center gain factor is given by

g0 = γ 2
e ω2

nvc3ρ0�B
. (9.3.24)

The solution to Eqs. (9.3.22) under general conditions is described below. Note, however,
that in the constant-pump limit I1 = constant, the solution to Eq. (9.3.22b) is

I2(z) = I2(L)egI1(L−z). (9.3.25)

In this limit a Stokes wave injected into the medium at z = L experiences exponential
growth as it propagates through the medium. It should be noted that the line-center gain factor
g0 of Eq. (9.3.24) is independent of the laser frequency ω, because the Brillouin linewidth �B

is proportional to ω2 (recall that, according to Eq. (8.3.28), �B is proportional to q2 and that
q is proportional to ω). An estimate of the size of g0 for the case of CS2 at a wavelength of
1 µm can be made as follows: ω = 2π × 3 × 1014 rad/sec, n = 1.67, v = 1.1 × 103 m/sec,
ρ0 = 1.26 g/cm3 = 1.26 × 103 kg/m3, γe = 2.4, and τp = �−1

B = 4 × 10−9 sec, giving
g0 = 1.5 m/GW, which in conventional laboratory units becomes g0 = 0.15 cm/MW. The
Brillouin gain factors and spontaneous linewidths �ν = �B/2π are listed in Table 9.3.1 for a
variety of materials.

The theoretical treatment just presented can also be used to describe the propagation of
a wave at the anti-Stokes frequency, ωaS = ωL + �B. Eqs. (9.3.22) were derived for the ge-
ometry of Fig. 9.3.1 under the assumption that ω1 > ω2. We can treat anti-Stokes scattering
by identifying ω1 with ωaS and ω2 with ωL. We then find that the constant-pump approx-
imation corresponds to the case I2(z) = constant and that the solution to Eq. (9.3.22a) is
I1(z) = I1(0)e−gI2z. Since the anti-Stokes wave at frequency ω1 propagates in the positive
z direction, we see that it experiences attenuation due to the SBS process.
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TABLE 9.3.1: Properties of stimulated Brillouin scattering for a variety of materialsa.

Substance �B/2π

(MHz)
�B/2π

(MHz)
g0
(m/GW)

ga
B(max)/α

(cm2/MW)

CS2 5850 52.3 1.5 0.14

Acetone 4600 224 0.2 0.022

Toluene 5910 579 0.13

CCl4 4390 520 0.06 0.013

Methanol 4250 250 0.13 0.013

Ethanol 4550 353 0.12 0.010

Benzene 6470 289 0.18 0.024

H2O 5690 317 0.048 0.0008

Cyclohexane 5550 774 0.068

CH4(1400 atm) 150 10 1

Optical glasses 15,000–26,000 10–106 0.04–0.25

SiO2 25,800 78 0.045
a Values are quoted for a wavelength of 0.694 µm. The quantity �B/2π is the full width at half maximum in ordinary frequency
units of the SBS gain spectrum. The last column gives a parameter used to describe the process of absorptive SBS, which is
discussed in Section 9.6. To convert to other laser frequencies ω, recall that �B is proportional to ω, � is proportional to ω2, g0 is
independent of ω, and ga

B(max) is proportional to ω−3.

9.3.1 Pump Depletion Effects in SBS

We have seen (Eq. (9.3.25)) that, in the approximation in which the pump intensity is taken to
be spatially invariant, the Stokes wave experiences exponential growth as it propagates through
the Brillouin medium. Once the Stokes wave has grown to an intensity comparable to that of
the pump wave, significant depletion of the pump wave must occur, and under these conditions
we must solve the coupled-intensity equations (9.3.22) simultaneously in order to describe the
SBS process. To find this simultaneous solution, we first note that dI1/dz = dI2/dz and thus
that

I1(z) = I2(z) + C, (9.3.26)

where the value of the integration constant C depends on the boundary conditions. Using this
result, Eq. (9.3.22b) can be expressed as

dI2

I2(I2 + C)
= −g dz. (9.3.27)

This equation can be integrated formally as

∫ I2(z)

I2(0)

dI2

I2(I2 + C)
= −

∫ z

0
g dz′, (9.3.28)
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which implies that

ln

{
I2(z)[I2(0) + C]
I2(0)[I2(z) + C]

}
= −gCz. (9.3.29)

Since we have specified the value of I1 at z = 0, it is convenient to express the constant C

defined by Eq. (9.3.26) as C = I1(0)− I2(0). Eq. (9.3.29) is now solved algebraically for I2(z),
yielding

I2(z) = I2(0)[I1(0) − I2(0)]
I1(0) exp{gz[I1(0) − I2(0)]} − I2(0)

. (9.3.30a)

According to Eq. (9.3.26), I1(z) can be found in terms of this expression as

I1(z) = I2(z) + I1(0) − I2(0). (9.3.30b)

Eqs. (9.3.30) give the spatial distribution of the field intensities in terms of the boundary
values I1(0) and I2(0). However, the boundary values that are known physically are I1(0) and
I2(L); see Fig. 9.3.2. In order to find the unknown quantity I2(0) in terms of the known quan-
tities I1(0) and I2(L), we set z equal to L in Eq. (9.3.30a) and write the resulting expression as
follows:

I2(L) = I1(0)[I2(0)/I1(0)][1 − I2(0)/I1(0)]
exp{gI1(0)L[1 − I2(0)/I1(0)]} − I2(0)/I1(0)

. (9.3.31)

This expression is a transcendental equation giving the unknown quantity I2(0)/I1(0) in terms
of the known quantities I1(0) and I2(L).

FIGURE 9.3.2: Geometry of an SBS amplifier. The boundary values I1(0) and I2(L) are known.

The results given by Eqs. (9.3.30) and (9.3.31) can be used to analyze the SBS amplifier
shown in Fig. 9.3.2. The transfer characteristics of such an amplifier are illustrated in Fig. 9.3.3.
Here the vertical axis gives the fraction of the laser intensity that is transferred to the Stokes
wave, and the horizontal axis is the quantity G = gI1(0)L, which gives the exponential gain
experienced by a weak Stokes input. The various curves are labeled according to the ratio of
input intensities, I2(L)/I1(0). For sufficiently large values of the exponential gain, essentially
complete transfer of the pump energy to the Stokes beam is possible.
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FIGURE 9.3.3: Intensity transfer characteristics of an SBS amplifier.

9.3.2 SBS Generator

For the case of an SBS generator, no Stokes field is injected externally into the interaction re-
gion, and thus the value of the Stokes intensity near the Stokes input face z = L is not known
a priori. In this case, the SBS process is initiated by Stokes photons that are created by spon-
taneous Brillouin scattering involving the laser beam near its exit plane z = L. We therefore
expect that the effective Stokes input intensity I2(L) will be proportional to the local value of
the laser intensity I1(L); we designate the constant of proportionality as f so that

I2(L) = f I1(L). (9.3.32)

We estimate the value of f as follows: We first consider the conditions that apply below the
threshold for the occurrence of SBS, that is, under conditions such that the SBS reflectivity R =
I2(0)/I1(0) is much smaller than unity. Under these conditions the laser intensity is essentially
constant throughout the medium, and the Stokes output intensity is related to the Stokes input
intensity by I2(0) = I2(L)eG, where G = gI1(0)L. However, since I2(L) = f I1(0) (because
I1(z) is constant), the SBS reflectivity can be expressed as

R ≡ I2(0)

I1(0)
= f eG. (9.3.33)

Laboratory experience has shown that the SBS process displays an apparent threshold. One
often defines the SBS threshold as the condition that the reflectivity R reach some prescribed
value Rth; the value Rth = 0.01 is a convenient choice. This reflectivity occurs for the specific
value Gth of the gain parameter G = gI1(0)L. For a wide variety of materials and laser wave-
lengths, it is found that Gth typically lies in the fairly narrow range of 25 to 30. The actual value
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of Gth for a particular situation can be deduced theoretically from a consideration of the thermal
fluctuations that initiate the SBS process; see, for instance, Boyd et al. (1990) for details. Since
Gth is approximately 25–30, we see from Eq. (9.3.33) that f is of the order of exp(−Gth),
or approximately 10−12 to 10−11. An order-of-magnitude estimate based on the properties of
spontaneous scattering performed by Zel’dovich et al. (1985) reaches the same conclusion.

We next calculate the SBS reflectivity R for the general case G > Gth (i.e., above threshold)
through use of Eq. (9.3.31), which we write as

I2(L)

I1(0)
= R(1 − R)

exp[G(1 − R)] − R
. (9.3.34)

To good approximation, −R can be dropped from the denominator of the right-hand side of
this equation. In order to determine the ratio I2(L)/I1(0) that appears on the left-hand side of
Eq. (9.3.34), we express Eq. (9.3.30b) as

I1(L) − I2(L) = I1(0) − I2(0).

Through use of Eq. (9.3.32) and the smallness of f , we can replace the left-hand side of this
equation by f −1I2(L). We now multiply both sides of the resulting equation by f/I1(0) to
obtain the result I2(L)/I1(0) = f (1 − R). This expression is substituted for the left-hand side
of Eq. (9.3.34), which is then solved for G, yielding the result

G

Gth
= G−1

th lnR + 1

1 − R
, (9.3.35)

where we have substituted Gth for − lnf .
The nature of this solution is illustrated in Fig. 9.3.4, where the SBS reflectivity R =

I2(0)/I1(0) is shown plotted as a function of G = gI1(0)L for the value Gth = 25. We see that
essentially no Stokes light is created for G less than Gth and that the reflectivity rises rapidly
for laser intensities slightly above this threshold value. In addition, for G 	 Gth the reflec-
tivity asymptotically approaches 100%. Well above the threshold for SBS (i.e., for G � 3Gth),
Eq. (9.3.35) can be approximated as G/Gth � 1/(1−R), which shows that the SBS reflectivity
in this limit can be expressed as

R = 1 − 1

G/Gth
(for G 	 Gth). (9.3.36)

Since the intensity I1(L) of the transmitted laser beam is given by I1(L) = I1(0)(1 −R), in the
limit of validity of Eq. (9.3.36) the intensity of the transmitted beam is given by

I1(L) = Gth

gL
; (9.3.37)
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FIGURE 9.3.4: Dependence of the SBS reflectivity on the weak-signal gain G = gI1(0)L.

FIGURE 9.3.5: Distribution of the laser and Stokes intensities within the interaction region of an SBS
generator.

here Gth/gL can be interpreted as the input laser intensity at the threshold for SBS. Hence the
transmitted intensity is “clamped” at the threshold value for the occurrence of SBS.

Once the value of the Stokes intensity at the plane z = 0 is known from Eq. (9.3.35), the
distributions of the intensities within the interaction region can be obtained from Eqs. (9.3.20).
Fig. 9.3.5 shows the distribution of intensities within an SBS generator.∗

Let us estimate the minimum laser power Pth required to excite SBS under optimum con-
ditions. We assume that a laser beam having a gaussian transverse profile is focused tightly

∗ Fig. 9.3.5 is plotted for the case Gth = 10. The physically realistic case of Gth = 25 produces a much less
interesting graph because the perceptible variation in intensities occurs in a small region near z = 0.
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into a cell containing a Brillouin-active medium. The characteristic intensity of such a beam
at the beam waist is given by I = P/πw2

0, where w0 is the beam waist radius. The interaction
length L is limited to the characteristic diffraction length b = 2πw2

0/λ of the beam. The prod-
uct G = gIL is thus given by G = 2gP/λ, and by equating this expression with the threshold
value Gth we find that the minimum laser power required to excite SBS is of the order of

Pth = Gthλ

2g
. (9.3.38)

For λ = 1.06 µm, Gth = 25, and g = 0.15 cm/MW (the value for CS2) we find that Pth is equal
to 9 kW. For other organic liquids the minimum power is approximately 10 times larger.

9.3.3 Transient and Dynamical Features of SBS

The phonon lifetime for stimulated Brillouin scattering in liquids is of the order of several
nanoseconds. Since Q-switched laser pulses have a duration of the order of several nanosec-
onds, and mode-locked laser pulses can be much shorter, it is normal for experiments on SBS
to be performed in the transient regime. The nature of transient SBS has been treated by Kroll
(1965), by Pohl et al. (1968), and by Pohl and Kaiser (1970).

The SBS equations can be solved including the transient nature of the phonon field. This
was done first by Carman et al. (1970) and the results have been summarized by Zel’dovich et
al. (1985). One finds that

IS(L,T ) �
{

IN exp(−2�BT + 2
√

2(gIL)(�BT ) ) �BT < gIL/2,

IN exp(gIL) �BT > gIL/2.
(9.3.39)

Here IN is the effective noise input that initiates the SBS process, gIL is the usual single pass
gain, �B is the phonon damping rate, and T is the laser pulse duration.

We can use this result to predict how the SBS threshold intensity Ith is increased through use
of a short laser pulse. We require that in either limit given above the single pass amplification
must equal the threshold value, which we take to be exp (25). We then find that

gIthl =
{

(12.5 + �BT )2/2�BT �BT < 12.5,

25 �BT > 12.5.
(9.3.40)

This functional dependence is illustrated in Fig. 9.3.6. Note that even for laser pulses as long
as twice the phonon lifetime, the threshold for SBS is raised by a factor of approximately
two.

The SBS process is characterized by several different time scales, including the transit time
of light through the interaction region, the laser pulse duration, and the phonon lifetime. Conse-
quently, the SBS process can display quite rich dynamical effects. One of these effects is pulse
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FIGURE 9.3.6: Dependence of the SBS threshold intensity Ith on the laser pulse duration T .

compression, the tendency of the SBS Stokes pulse to be shorter (at times very much shorter)
than the incident laser pulse. This process is described in Problem 5 at the end of this chapter.
When SBS is excited by a multi-longitudinal-mode laser, new types of dynamical behavior can
occur. Here the various laser modes beat together leading to modulation in time of the laser
intensity within the interaction region. This situation has been analyzed by Narum et al. (1986).
In addition, the stochastic properties of SBS have been studied in considerable detail. SBS is
initiated by noise in the form of thermally excited phonons. Since the SBS process involves
nonlinear amplification (nonlinear because of pump depletion effects) in a medium with an
effectively nonlocal response (nonlocal because the Stokes and laser fields are counterprop-
agating), the stochastic properties of the SBS output can be quite different from those of the
phonon noise field that initiates SBS. These properties have been studied, for instance, by Gaeta
and Boyd (1991). In addition, when SBS is excited by two counterpropagating pump fields, it
can display even more complex behavior, including instability and chaos, as studied by Narum
et al. (1988), Gaeta et al. (1989), and Kulagin et al. (1991).

9.4 Phase Conjugation by Stimulated Brillouin Scattering

It was noted even in the earliest experiments on stimulated Brillouin scattering (SBS) that the
Stokes radiation was emitted in a highly collimated beam in the backward direction. In fact,
the Stokes radiation was found to be so well collimated that it was efficiently fed back into
the exciting laser, often leading to the generation of new spectral components in the output
of the laser (Goldblatt and Hercher, 1968). These effects were initially explained as a purely
geometrical effect resulting from the long but thin shape of the interaction region.
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FIGURE 9.4.1: Setup of first experiment on phase conjugation by stimulated Brillouin scattering.

The first indication that the backscattered light was in fact the phase conjugate of the input
was provided by an experiment of Zel’dovich et al. (1972). The setup used in this experiment is
shown in Fig. 9.4.1. The output of a single-mode ruby laser was focused into a cell containing
methane gas at a pressure of 125 atmospheres. This cell was constructed in the shape of a cylin-
drical, multimode waveguide and served to confine the radiation in the transverse dimension.
A strong SBS signal was generated from within this cell. A glass plate that had been etched
in hydrofluoric acid was placed in the incident beam to serve as an aberrator. Two cameras
were used to monitor the transverse intensity distributions of the incident laser beam and of the
Stokes return.

The results of this experiment are summarized in photographs taken by V.V. Ragulsky that
are reproduced in Fig. 9.4.2. Part (a) of this figure shows the laser beam shape as recorded by
camera 1, and part (b) shows the Stokes beam shape as recorded by camera 2. The similarity of
the spot sizes and shapes indicates that the return beam is the phase conjugate of the incident
beam. These highly elongated beam shapes are a consequence of the unusual mode pattern
of the laser used in these experiments. Part (c) of the figure shows the spot size recorded by
camera 2 when the SBS cell had been replaced by a conventional mirror. The spot size in this
case is very much larger than that of the incident beam; this result shows the severity of the
distortions impressed on the beam by the aberrator. Part (d) of the figure shows the spot size of
the return beam when the aberrator was removed from the beam path. This spot size is larger
than that shown in part (b). This result shows that SBS forms a more accurate conjugate of the
incident light when the beam is highly distorted than when the beam is undistorted.∗

The results of the experiment of Zel’dovich et al. are somewhat surprising, because it is not
clear from inspection of the coupled-amplitude equations that describe the SBS process why
SBS should lead to phase conjugation. We recall that the reason why degenerate four-wave
mixing leads to phase conjugation is that the source term driving the output wave A4 in the

∗ The conclusion that SBS forms a better phase conjugate of an aberrated beam than of an unaberrated beam is not
true in all cases, and appears to be a consequence of the details of the geometry of the experiment of Zel’dovich
et al.
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FIGURE 9.4.2: Results of the first experiment demonstrating SBS phase conjugation.

coupled-amplitude equations describing four-wave mixing (see, for example, Eq. (7.2.31b)) is
proportional to the complex conjugate of the input wave amplitude, that is, to A∗

3. However,
for the case of SBS, Eq. (9.3.21b) shows that the output wave amplitude A2 is driven by a
term proportional to |A1|2A2, which contains no information regarding the phase of the input
wave A1.

The reason why SBS leads to the generation of a phase-conjugate wave is in fact rather
subtle and has been described by Zel’dovich et al. (1972) and by Sidorovich (1976). As illus-
trated in Fig. 9.4.3, we consider a badly aberrated optical wave that is focused into the SBS
interaction region. Since the wave is highly aberrated, a highly nonuniform intensity distribu-
tion (i.e., a volume speckle pattern) is created in the focal region of the wave. Since the gain
experienced by the Stokes wave depends on the local value of the laser intensity (see, for exam-
ple, Eq. (9.3.22b)), a nonuniform gain distribution for the Stokes wave is therefore present in
the focal volume. We recall that SBS is initiated by noise—that is, by spontaneously generated
Stokes photons. The noise field that leads to SBS initially contains all possible spatial Fourier
components. However, the portion of the noise field that experiences the maximum amplifica-
tion is the portion whose intensity distribution best matches the nonuniform gain distribution.
This portion of the noise field must have wavefronts that match those of the incident laser beam,
and thus corresponds to the phase conjugate of the incident laser field.

In order to make this argument more precise, we consider the intensity equation satisfied by
the Stokes field (see also Eq. (9.3.22b)),

dIS

dz
= −gILIS. (9.4.1)
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FIGURE 9.4.3: Origin of phase conjugation by SBS. The highly aberrated incident wavefront produces
a highly nonuniform intensity distribution (and thus a nonuniform gain distribution) in the focal region
of the lens.

Since we are now considering the case where IL and IS possess nonuniform transverse distri-
butions, it is useful to consider the total power in each wave (at fixed z), defined by

PL =
∫

IL dA, PS =
∫

IS dA, (9.4.2)

where the integrals are to be carried out over an area large enough to include essentially all of
the power contained in each beam. Eq. (9.4.1) can then be rewritten in the form

dPS

dz
= −g

PLPS

A
C, (9.4.3)

where A = ∫
dA and where

C = 〈ILIS〉
〈IL〉〈IS〉 (9.4.4)

represents the normalized spatial cross-correlation function of the laser and Stokes field in-
tensity distributions. Here the angular brackets are defined so that 〈x〉 = ∫

x dA/A, where x

denotes IL, IS , or the product ILIS .
We see that the power gain experienced by the Stokes wave depends not only on the total

power of the laser wave, but also on the degree of correlation between the laser and Stokes wave
intensity distributions. If IL and IS are completely uncorrelated, so that 〈ILIS〉 = 〈IL〉〈IS〉, the
correlation function C takes on the value unity. C is equal to unity also for the case in which
both IL and IS are spatially uniform. However, if IL and IS are correlated, for example, because
the laser and Stokes fields are phase conjugates of one another, the correlation function can be
greater than unity.

A limiting case is that in which the laser field is so badly aberrated that the transverse
variations in the complex field amplitude obey gaussian statistics. In such a case, the probability
density function for the laser intensity is given by (see, for example, Goodman, 1985)

P(I) = 1

I0
e−I/I0 . (9.4.5)
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The moments of this distribution are given in general by 〈In〉 = n〈I 〉n, and in particular the
second moment is given by 〈

I 2〉 = 2〈I 〉2. (9.4.6)

For that portion of the Stokes field that is the phase conjugate of the laser field, the intensity IS

will be proportional to IL, and we see from Eqs. (9.4.4) and (9.4.6) that C will be equal to 2.
Hence, the exponential gain G ≡ gPLCL/A experienced by the phase-conjugate portion of the
noise field will be two times larger than that experienced by any other mode of the noise field.
Since the threshold for SBS corresponds to G of the order of 30, the phase-conjugate portion of
the SBS signal at threshold will be approximately exp (15) times larger than that of any other
component.

On the basis of the argument just presented, we expect that high-quality phase conjugation
will occur only if a large number of speckles of the laser intensity distribution are present
within the interaction volume. We now determine the conditions under which the number of
speckles will be large. We assume that in the focal region the incident laser field has transverse
wavefront irregularities on a distance scale as small as a. Each such region will diffract the
incident beam into a cone with a characteristic angular spread of θ = λ/a. Hence, the speckle
pattern will look appreciably different after the beam has propagated through the longitudinal
distance �z such that θ�z = a. These considerations show that �z = a2/λ. We hence expect
that SBS will lead to a high-quality phase-conjugate signal only if the transverse extent of the
interaction region is much larger than a and if the longitudinal extent of the interaction region
is much longer than �z. In addition, the quality of the phase-conjugate signal can be degraded
if there is poor spatial overlap of the various spatial Fourier components of the laser beam. For
example, a highly aberrated beam will spread with a large angular divergence θ = λ/a. If those
components of the beam with large divergence angle θ fail to overlap the strong central portion
of the beam, they will be reflected with low efficiency, leading to a degradation of the quality of
the phase-conjugation process. To avoid the possibility of such effects, SBS phase conjugation
is often performed using the waveguide geometry shown in Fig. 9.4.1.

One of the applications of SBS phase conjugation is in the design of high-power laser sys-
tems. Phase conjugation can be used to correct for aberrations caused, for instance, by thermal
stresses induced in the laser gain medium; see, for example, Zakharenkov et al. (2007), and
Bowers et al. (1997).

9.5 Stimulated Brillouin Scattering in Gases

We next consider stimulated Brillouin scattering (SBS) in gases. We saw above (Eq. (9.3.24))
that the steady-state line-center gain factor for SBS is given by

g0 = γ 2
e ω2

ρ0nvc3�B
, (9.5.1)
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with the electrostrictive constant γe given by Eq. (8.3.12) and with the Brillouin linewidth given
to good approximation by (see also Eqs. (8.3.23) and (9.3.14b))

�B = (2ηs + ηd) q2/ρ0. (9.5.2)

For the case of an ideal gas, we can readily predict the values of the material parameters
appearing in these equations (Loeb, 1961). First, we can assume the validity of the Stokes
relation (see also the discussion in Appendix Section 9.6.1), which states that the shear and
dilation viscosity coefficients are related by ηd = −2

3ηs , and we thus find that

�B = 4
3ηsq

2/ρ0. (9.5.3)

The shear viscosity coefficient ηs can be shown from kinetic theory to be given by

ηs = 1
3Nmv̄L, (9.5.4)

where N is the atomic number density, m is the molecular mass, v̄ is the mean molecular
velocity given by v̄ = (8kT /πm)1/2, and L is the mean free path given by L = (

√
2πd2N)−1

with d denoting the molecular diameter. We hence find that the shear viscosity coefficient is
given by

ηs = 2

3π3/2

√
kT m

d2
. (9.5.5)

Note that the shear viscosity coefficient is independent of the molecular number density N . The
measured (and theoretical) value of the shear viscosity coefficient for nitrogen gas at standard
temperature and pressure is ηs = 1.8 × 10−5 N s/m2.

By introducing expression (9.5.5) for the viscosity into Eq. (9.5.2) and replacing q by
2nω/c, we find that the Brillouin linewidth is given by

�B = 32

9π3/2

n2ω2

c2

√
kT /m

d2N
. (9.5.6)

If we assume that the incident optical radiation has a wavelength λ of 1.06 µm, we find
that the Brillouin linewidth for nitrogen at standard temperature and pressure is equal to �B =
2.77 × 109 rad/sec and thus that the Brillouin linewidth in ordinary frequency units is given by
δν(FWHM) = �B/2π = 440 MHz.

The velocity of sound v, which appears in Eq. (9.5.1), is given for an ideal gas by v =
(γ kT /m)1/2, where γ , the ratio of specific heats, is equal to 5/3 for a monatomic gas and
7/5 for a diatomic gas. In addition, the electrostrictive constant γe can be estimated as γe =
ρ(∂ε/∂ρ) with (∂ε/∂ρ) taken as the essentially constant quantity (ε − 1)/ρ.
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The dependence of g0 on material parameters can be determined by combining these results
with Eq. (9.5.1) to obtain

g0 = 9π3/2N2m2d2(∂ε/∂ρ)2

32γ 1/2n3ckT
. (9.5.7)

However, in order to obtain a numerical estimate of g0, it is often more convenient to evaluate
the expression (9.5.1) for g0 directly with the numerical value of �B obtained from Eq. (9.5.6).
For N2 gas at standard temperature and pressure and for a wavelength of 1.06 µm, we take the
values ω = 1.8 × 1015 rad/sec, n = 1.0003, v = 330 m/sec, γe = n2 − 1 = 6 × 10−4, and we
thereby obtain

g0 = 0.038
m

TW
. (9.5.8)

Note from Eq. (9.5.7) that g0 scales quadratically with molecular density. Hence, at a pres-
sure of 100 atmospheres the gain factor of N2 is equal to g0 = 0.38 m/GW, which is comparable
to that of typical organic liquids.

One advantage of the use of gases as the active medium for Brillouin scattering is that
the gain for SBS scales with molecular number density as N2, whereas the gain for stimu-
lated Raman scattering, which is often a competing process, scales as N (see, for example,
Eqs. (10.3.19) through (10.3.21) and (9.3.20)). At pressures greater than 10 atmospheres, the
gain for SBS typically exceeds that of stimulated Raman scattering. Moreover, through the use
of rare gases (which have no vibrational modes), it is possible to suppress the occurrence of
stimulated Raman scattering altogether.

Some parameters relevant to SBS at the 249 nm wavelength of the KrF laser have been
compiled by Damzen and Hutchinson (1983) and are presented in Table 9.5.1.

9.6 General Theory of Stimulated Brillouin and Stimulated Rayleigh
Scattering

In this section we develop a theoretical model that can treat both stimulated Brillouin and
stimulated Rayleigh scattering. These two effects can conveniently be treated together because
they both entail the scattering of light from inhomogeneities in thermodynamic quantities. For
convenience, we choose the temperature T and density ρ to be the independent thermodynamic
variables. The theory that we present incorporates both electrostrictive and absorptive coupling
of the radiation to the material system. Our analysis therefore describes the following four
scattering processes:
1. Electrostrictive stimulated Brillouin scattering. The scattering of light from sound waves

that are driven by the interference of the laser and Stokes fields through the process of
electrostriction.



444 Chapter 9

TABLE 9.5.1: Gain factors, phonon lifetimes, and frequency shifts for some compressed Brillouin-
active gases at a wavelength of 249 nma.

Gas p

(atm)
g0
(m/GW)

τ

(nsec)
�B/2π

(GHz)
gR

(m/GW)

SF6 15.5 2.5×10−1 1 0.9 3 × 10−3

10 0.9×10−1 0.6 2 × 10−3

Xe 39 4.4×10−1 2 1.4 0

10 1.8×10−2 0.4

Ar 10 1.5×10−3 0.1 3 0

N2 10 1.7×10−3 0.2 3 3 × 10−4

CH4 10 8×10−3 0.1 3 1 × 10−2

a For comparison, the gain factor gR for forward stimulated Raman scattering is also listed. (After Damzen and Hutchinson, 1983.)

2. Thermal stimulated Brillouin scattering. The scattering of light from sound waves that are
driven by the absorption and subsequent thermalization of the optical energy, leading to
temperature and hence to density variations within the medium.

3. Electrostrictive stimulated Rayleigh scattering. The scattering of light from isobaric density
fluctuations that are driven by the process of electrostriction.

4. Thermal stimulated Rayleigh scattering. The scattering of light from isobaric density fluc-
tuations that are driven by the process of optical absorption.
Our analysis is based on the three equations of hydrodynamics (Hunt, 1955; Kaiser and

Maier, 1972). The first of these equations is the equation of continuity

∂ρ̃t

∂t
+ ũt · ∇ρ̃t + ρ̃t∇ · ũt = 0, (9.6.1)

where ρ̃t is the mass density of the fluid and ũt is the velocity of some small volume element
of the fluid.∗ The second equation is the equation of momentum transfer. It is a generalization
of the Navier–Stokes equation and is given by

ρ̃t

∂ũt

∂t
+ ρ̃t (ũt · ∇)ũt = f̃ − ∇p̃t + (2ηs + ηd)∇(∇ · ũt ) − ηs∇ × (∇ × ũt ). (9.6.2)

Here f̃ represents the force per unit volume of any externally imposed forces; for the case of
electrostriction, f̃ is given by (see also Eq. (9.3.12))

f̃ = −1
2ε0γe∇

〈
Ẽ · Ẽ

〉
, (9.6.3)

∗ The subscript t stands for total; we shall later linearize these equations to find the equations satisfied by the
linearized quantities, which we shall designate by nonsubscripted symbols.
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where Ẽ denotes the instantaneous value of the time-varying applied total electric field and γe

represents the electrostrictive coupling constant

γe = ρ
∂ε

∂ρ
. (9.6.4)

The second term on the right-hand side of Eq. (9.6.2) denotes the force due to the gradient of
the pressure p̃t . In the third term, ηs denotes the shear viscosity coefficient and ηd denotes the
dilational viscosity coefficient. When the Stokes relation is satisfied, as it is for example for an
ideal gas, these coefficients are related by

ηd = −2
3ηs. (9.6.5)

The coefficients are defined in detail in the Appendix at the end of this section.
The last of three principal equations of hydrodynamics is the equation of heat transport,

given by

ρ̃tCv

∂T̃t

∂t
+ ρ̃t cv(ũ · ∇T̃t ) + ρ̃t cv

(
γ − 1

βp

)
(∇ · ũt ) = −∇ · Q̃ + φ̃η + φ̃ext. (9.6.6)

Here T̃t denotes the local value of the temperature, cv the specific heat at constant volume,
γ = cp/cv the adiabatic index, βp = −ρ̃−1(∂ρ̃/∂T̃ )p the thermal expansion coefficient, and Q̃
the heat flux vector. For heat flow due to thermal conduction, Q̃ satisfies the equation

∇ · Q̃ = −κ∇2T̃t , (9.6.7)

where κ denotes the thermal conductivity. φ̃η denotes the viscous energy deposited within the
medium per unit volume per unit time and is given by

φ̃η =
∑
ij

(2ηsdij dji + ηddiidjj ), (9.6.8a)

where

dij = 1

2

(
∂ũi

∂xj

+ ∂ũj

∂xi

)
(9.6.8b)

is the rate-of-dilation tensor. Finally, φ̃ext gives the energy per unit time per unit volume de-
livered to the medium from external sources. Absorption of the optical wave provides the
contribution

φ̃ext = αnε0c
〈
Ẽ2〉, (9.6.9)

to this quantity, where α is the optical absorption coefficient.
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The acoustic equations are now derived by linearizing the hydrodynamic equations about
the nominal conditions of the medium. In particular, we take

ρ̃t = ρ0 + ρ̃ with |ρ̃| � ρ0, (9.6.10a)

T̃t = T0 + T̃ with |T̃ | � T0, (9.6.10b)

ũt = ũ with |ũ| � v, (9.6.10c)

where v denotes the velocity of sound. Note that we have assumed that the medium is every-
where motionless in the absence of the acoustic disturbance. We can reliably use the linearized
form of the resulting equations so long as the indicated inequalities are satisfied.

We substitute the expansions (9.6.10) into the hydrodynamic equations (9.6.1), (9.6.2), and
(9.6.6), drop any term that contains more than one small quantity, and subtract the unperturbed,
undriven solution containing only ρ̃0 and T̃0. The continuity equation (9.6.1) then becomes

∂ρ̃

∂t
+ ρ0∇ · ũ = 0. (9.6.11)

In order to linearize the momentum transport equation (9.6.2), we first express the total
pressure p̃t as

p̃t = p0 + p̃ with |p̃| � p0. (9.6.12)

Since we have taken T and ρ as the independent thermodynamic variables, we can express p̃

as

p̃ =
(

∂p

∂ρ

)
T

ρ̃ +
(

∂p

∂T

)
ρ

T̃ (9.6.13)

or as

p̃ = v2

γ
(ρ̃ + βpρ0T̃ ), (9.6.14)

where we have expressed (∂p/∂ρ)T as γ −1(∂p/∂ρ)s = v2/γ with v2 = (∂p/∂ρ)s repre-
senting the square of the velocity of sound, and where we have expressed (∂p/∂T )ρ as
γ −1(∂p/∂ρ)s(∂ρ/∂T )p = v2βpρ0/γ with βp representing the thermal expansion coefficient
at constant pressure. Through use of Eq. (9.6.14), the linearized form of Eq. (9.6.2) becomes

ρ0
∂ũ
∂t

+ v2

γ
∇ρ̃ + v2βpρ0

γ
∇T̃ − (2ηs + ηd)∇(∇ · ũ) + ηs∇ × (∇ × ũ) = f̃. (9.6.15)

Finally, the linearized form of the energy transport equation, Eq. (9.6.6), becomes

ρ0cv

∂T̃

∂t
+ ρ0cv(γ − 1)

βp

(∇ · ũ) − κ∇2T̃ = φ̃ext. (9.6.16)
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Note that the viscous contribution to the heat input, φ̃η, does not contribute in the linear ap-
proximation.

Eqs. (9.6.11), (9.6.15), and (9.6.16) constitute the three linearized equations of hydrodynam-
ics for the quantities ũ, ρ̃, and T̃ . The continuity equation in its linearized form (Eq. (9.6.11))
can be used to eliminate the variable ũ from the remaining two equations. To do so, we take the
divergence of the equation of momentum transfer (9.6.15) and use Eq. (9.6.11) to eliminate the
terms containing ∇ · ũ. We obtain

−∂2ρ̃

∂t2
+ v2

γ
∇2ρ̃ + v2βpρ0

γ
∇2T̃ + 2ηs + ηd

ρ0

∂

∂t

(∇2ρ̃
) = 1

2ε0γe∇2
〈
Ẽ2

〉
, (9.6.17)

where we have explicitly introduced the form of f̃ from Eq. (9.6.3). Also, the energy transport
equation (9.6.16) can then be expressed through use of Eqs. (9.6.9) and (9.6.11) as

ρ0cv

∂T̃

∂t
− cv(γ − 1)

βp

∂ρ̃

∂t
− κ∇2T̃ = nε0cα

〈
Ẽ2〉. (9.6.18)

Eqs. (9.6.17) and (9.6.18) constitute two coupled equations for the thermodynamic variables ρ̃

and T̃ , and they show how these quantities are coupled to one another and are driven by the
applied optical field.

In the absence of the driving terms appearing on their right-hand sides, Eqs. (9.6.17) and
(9.6.18) allow solutions of the form of damped, freely propagating acoustic waves

F̃ (z, t) = Fe−i�(t−z/v)e−αsz + c.c., (9.6.19)

where F denotes either ρ or T , and where the sound absorption coefficient αs is given for low
frequencies (� � ρ0v

2/(2ηs + ηd)) by

αs = �2

2ρ0v3

[
(2ηs + ηd) + (γ − 1)

κ

cp

]
. (9.6.20)

For details, see the article by Sette (1961).
We next study the nature of the solution to Eqs. (9.6.17) and (9.6.18) in the presence of their

driving terms. We assume that the total optical field can be represented as

Ẽ(z, t) = A1e
i(k1z−ω1t) + A2e

i(−k2z−ω2t) + c.c. (9.6.21)

We first determine the response of the medium at the beat frequency between these two applied
field frequencies. This disturbance will have frequency

� = ω1 − ω2 (9.6.22)
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and wavenumber

q = k1 + k2 (9.6.23)

and can be taken to be of the form

ρ̃(z, t) = ρei(qz−�t) + c.c., (9.6.24)

T̃ (z, t) = T ei(qz−�t) + c.c. (9.6.25)

For the present, we are interested only in the steady-state response of the medium, and thus we
assume that the amplitudes A1,A2, ρ, and T are time-independent. We introduce the fields Ẽ,
ρ̃, and T̃ given by Eqs. (9.6.21) through (9.6.25) into the coupled acoustic equations (9.6.17)
and (9.6.18). The parts of these equations that oscillate at frequency � are given respectively
by

−
(

�2 + i��B − v2q2

γ

)
ρ + v2βpρ0q

2

γ
T = ε0γeq

2A1A
∗
2 (9.6.26)

and

−
(

i� − 1

2
γ�R

)
T + i(γ − 1)�

βpρ0
ρ = 2nε0cα

cvρ0
A1A

∗
2. (9.6.27)

Here we have introduced the Brillouin linewidth

�B = (2ηs + ηd)q2/ρ0, (9.6.28)

whose reciprocal τp = �−1
B is the phonon lifetime, and the Rayleigh linewidth

�R = 2κq2

ρ0cp

, (9.6.29)

whose reciprocal τR = �−1
R is characteristic decay time of the isobaric density disturbances that

give rise to Rayleigh scattering.
In deriving Eqs. (9.6.26) and (9.6.27) we have ignored those terms that contain the spatial

derivatives of ρ and T . This approximation is equivalent to assuming that the material exci-
tations are strongly damped and hence do not propagate over any appreciable distances. This
approximation is valid so long as

q 	
∣∣∣∣ 1

ρ

∂ρ

∂z

∣∣∣∣
∣∣∣∣ 1

T

∂T

∂z

∣∣∣∣ and q2 	
∣∣∣∣ 1

ρ

∂2ρ

∂z2

∣∣∣∣
∣∣∣∣ 1

T

∂2T

∂z2

∣∣∣∣.
These inequalities are usually satisfied. Recall that a similar approximation was introduced in
Section 9.3 in the derivation of Eq. (9.3.15).
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We next solve Eq. (9.6.27) algebraically for T and introduce the resulting expression into
Eq. (9.6.26). We obtain the equation[

−
(

�2 + i��B − v2q2

γ

)
+ v2q2�(γ − 1)(

� + 1
2 iγ �R

)
γ

]
ρ

=
[
ε0γe − iγaqv

� + 1
2 iγ �R

]
q2A1A

∗
2, (9.6.30)

where we have introduced the absorptive coupling constant

γa = 8παnv2ε0cβp

cP �B
(9.6.31)

with �B = qv. Eq. (9.6.30) shows how the amplitude ρ of the acoustic disturbance depends on
the amplitudes A1 and A2 of the two optical fields. Both Brillouin and Rayleigh contributions
to ρ are contained in Eq. (9.6.30).

It is an empirical fact (see, for example, Fig. 8.1.1) that the spectrum for Brillouin scattering
does not appreciably overlap that for Rayleigh scattering. Eq. (9.6.30) can thus be simplified by
considering the resonant contributions to the two processes separately. First, we consider the
case of stimulated Brillouin scattering (SBS). In this case �2 is approximately equal to �2

B =
v2q2, and thus the denominator � + 1

2 iγ �R is nonresonant. We can thus drop the contribution
1
2 iγ �R in comparison with � in these denominators. Eq. (9.6.30) then shows that the Brillouin
contribution to ρ is given by

ρB = −(ε0γe − iγa)q
2

4π(�2 + i��B − v2q2)
A1A

∗
2. (9.6.32)

The other resonance in Eq. (9.6.30) occurs at � = 0 and leads to stimulated Rayleigh scat-
tering (SRLS). For |�| � �R , the Brillouin denominator �2 + i��B − v2q2/γ is nonresonant
and can be approximated by −v2q2/γ . Eq. (9.6.30) thus becomes

ρR =
[
ε0γe(� + 1

2 iγ �R) − iγa�B

� + 1
2 i�R

]
1

4πv2
A1A

∗
2. (9.6.33)

We next calculate the nonlinear polarization as

p̃NL = ε0�χẼ = ε0�εẼ = ε0

(
∂ε

∂ρ

)
T

ρ̃Ẽ = ε0γe

ρ0
ρ̃Ẽ, (9.6.34)

where ρ̃ and Ẽ are given by Eqs. (9.6.24) and (9.6.21), respectively. We represent the nonlinear
polarization in terms of its complex amplitudes as

P̃ NL = p1e
i(k1z−ω1t) + p2e

i(−k2z−ω2t) + c.c. (9.6.35)
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with

p1 = ε0γe

ρ0
ρA2, p2 = ε0γe

ρ0
ρ∗A1. (9.6.36)

This form of the nonlinear polarization is now introduced into the wave equation, which we
write in the form (see also Eq. (2.1.22))

∇2[An(r) eikn·r] + ε(ωn)ω
2
n

c2
An(r)eikn·r = ω2

n

ε0c2
pn eikn·r. (9.6.37)

We next make the slowly-varying amplitude approximation and find that the field amplitudes
obey the equations (

d

dz
+ 1

2α

)
A1 = iω

2nε0c
p1, (9.6.38a)(

d

dz
− 1

2α

)
A2 = −iω

2nε0c
p2, (9.6.38b)

where we have introduced the real part of the refractive index n = Re
√

ε and the optical absorp-
tion coefficient α = (2ω/c) Im

√
ε. Eqs. (9.6.38) can be used to describe either SBS or SRLS,

depending on whether form (9.6.32) or (9.6.33) is used to determine the factor ρ that appears
in the expression (9.3.36) for the nonlinear polarization. Since in either case ρ is proportional
to the product A1A

∗
2, Eqs. (9.6.38) can be written as

dA1

dz
= κ|A2|2A1 − 1

2αA1, (9.6.39a)

dA2

dz
= κ∗|A1|2A2 + 1

2αA2, (9.6.39b)

where for SBS κ is given by

κB = − q2ω

2ρ0nc

iγe(ε0γe − iγa)

(�2 + i��B − v2q2)
, (9.6.40a)

and for SRLS is given by

κR = iγeω

2ρ0ncv2

[
γe

(
� + 1

2 iγ �R

) − iγa�B

� + 1
2 i�R

]
. (9.6.40b)

We now introduce the intensities

Ii = 2nε0c|Ai |2 (9.6.41)
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of the two interacting optical waves and use Eqs. (9.6.39) to calculate the spatial rate of change
of the intensities as

dI1

dz
= −gI1I2 − αI1, (9.6.42a)

dI2

dz
= −gI1I2 + αI2, (9.6.42b)

where we have introduced the gain factor

g = − 1

nε0c
Reκ. (9.6.43)

For the case of SBS, we find that the gain factor can be expressed as

gB = ge
B + ga

B, (9.6.44a)

where

ge
B = ω2γ 2

e

ρ0nvc2�B

1

1 + (2��/�B)2
(9.6.44b)

and

ga
B = −ω2γeγa

2ρ0nvc2�B

4��/�B

1 + (2��/�B)2
(9.6.44c)

denote the electrostrictive and absorptive contributions to the SBS gain factor, respectively.
Here we have introduced the detuning from the Brillouin resonance given by �� = �B − �,
where �B = qv = (k1 + k2)v and where � = ω1 − ω2. The electrostrictive contribution is
maximum for �� = 0, where it attains the value

ge
B(max) = ω2γ 2

e

ρ0nvc3�B
. (9.6.45)

Since (according to Eq. (9.6.28)) �B is proportional to q2 and thus to ω2, the gain for elec-
trostrictive SBS is independent of the laser frequency. The absorptive contribution is maximum
for �� = −�B/2—that is, when the Stokes wave (at frequency ω2) is detuned by one-half
the spontaneous Brillouin linewidth �B to the low-frequency side of resonance. The maximum
value of the gain for this process is

ga
B(max) = ω2γeγa

2ρ0nvc3�B
. (9.6.46)

Note that since �B is proportional to q2 and (according to Eq. (9.6.31)) γa is proportional
to q−1, the absorptive SBS gain factor is proportional to q3 and hence depends on the laser
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FIGURE 9.6.1: Gain spectra for stimulated Brillouin scattering and stimulated Rayleigh scattering,
showing their electrostrictive and absorptive contributions. For comparison, the spectrum of spontaneous
Brillouin and Rayleigh scattering is also shown.

frequency as ω−3. Since the gain factor for thermal SBS is linearly proportional to the optical
absorption coefficient α (by Eqs. (9.6.31) and (9.6.46)), the gain for thermal SBS can be made to
exceed that for electrostrictive SBS by adding an absorber such as a dye to the Brillouin-active
medium. As shown in Table 9.3.1, this effect occurs roughly for absorption coefficients greater
than 1 cm−1.∗

The spectral dependence of the two contributions to the SBS gain is shown schematically in
Fig. 9.6.1.

For the case of stimulated Rayleigh scattering, we can express the gain factor appearing in
Eqs. (9.6.42) through use of Eqs. (9.6.40b) and (9.6.43) as

gR = ge
R + ga

R, (9.6.47)

where

ge
R = −ωγ 2

e (γ − 1)

4ρ0n2c2v2

[
4�/�R

1 + (2�/�R)2

]
(9.6.48)

∗ The quantity ge
B(max) is designated g0 in Table 9.3.1.
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TABLE 9.6.1: Properties of stimulated Rayleigh scattering for a variety of materials at a wavelength of
694 nma.

Substance Gain factor Linewidth

ge(max)

(cm/MW)
ga(max)/α
(cm2/MW)

δνR

(MHz)

CCl4 2.6×10−4 0.82 17

Methanol 8.4×10−4 0.32 20

CS2 6.0×10−4 0.62 36

Benzene 2.2×10−4 0.57 24

Acetone 2.0×10−4 0.47 21

H2O 0.02×10−4 0.019 27.5

Ethanol 0.38 18
a After Kaiser and Maier (1972).

and

ga
R = ωγeγa�B

2ρ0n2c2v2�R

[
4�/�R

1 + (2�/�R)2

]
(9.6.49)

denote the electrostrictive and absorptive contributions to the gain factor, respectively. The
contribution ge

R gives rise to electrostrictive stimulated Rayleigh scattering. The gain factor for
this process is maximum for � = −�R/2 and has the value

ge
R(max) = ωγ 2

e (γ − 1)

4ρ0n2c2v2
. (9.6.50)

Note that this quantity scales linearly with laser frequency. The absorptive contribution ga
R gives

rise to thermal SRLS. The gain for this process is maximum for � = �R/2 and has the value

ga
R(max) = ωγeγa�B

2ρ0n2c2v2�R

. (9.6.51)

Since �R scales with the laser frequency as ω2, γa scales as 1/ω, and �B scales as ω, we see
that the gain factor for thermal SRLS scales with the laser frequency as 1/ω.

As can be seen from Table 9.6.1, �R is often of the order of 10 MHz, which is much narrower
than the linewidths of pulsed lasers. In such cases, laser linewidth effects can often be treated
in an approximate fashion by convolving the gain predicted by Eqs. (9.6.48) and (9.6.49) with
the laser lineshape. If the laser linewidth �L is much broader than �R, the maximum gain for
absorptive SRLS is then given by Eq. (9.6.51) with �R replaced by �L. Under these conditions
ga

R(max) is independent of the laser frequency.
We note by inspection of Table 9.6.1 that ga

R(max) is very much larger than ge
R(max) except

for extremely small values of the absorption coefficient. The two gains become comparable for
α � 10−3 cm−1, which occurs only for unusually pure materials.
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We also see by comparison of Eqs. (9.6.51) and (9.6.46) that the ratio of the two thermal
gain factors is given by

ga
R(max)

ga
B(max)

= 2�B

�R
. (9.6.52)

Comparison of Tables 9.3.1 and 9.6.1 shows that for a given material the ratio �B/�R is typi-
cally of the order of 100. Hence, when thermal stimulated scattering occurs, the gain for thermal
SRLS is much larger than that for thermal SBS, and most of the energy is emitted by this pro-
cess.

The frequency dependence of the gain for stimulated Rayleigh scattering is shown in
Fig. 9.6.1. Note that electrostrictive SRLS gives rise to gain for Stokes shifted light but that
thermal SRLS gives rise to gain for anti-Stokes scattering (Herman and Gray, 1967). This re-
sult can be understood from the point of view that n2 is positive for electrostriction but is
negative for the process of heating and subsequent thermal expansion. We saw in the discus-
sion of two-beam coupling presented in Section 7.4 that the lower-frequency wave experiences
gain for n2 positive and loss for n2 negative.

9.6.1 Appendix: Definition of the Viscosity Coefficients

The viscosity coefficients are defined as follows: The component tij of the stress tensor gives
the i component of the force per unit area on an area element whose normal is in the j direction.
We represent the stress tensor as

tij = −pδij + σij ,

where p is the pressure and σij is the contribution to the stress tensor due to viscosity. If we
assume that σij is linearly proportional to the rate of deformation

dij = 1

2

[
∂ũi

∂xj

+ ∂ũj

∂xj

]
,

we can represent σij as

σij = 2ηsdij + ηdδij

∑
k

dkk,

where ηs is the shear viscosity coefficient and ηd is the dilational viscosity coefficient. The
quantity

∑
k dkk can be interpreted as follows:

∑
k

dkk =
∑

k

∂ũk

∂xk

= ∇ · ũ.
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In general, ηs and ηd are independent parameters. However, for certain physical systems
they are related to one another through a relationship first formulated by Stokes. This relation-
ship results from the assumption that the viscous stress tensor σij is traceless. In this case the
trace of tij is unaffected by viscous effects; in other words, the mean pressure −1

3

∑
i tii is un-

affected by the effects of viscosity. Condition that σij is traceless implies that the combination

∑
i

σii = 2ηs

∑
i

dii + 3ηd

∑
k

dkk = (2ηs + 3ηd)
∑

k

dkk

vanishes or that

ηd = −2
3ηs.

This result is known as the Stokes relation.
The viscosity coefficients ηs and ηd often appear in the combination 2ηs + ηd , as they do in

Eq. (9.6.2). When the Stokes relation is satisfied, this combination takes the value

2ηs + ηd = 4
3ηs (Stokes relation valid).

Under general conditions, such that the Stokes relation is not satisfied, one often defines the
bulk viscosity coefficient ηb by

ηb = 2
3ηs + ηd,

in terms of which the quantity 2ηs + ηd can be represented as

2ηs + ηd = 4
3ηs + ηb (in general).

Note that ηB vanishes identically when the Stokes relation is valid, for example, for the case of
an ideal gas.

As an example of the use of these relations, we note that the Brillouin linewidth �B intro-
duced in Eqs. (8.3.23), (9.5.2), and (9.6.28) can be represented (ignoring the contribution due
to thermal conduction) either as

�B = (2ηs + ηd)q2/ρ0

or as

�B = (4
3ηs + ηB

)
q2/ρ0.
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Problems

1. Lorentz–Lorenz prediction of the electrostrictive constant. Verify Eq. (9.2.17).
2. Angular dependence of SBS. Generalize the discussion of Section 9.3 to allow the angle θ

between the laser and Stokes propagation directions to be arbitrary. In particular, determine
how the Brillouin frequency �B, the steady-state line-center gain factor g0, and the phonon
lifetime τp depend on the angle θ .
[Ans.:

�B(θ) = �B(θ = 180◦) sin
(

1
2θ

)
g0(θ) = g0(θ = 180◦)/ sin

(
1
2θ

)
τp(θ) = τp(θ = 180◦)/ sin2

(
1
2θ

)
.]

3. Transverse SBS. Consider the possibility of exciting SBS in the transverse direction by a
laser beam passing through a fused-silica window at near-normal incidence. Assume con-
ditions appropriate to a high-energy laser. In particular, assume that the window is 70 cm
in diameter and is uniformly filled with a laser pulse of 10-nsec duration at a wavelength
of 350 nm. What is the minimum value of the laser pulse energy for which SBS can be
excited? (In fact, transverse SBS has been observed under such conditions similar to those
assumed in this problem; see, for example, J.R. Murray, J.R. Smith, R.B. Ehrlich, D.T.
Kyrazis, C.E. Thompson, T.L. Weiland, and R.B. Wilcox, J. Opt. Soc. Am. 6, 2402 (1989).)
[Ans.: ∼2 kJ.]

4. Optical damage considerations and the study of SBS. The threshold intensity for optical
damage to fused silica is approximately 3 GW/cm2 and is of the same order of magnitude
for most optical materials. (See, for example, W.H. Lowdermilk and D. Milam, IEEE J.
Quantum Electron. 17, 1888 (1981).) Use this fact and the value of the SBS gain factor
at line center quoted in Table 9.3.1 to determine the minimum length of a cell utilizing
fused-silica windows that can be used to excite SBS in acetone with a collimated laser
beam. Assume that the laser intensity is restricted to 50% of the threshold intensity as a
safety factor to avoid damage to the windows. If the laser pulse length is 20 nsec, what is
the minimum value of the laser pulse energy per unit area that can be used to excite SBS?
(SBS is often excited by tightly focused laser beams rather than by collimated beams to
prevent optical damage to the windows of the cell.)

5. Pulse compression by SBS. Explain qualitatively why the Stokes radiation excited by SBS in
the backward direction can be considerable shorter in duration than the exciting radiation.
How must the physical length of the interaction region be related to the duration of the
laser pulse in order to observe this effect? Write down the coupled-amplitude equations
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that are needed to describe this effect, and, if you wish, solve these equations numerically
by computer. What determines the minimum value of the duration of the output pulse?
[Hint: Pulse compression by SBS is described in the scientific literature by D.T. Hon, Opt.
Lett. 5, 516 (1980) and by S.S. Gulidov, A.A. Mak, and S.B. Papernyi, JETP Lett. 47, 394
(1988).]

6. Brillouin-enhanced four-wave mixing. In addition to SBS, light beams can interact in a
Brillouin medium by means of the process known as Brillouin-enhanced four-wave mixing
(BEFWM), which is illustrated in the figure shown below.

In this process, the incoming signal wave A3 interferes with the backward-going pump
wave A2 to generate an acoustic wave propagating in the forward direction. The forward-
going pump wave scatters from the acoustic wave to generate the phase-conjugate wave A4.
Since A4 is at the Stokes sideband of A1, it also undergoes amplification by the usual SBS
process. Phase-conjugate reflectivities much larger than 100% have been observed in the
BEFWM process. Using the general formalism outlined in Section 9.3, derive the form of
the four coupled-amplitude equations that describe BEFWM under steady-state conditions.
Solve these equations analytically in the constant-pump approximation.
[Hint: BEFWM has been discussed in the scientific literature. See, for example, M.D. Skel-
don, P. Narum, and R.W. Boyd, Opt. Lett. 12, 1211 (1987).]
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Chapter 10

Stimulated Raman Scattering and
Stimulated Rayleigh-Wing Scattering

10.1 The Spontaneous Raman Effect

The spontaneous Raman effect was discovered by C.V. Raman in 1928. To observe this effect,
a beam of light illuminates a material sample (which can be a solid, liquid, or gas), and the scat-
tered light is observed spectroscopically, as illustrated in Fig. 10.1.1. In general, the scattered
light contains frequencies different from those of the excitation source. Those new compo-
nents shifted to lower frequencies are called Stokes components, and those shifted to higher
frequencies are called anti-Stokes components. The Stokes components are typically orders of
magnitude more intense than the anti-Stokes components.

FIGURE 10.1.1: Spontaneous Raman scattering.

These properties of Raman scattering can be understood through use of the energy level
diagrams shown in Fig. 10.1.2. Raman Stokes scattering consists of a transition from the ground
state g to the final state n by means of a virtual intermediate level associated with excited
state n′. Raman anti-Stokes scattering entails a transition from level n to level g with n′ serving

Nonlinear Optics. https://doi.org/10.1016/B978-0-12-811002-7.00019-9
Copyright © 2020 Elsevier Inc. All rights reserved. 459
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FIGURE 10.1.2: Energy level diagrams describing (a) Raman Stokes scattering and (b) Raman anti-
Stokes scattering.

as the intermediate level. The anti-Stokes lines are typically much weaker than the Stokes lines
because, in thermal equilibrium, the population of level n is smaller than the population in level
g by the Boltzmann factor exp(−�ωng/kT ).

The Raman effect has important spectroscopic applications because transitions that are
one-photon forbidden can often be studied using Raman scattering. For example, the Raman
transitions illustrated in Fig. 10.1.2 can occur only if the matrix elements 〈g|r̂|n′〉 and 〈n′|r̂|n〉
are both nonzero, and this fact implies (for a material system that possesses inversion symme-
try, so that the energy eigenstates possess definite parity) that the states g and n must possess
the same parity. But under these conditions the g → n transition is forbidden for single-photon
electric dipole transitions because the matrix element 〈g|r̂|n〉 must necessarily vanish.

10.2 Spontaneous versus Stimulated Raman Scattering

The spontaneous Raman scattering process described in the previous section is typically a rather
weak process. Even for condensed matter, the scattering cross section per unit volume for Ra-
man Stokes scattering is only approximately 10−6 cm−1. Hence, in propagating through 1 cm
of the scattering medium, only approximately 1 part in 106 of the incident radiation will be
scattered into the Stokes frequency.

However, under excitation by an intense laser beam, highly efficient scattering can occur
as a result of the stimulated version of the Raman scattering process. Stimulated Raman scat-
tering is typically a very strong scattering process: 10% or more of the energy of the incident
laser beam is often converted into the Stokes frequency. Another difference between sponta-
neous and stimulated Raman scattering is that the spontaneous process leads to emission in
the form of a dipole radiation pattern, whereas the stimulated process leads to emission in a
narrow cone in the forward and backward directions. Stimulated Raman scattering was dis-
covered by Woodbury and Ng (1962) and was described more fully by Eckhardt et al. (1962).
The properties of stimulated Raman scattering have been reviewed by Shen and Bloembergen
(1965), Bloembergen (1967), Kaiser and Maier (1972), Penzkofer et al. (1979), and Raymer
and Walmsley (1990).
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The relation between spontaneous and stimulated Raman scattering can be understood in
terms of an argument (Hellwarth, 1963) that considers the process from the point of view of the
photon occupation numbers of the various field modes. One postulates that the probability per
unit time that a photon will be emitted into Stokes mode S is given by

PS = DmL(mS + 1). (10.2.1)

Here mL is the mean number of photons per mode in the laser radiation, mS is the mean number
of photons in Stokes mode S, and D is a proportionality constant whose value depends on the
physical properties of the material medium. This functional form is assumed because the factor
mL leads to the expected linear dependence of the transition rate on the laser intensity, and the
factor mS + 1 leads to stimulated scattering through the contribution mS and to spontaneous
scattering through the contribution of unity. This dependence on the factor mS +1 is reminiscent
of the stimulated and spontaneous contributions to the total emission rate for a single-photon
transition of an atomic system as treated by the Einstein A and B coefficients. Eq. (10.2.1)
can be justified by more rigorous treatments; note, for example, that the results of the present
analysis are consistent with those of the fully quantum-mechanical treatment of Raymer and
Mostowski (1981).

By the definition of PS as a probability per unit time for emitting a photon into mode S, the
time rate of change of the mean photon occupation number for the Stokes mode is given by
dmS/dt = PS or through the use of Eq. (10.2.1) by

dmS

dt
= DmL(mS + 1). (10.2.2)

If we now assume that the Stokes mode corresponds to a wave traveling in the positive z direc-
tion at the velocity c/n, as illustrated in Fig. 10.2.1, we see that the time rate of change given
by Eq. (10.2.2) corresponds to a spatial growth rate given by

dmS

dz
= 1

c/n

dmS

dt
= 1

c/n
DmL(mS + 1). (10.2.3)

For definiteness, Fig. 10.2.1 shows the laser and Stokes beams propagating in the same direc-
tion; in fact, Eq. (10.2.3) applies even if the angle between the propagation directions of the
laser and Stokes waves is arbitrary, as long as z is measured along the propagation direction of
the Stokes wave.

It is instructive to consider Eq. (10.2.3) in the two opposite limits of mS � 1 and mS � 1.
In the first limit, where the occupation number of the Stokes mode is much less than unity,
Eq. (10.2.3) becomes simply

dmS

dz
= 1

c/n
DmL (for mS � 1). (10.2.4)
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FIGURE 10.2.1: Geometry describing stimulated Raman scattering.

The solution to this equation for the geometry of Fig. 10.2.1 under the assumption that the laser
field is unaffected by the interaction (and thus that mL is independent of z) is

mS(z) = mS(0) + 1

c/n
DmLz (for mS � 1), (10.2.5)

where mS(0) denotes the photon occupation number associated with the Stokes field at the input
to the Raman medium. This limit corresponds to spontaneous Raman scattering; the Stokes
intensity increases in proportion to the length of the Raman medium and thus to the total number
of molecules contained in the interaction region.

The opposite limiting case is that in which there are many photons in the Stokes mode. In
this case Eq. (10.2.3) becomes

dmS

dz
= 1

c/n
DmLmS (for mS � 1), (10.2.6)

whose solution (again under the assumption of an undepleted input field) is

mS(z) = mS(0)eGz (for mS � 1), (10.2.7)

where we have introduced the Raman gain coefficient

G = DmL

c/n
. (10.2.8)

Again mS(0) denotes the photon occupation number associated with the Stokes field at the
input to the Raman medium. If no field is injected into the Raman medium, mS(0) represents
the quantum noise associated with the vacuum state, which is equivalent to one photon per
mode. Emission of the sort described by Eq. (10.2.7) is called stimulated Raman scattering. The
Stokes intensity is seen to grow exponentially with propagation distance through the medium,
and large values of the Stokes intensity are routinely observed at the output of the interaction
region.

We see from Eq. (10.2.8) that the Raman gain coefficient can be related simply to the phe-
nomenological constant D introduced in Eq. (10.2.1). However, we see from Eq. (10.2.5) that
the strength of spontaneous Raman scattering is also proportional to D. Since the strength of
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spontaneous Raman scattering is often described in terms of a scattering cross section, it is
thus possible to determine a relationship between the gain coefficient G for stimulated Raman
scattering and the cross section for spontaneous Raman scattering. This relationship is derived
as follows.

Since one laser photon is lost for each Stokes photon that is created, the occupation number
of the laser field changes as the result of spontaneous scattering into one particular Stokes mode
in accordance with the relation dmL/dz = −dmS/dz, with dmS/dz given by Eq. (10.2.4).
However, since the system can radiate into a large number of Stokes modes, the total rate of
loss of laser photons is given by

dmL

dz
= −Mb

dmS

dz
= −DmLMb

c/n
, (10.2.9)

where M is the total number of modes into which the system can radiate and where b is a
geometrical factor that accounts for the fact that the angular distribution of scattered radiation
may be nonuniform and hence that the scattering rate into different Stokes modes may be
different. Explicitly, b is the ratio of the angularly averaged Stokes emission rate to the rate in
the direction of the particular Stokes mode S for which D (and thus the Raman gain coefficient)
is to be determined. If |f (θ,φ)|2 denotes the angular distribution of the Stokes radiation, b is
then given by

b =
∫ |f (θ,φ)|2 d�/4π

|f (θS,φS)|2 , (10.2.10)

where (θS,φS) gives the direction of the particular Stokes mode for which D is to be deter-
mined.

The total number of Stokes modes into which the system can radiate is given by the expres-
sion (see, for example, Boyd, 1983, Eq. (3.4.4))

M = V ω2
S�ω

π2(c/n)3
, (10.2.11)

where V denotes the volume of the region in which the modes are defined and where �ω

denotes the linewidth of the scattered Stokes radiation. The rate of loss of laser photons is
conventionally described by the cross section σ for Raman scattering, which is defined by the
relation

dmL

dz
= −NσmL, (10.2.12)

where N is the number density of molecules. By comparison of Eqs. (10.2.9) and (10.2.12), we
see that we can express the parameter D in terms of the cross section σ by

D = Nσ(c/n)

Mb
. (10.2.13)
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FIGURE 10.2.2: Geometry of the region within which the laser and Stokes modes are defined.

This expression for D, with M given by Eq. (10.2.11), is now substituted into expression
(10.2.8) for the Raman gain coefficient to give the result

G = Nσπ2c3mL

V ω2
S�ωbn3

≡ Nπ2c3mL

V ω2
Sbn3

(
∂σ

∂ω

)
0
, (10.2.14)

where in obtaining the second form we have used the definition of the spectral density of the
scattering cross section to express σ in terms of its line-center value (∂σ/∂ω)0 as

σ =
(

∂σ

∂ω

)
0
�ω. (10.2.15)

Eq. (10.2.14) gives the Raman gain coefficient in terms of the number of laser photons per
mode, mL. In order to express the gain coefficient in terms of the laser intensity, which can
be measured directly, we assume the geometry shown in Fig. 10.2.2. The laser intensity IL is
equal to the number of photons contained in this region multiplied by the energy per photon and
divided by the cross-sectional area of the region and by the transit time through the region—that
is,

IL = mL�ωL

A(nL/c)
= mL�ωLc

V n
, (10.2.16)

where V = AL. Through use of this result, the Raman gain coefficient of Eq. (10.2.14) can be
expressed as

G = Nπ2c2

ω2
Sbn2�ωL

(
∂σ

∂ω

)
0
IL. (10.2.17)

It is sometimes convenient to express the Raman gain coefficient not in terms of the spectral
cross section (∂σ/∂ω)0 but in terms of the differential spectral cross section (∂2σ/∂ω ∂�)0,
where d� is an element of solid angle. These quantities are related by(

∂σ

∂ω

)
0
= 4πb

(
∂2σ

∂ω∂�

)
0
, (10.2.18)

where b is the factor defined in Eq. (10.2.10) that accounts for the possible nonuniform an-
gular distribution of the scattered Stokes radiation. Through use of this relation, Eq. (10.2.17)
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TABLE 10.2.1: Properties of stimulated Raman scattering for several materialsa.

Substance Frequency
shift ν0
(cm−1)

Linewidth
�ν

(cm−1)

Cross section
N(dσ/d�)0

(10−6 m−1 sr−1)

Gain factorb

G/IL
(m/TW)

Liquid O2 1552 0.117 0.48 ± 0.14 145 ± 40

Liquid N2 2326.5 0.067 0.29 ± 0.09 160 ± 50

Benzene 992 2.15 3.06 28

CS2 655.6 0.50 7.55 240

Nitrobenzene 1345 6.6 6.4 21

Bromobenzene 1000 1.9 1.5 15

Chlorobenzene 1002 1.6 1.5 19

Toluene 1003 1.94 1.1 12

NiNbO3 256 23 381 89

637 20 231 94

Ba2NaNb5O15 650 67

LiTaO3 201 22 238 44

SiO2 467 08

Methane gas 2916 (10 atm)c 6.6

H2 gas 4155 (>10 atm) 15

H2 gas (rotat.) 450 (>0.5 atm) 5

Deuterium gas 2991 (>10 atm) 11

N2 gas 2326 (10 atm)c 0.71

O2 gas 1555 (10 atm)c 0.16

a After Kaiser and Maier (1972) and Simon and Tittel (1994). All transitions are vibrational except for the 450 cm−1 hydrogen
transition which is rotational.
b Measured at 694 nm unless stated otherwise.
c Measured at 500 nm.

becomes

G = 4π3Nc2

ω2
S�ωLn2

S

(
∂2σ

∂ω∂�

)
0
IL. (10.2.19)

Some of the parameters describing stimulated Raman scattering are listed in Table 10.2.1
for a number of materials.

10.3 Stimulated Raman Scattering Described by the Nonlinear
Polarization

Here we develop a classical (that is, non-quantum-mechanical) model that describes stimulated
Raman scattering (see also Garmire et al., 1963). For conceptual clarity, our treatment is re-
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FIGURE 10.3.1: Molecular description of stimulated Raman scattering.

stricted to the scalar approximation. Treatments that include the tensor properties of Raman
interaction are cited in the references listed at the end of this chapter.

We assume that the optical field interacts with a vibrational mode of a molecule, as il-
lustrated in Fig. 10.3.1. We assume that the vibrational mode can be described as a simple
harmonic oscillator of resonance frequency ωv and damping constant γ , and we denote by q̃(t)

the deviation of the internuclear distance from its equilibrium value q0. The equation of motion
describing the molecule vibration is thus

d2q̃

dt2
+ 2γ

dq̃

dt
+ ω2

vq̃ = F̃ (t)

m
, (10.3.1)

where F̃ (t) denotes any force that acts on the vibrational mode and where m represents the
reduced nuclear mass.

The key assumption of the theory is that the optical polarizability of the molecule (which
is typically predominantly electronic in origin) is not constant, but depends on the internuclear
separation q̃(t) according to the equation

α̃(t) = α0 +
(

∂α

∂q

)
0
q̃(t). (10.3.2)

Here α0 is the polarizability of a molecule in which the internuclear distance is held fixed
at its equilibrium value. According to Eq. (10.3.2), when the molecule is set into oscillation
its polarizability will be modulated periodically in time, and thus the refractive index of a
collection of coherently oscillating molecules will be modulated in time in accordance with the
relations

ñ(t) =
√

ε̃(t) = [
1 + Nα̃(t)

]1/2
. (10.3.3)

The temporal modulation of the refractive index will modify a beam of light as it passes through
the medium. In particular, frequency sidebands separated from the laser frequency by ±ωv will
be impressed upon the transmitted laser beam.

Next, we examine how molecular vibrations can be driven coherently by an applied optical
field. In the presence of the optical field Ẽ(z, t), each molecule will become polarized, and the
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induced dipole moment of a molecule located at coordinate z will be given by

p̃(z, t) = ε0αẼ(z, t). (10.3.4)

The energy required to establish this oscillating dipole moment is given by

W = 1
2

〈
p̃(z, t) · Ẽ(z, t)

〉 = 1
2ε0α

〈
Ẽ2(z, t)

〉
, (10.3.5)

where the angular brackets denote a time average over an optical period. The applied optical
field hence exerts a force given by

F̃ = dW

dq
= ε0

2

(
dα

dq

)
0

〈
Ẽ2(z, t)

〉
(10.3.6)

on the vibrational degree of freedom. In particular, if the applied field contains two frequency
components, Eq. (10.3.6) shows that the vibrational coordinate will experience a time-varying
force at the beat frequency between the two field components.

FIGURE 10.3.2: Stimulated Raman scattering. (a) A laser beam at frequency ωL scatters off a molecule
vibrating at frequency ωv to generate light at the Stokes frequency ωS and the anti-Stokes frequency
ωa . (b) Light beams at frequencies ωL and ωS illuminate a molecule. The beat note between these two
frequencies drive a molecular vibration at frequency ωv = ωL − ωS .

The origin of stimulated Raman scattering can be understood schematically in terms of
the interactions shown in Fig. 10.3.2. Part (a) of the figure shows how molecular vibrations
modulate the refractive index of the medium at frequency ωv and thereby impress frequency
sidebands onto the laser field. Part (b) shows how the Stokes field at frequency ωS = ωL − ωv

can beat with the laser field to produce a modulation of the total intensity of the form

Ĩ (t) = I0 + I1 cos[(ωL − ωS)t + φ] (10.3.7)

where φ is some relative phase. This modulated intensity coherently excites the molecular
oscillation at frequency ωL − ωS = ωv . The two processes shown in parts (a) and (b) of the
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figure reinforce one another in the sense that the interaction shown in part (b) leads to a stronger
molecular vibration, which by the interaction shown in part (a) leads to a stronger Stokes field,
which in turn leads to a stronger molecular vibration.

To make these ideas quantitative, let us assume that the total optical field can be represented
as

Ẽ(z, t) = ALei(kLz−ωLt) + ASei(kSz−ωSt) + c.c. (10.3.8)

According to Eq. (10.3.6) the time-varying part of the applied force is then given by

F̃ (z, t) = ε0

(
∂α

∂q

)
0

[
ALA∗

Sei(Kz−�t) + c.c.
]
, (10.3.9)

where we have introduced the notation

K = kL − kS and � = ωL − ωS. (10.3.10)

We next find the solution to Eq. (10.3.1) with a force term of the form of Eq. (10.3.9). We adopt
a trial solution of the form

q̃(t) = q(�)ei(Kz−�t) + c.c. (10.3.11)

We insert Eqs. (10.3.9) and (10.3.11) into Eq. (10.3.1), which becomes

−�2q(�) − 2i�γ q(�) + ω2
vq(�) = ε0

m

(
∂α

∂q

)
0
ALA∗

S,

and we thus find that the amplitude of the molecular vibration is given by

q(�) = (ε0/m)(∂α/∂q)0ALA∗
S

ω2
v − �2 − 2i�γ

. (10.3.12)

The polarization of the medium is given according to Eqs. (10.3.2) and (10.3.4) by

P̃ (z, t) = Np̃(z, t) = ε0Nα̃(z, t)Ẽ(z, t)

= ε0N

[
α0 +

(
∂α

∂q

)
0
q̃(z, t)

]
Ẽ(z, t), (10.3.13)

and consequently the nonlinear part of the polarization is given by

P̃ NL(z, t) = ε0N

(
∂α

∂q

)
0

[
q(�)ei(Kz−�t) + c.c.

]
× [

ALei(kLz−ωLt) + ASei(kSz−ωSt) + c.c.
]
. (10.3.14)
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The nonlinear polarization is thus seen to contain several different frequency components. The
part of this expression that oscillates at frequency ωS is known as the Stokes polarization and
is given by

P̃ NL
S (z, t) = P(ωS)e−iωs t + c.c. (10.3.15)

with a complex amplitude given by

P(ωS) = Nε0

(
∂α

∂q

)
0
q∗(�)ALeikSz. (10.3.16)

By introducing the expression (10.3.12) for q(�) into this equation, we find that the complex
amplitude of the Stokes polarization is given by

P(ωS) = (ε2
0N/m)(∂α/∂q)2

0|AL|2AS

ω2
v − �2 + 2i�γ

eikSz. (10.3.17)

We now define the Raman susceptibility through the expression

P(ωS) = 6ε0χR(ωS)|AL|2ASeikSz, (10.3.18)

where for notational convenience we have introduced χR(ωS) as a shortened form of χ(3)(ωS =
ωS + ωL − ωL). By comparison of Eqs. (10.3.17) and (10.3.18), we find that the Raman sus-
ceptibility is given by

χR(ωS) = ε0(N/6m)(∂α/∂q)2
0

ω2
v − (ωL − ωS)2 + 2i(ωL − ωS)γ

. (10.3.19a)

The real and imaginary parts of χR(ωS) ≡ χ ′
R(ωS) + iχ ′′

R(ωS) are illustrated in Fig. 10.3.3.
Near the Raman resonance, the Raman susceptibility can be approximated as

χR(ωS) = (ε0N/12mωv)(∂α/∂q)2
0

[ωS − (ωL − ωv)] + iγ
. (10.3.19b)

Note that, at the exact Raman resonance (that is, for ωS = ωL −ωv), the Raman susceptibil-
ity is negative imaginary. (We shall see below that consequently the Stokes wave experiences
amplification.)

In order to describe explicitly the spatial evolution of the Stokes wave, we use Eqs. (10.3.8),
(10.3.15), (10.3.18), and (9.3.19) for the nonlinear polarization appearing in the driven wave
equation (2.1.17). We then find that the evolution of the field amplitude AS is given in the
slowly varying amplitude approximation by

dAS

dz
= −αSAS, (10.3.20)
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FIGURE 10.3.3: Resonance structure of the Raman susceptibility.

where

αS = −3i
ωS

nSc
χR(ωS)|AL|2 (10.3.21)

is the Stokes wave “absorption” coefficient. Since the imaginary part of χR(ωS) is negative, the
real part of the absorption coefficient is negative, implying that the Stokes wave actually experi-
ences exponential growth. Note that αS depends only on the modulus of the complex amplitude
of the laser field. Raman Stokes amplification is thus a process for which the phase-matching
condition is automatically satisfied. Alternatively, Raman Stokes amplification can be said to
be a pure gain process or a nonparametric process.

We can also predict the spatial evolution of a wave at the anti-Stokes frequency through
use of the results of the calculation just completed. In the derivation of Eq. (10.3.19a), no
assumptions were made regarding the sign of ωL − ωS . We can thus deduce the form of the
anti-Stokes susceptibility by formally replacing ωS by ωa in Eq. (10.3.19a) to obtain the result

χR(ωa) = ε0(N/6m)(∂α/∂q)2
0

ω2
v − (ωL − ωa)2 + 2i(ωL − ωa)γ

. (10.3.22)

Since ωS and ωa are related through

ωL − ωS = −(ωL − ωa), (10.3.23)

we see that

χR(ωa) = χR(ωS)∗. (10.3.24)

The relation between the Stokes and anti-Stokes Raman susceptibilities is illustrated in
Fig. 10.3.4. Near the Raman resonance, Eq. (10.3.22) can be approximated by

χR(ωa) = −(ε0N/12mωv)(∂α/∂q)2
0

[ωa − (ωL + ωv)] + iγ
, (10.3.25)
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FIGURE 10.3.4: Relation between Stokes and anti-Stokes Raman susceptibilities.

and at the exact resonance the Raman susceptibility is positive imaginary. The amplitude of the
anti-Stokes wave hence obeys the propagation equation

dAa

dz
= −αaAa, (10.3.26)

where

αa = −3i
ωa

nac
χR(ωa)|AL|2. (10.3.27)

For a positive imaginary χR(ωa), αa is positive real, implying that the anti-Stokes wave expe-
riences attenuation.

However, it was found experimentally (Terhune, 1963) that the anti-Stokes wave is gener-
ated with appreciable efficiency in certain directions. The origin of anti-Stokes generation is
an additional contribution to the nonlinear polarization beyond that described by the Raman
susceptibility of Eq. (10.3.25). Inspection of Eq. (10.3.14) shows that there is a contribution to
the anti-Stokes polarization

P̃ NL
a (z, t) = P(ωa)e

−iωat + c.c. (10.3.28)

that depends on the Stokes amplitude and which is given by

P(ωa) = Nε0

(
∂α

∂q

)
0
q(�)AL = (Nε2

0/m)(∂α/∂q)2
0A

2
LA∗

S

ω2
v − �2 − 2i�γ

ei(2kL−kS)z. (10.3.29)

(Recall that � ≡ ωL − ωS = ωa − ωL.) This contribution to the nonlinear polarization can be
described in terms of a four-wave mixing susceptibility χF (ωa) ≡ χ(3)(ωa = ωL + ωL − ωS),
which is defined by the relation

P(ωa) = 3ε0χF (ωa)A
2
LA∗

Sei(2kL−kS)z, (10.3.30)
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and which is hence equal to

χF (ωa) = (Nε0/3m)(∂α/∂q)2
0

ω2
v − (ωL − ωa)2 + 2i(ωL − ωa)γ

. (10.3.31)

We can see by comparison with Eq. (10.3.22) that

χF (ωa) = 2χR(ωa). (10.3.32)

The total polarization at the anti-Stokes frequency is the sum of the contributions described by
Eqs. (10.3.22) and (10.3.31) and is thus given by

P(ωa) = 6ε0χR(ωa)|AL|2Aae
ikaz + 3ε0χF (ωa)A

2
LA∗

Sei(2kL−ks)z. (10.3.33)

The first term in this expression is automatically phase matched (see also the discussion follow-
ing Eq. (10.3.21)) and describes a nonparametric process. The second term is not automatically
phase matched and describes the parametric process of four-wave mixing.

Similarly, there is a four-wave mixing contribution to the Stokes polarization described by

χF (ωS) = (Nε0/3m)(∂α/∂q)2
0

ω2
v − (ωL − ωS)2 + 2i(ωL − ωS)γ

(10.3.34)

so that the total polarization at the Stokes frequency is given by

P(ωS) = 6ε0χR(ωS)|AL|2ASeikSz + 3ε0χF (ωS)A2
LA∗

ae
i(2kL−ka)z. (10.3.35)

This four-wave mixing contribution was not included earlier in Eq. (10.3.16) because we had
not included an anti-Stokes field in Eq. (10.3.8). The Stokes four-wave mixing susceptibility is
related to the Raman Stokes susceptibility by

χF (ωS) = 2χR(ωS) (10.3.36)

and to the anti-Stokes susceptibility through

χF (ωS) = χF (ωa)
∗. (10.3.37)

The spatial evolution of the Stokes and anti-Stokes fields is now obtained by introducing
Eqs. (10.3.33) and (10.3.35) into the driven wave Eq. (2.1.17). We assume that the medium is
optically isotropic and that the slowly varying amplitude and constant-pump approximations
are valid. We find that the field amplitudes obey the set of coupled equations

dAS

dz
= −αSAS + κSA∗

ae
i�kz, (10.3.38a)

dAa

dz
= −αaAa + κaA

∗
Sei�kz, (10.3.38b)
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FIGURE 10.3.5: Phase-matching relations for Stokes and anti-Stokes coupling in stimulated Raman scat-
tering.

where we have introduced nonlinear absorption and coupling coefficients

αj = −3iωj

nj c
χR(ωj )|AL|2, j = S, a, (10.3.39a)

κj = 3iωj

2njc
χF (ωj )A

2
L, j = S, a, (10.3.39b)

and have defined the wavevector mismatch

�k = �k · ẑ = (2kL − kS − ka) · ẑ. (10.3.40)

The form of Eqs. (10.3.38) shows that each of the Stokes and anti-Stokes amplitudes is
driven by a Raman gain or loss term (the first term on the right-hand side) and by a phase-
matched four-wave mixing term (the second). The four-wave mixing term is an effective driving
term only when the wavevector mismatch �k is small. For a material with normal dispersion,
the refractive index experienced by the laser wave is always smaller than the mean of those
experienced by the Stokes and anti-Stokes waves, as illustrated in part (a) of Fig. 10.3.5. For
this reason, perfect phase matching (�k = 0) can always be achieved if the Stokes wave prop-
agates at some nonzero angle with respect to the laser wave, as illustrated in part (b) of the
figure. For angles appreciably different from this phase-matching angle, �k is large, and only
the first term on the right-hand side of each of Eqs. (10.3.38) is important. For these directions,
the two equations decouple, and the Stokes sideband experiences gain and the anti-Stokes side-
band experiences loss. However, for directions such that �k is small, both driving terms on the
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right-hand sides of Eqs. (10.3.38) are important, and the two equations must be solved simul-
taneously. In the next section, we shall see how to solve these equations and shall see that both
Stokes and anti-Stokes radiation can be generated in directions for which �k is small.

10.4 Stokes–Anti-Stokes Coupling in Stimulated Raman Scattering

In this section, we study the nature of the solution to the equations describing the propagation
of the Stokes and anti-Stokes waves. We have just seen that these equations are of the form

dA1

dz
= −α1A1 + κ1A

∗
2e

i�kz, (10.4.1a)

dA∗
2

dz
= −α∗

2A∗
2 + κ∗

2 A1e
−i�kz. (10.4.1b)

In fact, equations of this form are commonly encountered in nonlinear optics and also describe,
for example, any forward four-wave mixing process in the constant-pump approximation. The
ensuing discussion of the solution to these equations is simplified by first rewriting Eqs. (10.4.1)
as

e−i�kz/2
(

dA1

dz
+ α1A1

)
= κ1A

∗
2e

i�kz/2, (10.4.2a)

ei�kz/2
(

dA∗
2

dz
+ α∗

2A∗
2

)
= κ∗

2 A1e
−i�kz/2, (10.4.2b)

from which it follows that the equations can be expressed as(
d

dz
+ α1 + i�k

2

)
A1e

−i�kz/2 = κ1A
∗
2e

i�kz/2, (10.4.3a)(
d

dz
+ α∗

2 − i�k

2

)
A∗

2e
i�kz/2 = κ∗

2 A1e
−i�kz/2. (10.4.3b)

The form of these equations suggests that we introduce the new variables F1 and F2 defined
by

F1 = A1e
−i�kz/2 and F ∗

2 = A∗
2e

i�kz/2, (10.4.4)

so that Eqs. (10.4.3) become (
d

dz
+ α1 + i

�k

2

)
F1 = κ1F

∗
2 , (10.4.5a)(

d

dz
+ α∗

2 − i
�k

2

)
F ∗

2 = κ∗
2 F1. (10.4.5b)
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We now eliminate F ∗
2 algebraically from this set of equations to obtain the single equation(

d

dz
+ α∗

2 − i
�k

2

)(
d

dz
+ α1 + i

�k

2

)
F1 = κ1κ

∗
2 F1. (10.4.6)

We solve this equation by adopting a trial solution of the form

F1(z) = F1(0)egz, (10.4.7)

where g represents an unknown spatial growth rate. We substitute this form into Eq. (10.4.6)
and find that this equation is satisfied by the trial solution if g satisfies the algebraic equation(

g + α∗
2 − i�k

2

)(
g + α1 + i�k

2

)
= κ1κ

∗
2 . (10.4.8)

In general, this equation possesses two solutions, which are given by

g± = −1
2(α1 + α∗

2) ± 1
2

[(
α1 − α∗

2 + i�k
)2 + 4κ1κ

∗
2

]1/2
. (10.4.9)

Except for special values of α1, α2, κ1, κ2, and �k, the two values of g given by Eq. (10.4.9)
are distinct. Whenever the two values of g are distinct, the general solution for F is given by

F1 = F+
1 (0)eg+z + F−

1 (0)eg−z, (10.4.10)

and thus through the use of Eq. (10.4.4) we see that the general solution for A1 is of the form

A1(z) = (
A+

1 eg+z + A−
1 eg−z

)
ei�kz/2. (10.4.11)

Here A+
1 and A−

1 are constants of integration whose values must be determined from the rel-
evant boundary conditions. The general form of the solution for A∗

2(z) is readily found by
substituting Eq. (10.4.11) into Eq. (10.4.3a), which becomes(

g+ + α1 + i
�k

2

)
A+

1 eg+z +
(

g− + α1 + i
�k

2

)
A−

1 eg−z = κ1A
∗
2e

i�kz/2.

This equation is now solved for A∗
2(z) to obtain

A∗
2(z) =

[(
g+ + α1 + i�k/2

κ1

)
A+

1 eg+z

+
(

g− + α1 + i�k/2

κ1

)
A−

1 eg−z

]
e−i�kz/2. (10.4.12)

If we define constants A+
2 and A−

2 by means of the equation

A∗
2(z) = (

A+∗
2 eg+z + A−∗

2 eg−z
)
e−i�kz/2, (10.4.13)
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we see that the amplitudes A±
1 and A±

2 are related by

A±∗
2

A±
1

= g± + α1 + i�k/2

κ1
. (10.4.14)

This equation shows how the amplitudes A+
2 and A+

1 are related in the part of the solution
that grows as exp(g+z), and similarly how the amplitudes A−

2 and A−
1 are related in the part

of the solution that grows as exp(g−z). We can think of Eq. (10.4.14) as specifying the eigen-
modes of propagation of the Stokes and anti-Stokes waves. As written, Eq. (10.4.14) appears
to be asymmetric with respect to the roles of the ω1 and ω2 fields. However, this asymmetry
occurs in appearance only. Since g± depends on α1, α2, κ1, κ2, and �k, the right-hand side of
Eq. (10.4.14) can be written in a variety of equivalent ways, some of which display the symme-
try of the interaction more explicitly. We next rewrite Eq. (10.4.14) in such a manner.

One can show by explicit calculation using Eq. (10.4.9) that the quantities g+ and g− are
related by (

g+ + α1 + i�k

2

)(
g− + α1 + i�k

2

)
= −κ1κ

∗
2 . (10.4.15)

In addition, one can see by inspection of Eq. (10.4.9) that their difference is given by

g+ − g− = [(
α1 − α∗

2 + i�k
)2 + 4κ1κ

∗
2

]1/2
. (10.4.16a)

By substitution of Eq. (10.4.9) into this last equation, it follows that

g+ − g− = ±[
2g± + (

α1 + α∗
2

)]
, (10.4.16b)

where on the right-hand side either both pluses or both minuses must be used. Furthermore,
one can see from Eq. (10.4.9) that

g+ + g− = −(
α1 + α∗

2

)
. (10.4.16c)

By rearranging this equation and adding i�k/2 to each side, it follows that(
g± + α1 + i�k

2

)
= −

(
g∓ + α∗

2 − i�k

2

)
, (10.4.17a)(

g± + α∗
2 + i�k

2

)
= −

(
g∓ + α1 + i�k

2

)
. (10.4.17b)

Through the use of Eqs. (10.4.15) and (10.4.17a), Eq. (10.4.14) can be expressed as

A±∗
2

A±
1

= g± + α1 + i�k/2

κ1
= −κ∗

2

g∓ + α1 + i�k/2
= κ∗

2

g± + α∗
2 − i�k/2

. (10.4.18)
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By taking the geometric mean of the last and third-last forms of this expression, we find that
the ratio A±∗

2 /A±
1 can be written as

A±∗
2

A±
1

=
[
κ∗

2 (g± + α1 + i�k/2)

κ1(g± + α∗
2 − i�k/2)

]1/2

; (10.4.19)

this form shows explicitly the symmetry between the roles of the ω1 and ω2 fields.
Next, we find the form of the solution when the boundary conditions are such that the input

fields are known at the plane z = 0—that is, when A1(0) and A∗
2(0) are given. We proceed by

finding the values of the constants of integration A+
1 and A−

1 . Eq. (10.4.11) is evaluated at z = 0
to give the result

A1(0) = A+
1 + A−

1 , (10.4.20a)

and Eq. (10.4.12) is evaluated at z = 0 to give the result

A∗
2(0) =

(
g+ + α1 + i�k/2

κ1

)
A+

1 +
(

g− + α1 + i�k/2

κ1

)
A−

1 . (10.4.20b)

We rearrange Eq. (10.4.20a) to find that A−
1 = A1(0) − A+

1 , and we substitute this form into
Eq. (10.4.20b) to obtain

A∗
2(0) =

(
g+ − g−

κ1

)
A+

1 +
(

g− + α1 + i�k/2

κ1

)
A1(0).

We solve this equation for A+
1 to obtain

A+
1 =

(
κ1

g+ − g−

)
A∗

2(0) −
(

g− + α1 + i�k/2

g+ − g−

)
A1(0). (10.4.21a)

If instead we solve Eq. (10.4.20a) for A+
1 and substitute the result A+

1 = A1(0) − A−
1 into

Eq. (10.4.20b), we find that

A∗
2(0) =

(
g− − g+

κ1

)
A−

1 −
(

g+ + α1 + i�k/2

κ1

)
A1(0),

which can be solved for A−
1 to obtain

A−
1 = −

(
κ1

g+ − g−

)
A∗

2(0) +
(

g+ + α1 + i�k/2

g+ − g−

)
A1(0). (10.4.21b)

The expressions (10.4.21) for the constants A+
1 and A−

1 are now substituted into Eqs. (10.4.11)
and (10.4.12) to give the solution for the spatial evolution of the two interacting fields in terms
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of their boundary values as

A1(z) = 1

g+ − g−

{[
κ1A

∗
2(0) −

(
g− + α1 + i�k

2

)
A1(0)

]
eg+z

−
[
κ1A

∗
2(0) −

(
g+ + α1 + i�k

2

)
A1(0)

]
eg−z

}
ei�kz/2 (10.4.22)

and

A∗
2(z) = 1

g+ − g−

{[(
g+ + α1 + i�k

2

)
A∗

2(0) + κ∗
2 A1(0)

]
eg+z

−
[(

g− + α1 + i�k

2

)
A∗

2(0) + κ∗
2 A1(0)

]
eg−z

}
e−i�kz/2. (10.4.23)

Through use of Eqs. (10.4.17), the second form can be written in terms of α2 instead of α1 as

A∗
2(z) = 1

g+ − g−

{[
−

(
g− + α∗

2 − i�k

2

)
A∗

2(0) + κ∗
2 A1(0)

]
eg+z

+
[(

g+ + α∗
2 − i�k

2

)
A∗

2(0) − κ∗
2 A1(0)

]
eg−z

}
e−i�kz/2. (10.4.24)

Before applying the results of the derivation just performed to the case of stimulated Raman
scattering, let us make sure that the solution makes sense by applying it to several specific
limiting cases.

10.4.1 Dispersionless, Nonlinear Medium without Gain or Loss

For a medium without gain (or loss), we set α1 = α2 = 0. Also, for a medium that is lossless
and dispersionless, χ(3)(ω1 = 2ω0 −ω2) must equal χ(3)(ω2 = 2ω0 −ω1), and thus the product
κ1κ

∗
2 that appears in the solution is equal to

κ1κ
∗
2 = 9ω1ω2

4n1n2c2

∣∣χ(3)(ω1 = 2ω0 − ω2)
∣∣2|A0|4, (10.4.25)

which is a real, positive quantity. We allow �k to be arbitrary. Under these conditions, the
coupled gain coefficient of Eq. (10.4.9) reduces to

g± = ±[
κ1κ

∗
2 − (�k/2)2]1/2

. (10.4.26)

We see that, so long as �k is not too large, the root g+ will be a positive real number corre-
sponding to amplification, whereas the root g− will be a negative real number corresponding to
attenuation. However, if the wavevector mismatch becomes so large that �k2 exceeds 4κ1κ

∗
2 ,
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both roots will become pure imaginary, indicating that each eigensolution shows oscillatory
spatial behavior. According to Eq. (10.4.14), the ratio of amplitudes corresponding to each
eigensolution is given by

A±∗
2

A±
1

= g± + i�k/2

κ1
. (10.4.27)

The right-hand side of this expression simplifies considerably for the case of perfect phase
matching (�k = 0) and becomes ±(κ∗

2 /κ1)
1/2. If we also choose our phase conventions so that

A0 is purely real, we find that expression reduces to

A±∗
2

A±
1

= ±i
(n1ω2

n2ω1

)1/2 � ±i, (10.4.28)

which shows that the two frequency sidebands are phased by ±π/2 radians in each of the
eigensolutions.

10.4.2 Medium without a Nonlinearity

One would expect on physical grounds that, for a medium in which χ(3) vanishes, the solution
would reduce to the usual case of the free propagation of the ω1 and ω2 waves. We now verify
that our formal solution possesses this property. By setting κ1 = κ2 = 0 in Eq. (10.4.9), and
assuming for simplicity that �k vanishes, we find that

g+ = −α∗
2 and g− = −α1. (10.4.29)

The eigenamplitudes are found most readily from Eq. (10.4.19). If we assume that κ1 and κ2

approach zero in such a manner that κ∗
2 /κ1 remains finite, we find from Eq. (10.4.19) that

A+∗
2

A+
1

= ∞,
A−∗

2

A−
1

= 0. (10.4.30)

Thus, the positive root corresponds to a wave at frequency ω2, which propagates according to

A∗
2(z) = A∗

2(0)eg+z = A∗
2(0)e−α∗

2z, (10.4.31a)

whereas the negative root corresponds to a wave at frequency ω1, which propagates according
to

A1(z) = A1(0)eg−z = A1(0)e−α1z. (10.4.31b)

We thus see that each of the waves simply experiences free propagation.
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10.4.3 Stokes–Anti-Stokes Coupling in Stimulated Raman Scattering

Let us now apply this analysis to the case of stimulated Raman scattering (see also Bloembergen
and Shen, 1964). For definiteness, we associate ω1 with the Stokes frequency ωS and ω2 with
the anti-Stokes frequency ωa . The nonlinear absorption coefficients αS and αa and coupling
coefficients κS and κa are given by Eqs. (10.3.39) with the nonlinear susceptibilities given by
Eqs. (10.3.19b), (10.3.25), (10.3.31), and (10.3.34). In light of the relations

χF (ωS) = χF (ωa)
∗ = 2χR(ωS) = 2χR(ωa)

∗ (10.4.32)

among the various elements of the susceptibility, we find that the absorption and coupling
coefficients can be related to each other as follows:

αa = −α∗
S

(
nSωa

naωS

)
, (10.4.33a)

κS = −αSe2iφL, (10.4.33b)

κa = α∗
S

(
nSωa

naωS

)
e2iφL, (10.4.33c)

where φL is the phase of the pump laser defined through

AL = |AL|eiφL, (10.4.34)

and where the Stokes amplitude absorption coefficient is given explicitly by

αS = −iωSNε2
0(∂α/∂q)2

0|AL|2
4mnScωv[ωS − (ωL − ωv) + iγ ] . (10.4.35)

If we now introduce the relations (10.4.33) into the expression (10.4.9) for the coupled gain
coefficient, we find the gain eigenvalues are given by

g± = −1
2αS

(
1 − nSωa

naωS

)

± 1

2

{[
αS

(
1 + nSωa

naωS

)
+ i�k

]2

− 4α2
S

nSωa

naωS

}1/2

. (10.4.36)

It is usually an extremely good approximation to set the factor nSωL/naωS equal to unity.
In this case Eq. (10.4.36) simplifies to

g± = ±[
iαS�k − (�k/2)2]1/2

. (10.4.37)
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The dependence of g± on the phase mismatch is shown graphically in Fig. 10.4.1.∗ Eq. (10.4.37)
leads to the perhaps surprising result that the coupled gain g± vanishes in the limit of perfect
phase matching. The reason for this behavior is that, for sufficiently small �k, the anti-Stokes
wave (which normally experiences loss) is so strongly coupled to the Stokes wave (which
normally experiences gain) that it prevents the Stokes wave from experiencing growth.

FIGURE 10.4.1: Dependence of the coupled gain on the wavevector mismatch.

It is also instructive to study the expression (10.4.37) for the coupled gain in the limit in
which |�k| is very large. For |�k| � |αS |, Eq. (10.4.37) becomes

g± = ±i
�k

2

(
1 − 4iαS

�k

)
� ±(

αS + 1
2 i�k

)
. (10.4.38)

Through the use of Eq. (10.4.14), we find that the ratio of sidemode amplitudes associated with
each of these gain eigenvalues is given by

A+∗
a

A+
S

= −2 − i
�k

αS

� i
�k

αS

, (10.4.39a)

A−∗
a

A−
S

= 0. (10.4.39b)

Since we have assumed that |�k| is much larger than |αS |, we see that the + mode is primarily
anti-Stokes, whereas the − mode is primarily Stokes.†

Let us now examine more carefully the nature of the decreased gain that occurs near �k = 0.
By setting �k = 0 in the exact expression (10.4.36) for the coupled gain, we find that the gain

∗ The graph has the same visual appearance whether the approximate form (10.4.37) or the exact form (10.4.36) is
plotted.

† Recall that at resonance αS is real and negative; hence g− = −αS − 1
2 i�k has a positive real part and leads to

amplification.
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eigenvalues become

g+ = 0, g− = −αS

(
1 − nSωa

naωS

)
. (10.4.40)

Note that |g−| is much smaller than |αS | but does not vanish identically. Note also that with the
sign convention used here at resonance g− is a negative quantity. We find from Eq. (10.4.14)
that for a good approximation

A±∗
a

A±
S

= −1; (10.4.41)

thus, each eigensolution is seen to be an equal combination of Stokes and anti-Stokes compo-
nents, as mentioned in our discussion of Fig. 10.4.1.

Next, let us consider the spatial evolution of the field amplitudes under the assumptions that
�k = 0 and that their values are known at z = 0. We find from Eqs. (10.4.22) and (10.4.23) that

AS(z) = −1

1 − nSωa/naωS

{[
A∗

a(0)e2iφL + nSωa

naωS

AS(0)

]

− [
A∗

a(0)e2iφL + AS(0)
]
eg−z

}
, (10.4.42a)

A∗
a(z) = 1

1 − nSωa/naωS

{[
A∗

a(0) + nSωa

naωS

AS(0)e−2iφL

]

− nSωa

naωS

[
A∗

a(0) + AS(0)e−2iφL
]
eg−z

}
. (10.4.42b)

Note that, since g− is negative, the second term in each expression experiences exponential
decay, and as z → ∞ the field amplitudes approach the asymptotic values

AS(z → ∞) = −1

1 − nSωa/naωS

[
A∗

a(0)e2iφL + nSωa

naωS

AS(0)

]
, (10.4.43a)

A∗
a(z → ∞) = 1

1 − nSωa/naωS

[
A∗

a(0) + nSωa

naωS

AS(0)e−2iφL

]
. (10.4.43b)

Note that each field is amplified by the factor (1 − nSωa/naωS)−1. The nature of this amplifi-
cation is illustrated in part (a) of Fig. 10.4.2. We see that after propagating through a distance
of several times 1/g−, the field amplitudes attain constant values and no longer change with
propagation distance.

To see why field amplitudes remain constant, it is instructive to consider the nature of the
molecule vibration in the simultaneous presence of the laser, Stokes, and anti-Stokes fields—
that is, in the field

Ẽ(z, t) = ALei(kLz−ωLt) + ASei(kSz−ωSt) + Aae
i(kaz−ωat) + c.c., (10.4.44)
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FIGURE 10.4.2: Nature of Raman amplification for the case of perfect phase matching (�k = 0).

where kL − kS = ka − kL ≡ K and ωL − ωS = ωa − ωL ≡ �. The solution to the equation
of motion (10.3.1) for the molecular vibration with the force term given by Eqs. (10.3.6) and
(10.4.44) is given by

q̃(z, t) = q(�)ei(Kz−�t) + c.c.,

where

g(�) = (ε0/m)(∂α/∂q)0(ALA∗
S + AaA

∗
L)

ω2
v − �2 − 2i�γ

. (10.4.45)

We can see from Eqs. (10.4.43) that, once the field amplitudes have attained their asymptotic
values, the combination ALA∗

S + AaA
∗
L vanishes, implying that the amplitude q(ω) of the

molecular vibration also vanishes asymptotically, as illustrated in part (b) of Fig. 10.4.2.

10.5 Coherent Anti-Stokes Raman Scattering

In the previous sections of this chapter, we discussed spontaneous Raman scattering and stim-
ulated Raman scattering. These processes are represented symbolically in parts (a) and (b) of
Fig. 10.5.1. In the notation of Section 10.3, stimulated Raman scattering is described by a non-
linear susceptibility of the form χ

(3)
R (ωS = ωS + ωL − ωL). We also saw in that section (see,

for example, Eqs. (10.3.20) and (10.3.21)) that the Stokes wave at frequency ωS tends to ex-
perience exponential growth, with a growth rate that scales as the product of the laser intensity
and the imaginary part of χ

(3)
R .
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FIGURE 10.5.1: Various Raman scattering processes: (a) spontaneous Raman scattering; (b) stimulated
Raman scattering; (c) coherent anti-Stokes Raman scattering (CARS); and (d) coherent Stokes Raman
scattering (CSRS).

In the present section, we study two additional scattering processes, also shown in
Fig. 10.5.1, known as coherent anti-Stokes Raman scattering (CARS) and coherent Stokes
Raman scattering (CSRS). Our discussion will concentrate on the first of these processes, as it
is the one most often used in laboratory investigations. In either of these processes, two laser
beams at frequencies ω1 and ω2 < ω1 are applied to the Raman medium, and a beam at a new
frequency is generated by the interaction. In the process of coherent anti-Stokes Raman scatter-
ing (CARS), illustrated in part (c) of the figure, an output is created at frequency 2ω1 − ω2 as a
consequence of the susceptibility χ

(3)
F (ωa = ω1 − ω2 + ω1). In the process of coherent Stokes

Raman scattering (CSRS), illustrated in part (d) of the figure, an output is created at frequency
2ω2 − ω1 as a consequence of the susceptibility χ

(3)
F (ωS = ω2 + ω2 − ω1).

Let us now analyze more carefully the process of coherent anti-Stokes Raman scattering
(CARS). We recall from Section 10.3 that the susceptibility describing this process is given
according to Eqs. (10.3.25) and (10.3.32) for the current choice of frequencies by

χ
(3)
F (ωa = ω1 − ω2 + ω1) = −(ε0N/6mωv)(∂α/∂q)2

0

[(ω1 − ω2) − ωv] + iγ
. (10.5.1)

Note that the nonlinear response experiences a resonance whenever the input frequencies ω1

and ω2 are selected so that ω1 −ω2 is equal to a vibrational frequency ωv of the material system.
It is for this reason that CARS is particularly useful as a diagnostic tool for determining the
presence of chemical species by means of their Raman vibrational modes. CARS is also useful
as a probe of molecular structure because the resonance frequency ωv and relaxation rate γ

often depend sensitively upon the molecular environment.
The generation of the anti-Stokes wave is described by the coupled-amplitude equation

Eq. (10.3.38b), which for the current situation becomes

dAa

dz
= −αaAa + κaA

∗
2e

i�kz, (10.5.2)

where

αa = −3iωa

nac
χR(ωa)|A1|2, κa = 3iωa

2nac
χF (ωa)A

2
1, (10.5.3)
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FIGURE 10.5.2: Typical CARS lineshape, such as that reported by Levenson and Bloembergen (1974).

and

�k = �k · ẑ = (2k1 − k2 − ka) · ẑ. (10.5.4)

CARS is usually studied under conditions such that the generation of the anti-Stokes signal

is dominated by the second term on the right-hand side of Eq. (10.5.2). This situation occurs

whenever the gain of stimulated Raman scattering (described by the first term) is small. Under

this assumption and that of perfect phase matching (�k = 0), the growth of the anti-Stokes

wave can be expressed as

Aa(z) = 3iωa

2nac
χF (ωa)A

2
1A

∗
2z. (10.5.5)

The spectral variation of the anti-Stokes generation as either of the two input frequencies is

varied is determined by |χF (ωa)|2, and thus is expected to have a shape in the form of the square

of a Lorentzian function. However, it is found experimentally that the measured line shape is

often highly distorted. An example of such a line shape is shown in Fig. 10.5.2. The explanation

for this behavior is that in addition to the highly resonant molecular response described by

Eq. (10.5.1) actual materials also exhibit a nonresonant background susceptibility χ
(3)
NR due to

electronic response and to nonresonant vibrational modes. The total susceptibility is then given

by χ
(3)
NR + χ

(3)
F (ωa), and consequently the lineshape will be given by |χ(3)

NR + χ
(3)
F (ωa)|2, which

leads to a line shape of the sort shown in the figure.

The CARS effect was first observed experimentally by Maker and Terhune (1965). Signifi-

cant early studies were those of Levenson et al. (1972) and Levenson and Bloembergen (1974).

The subject of Raman spectroscopy is covered well in the book by Levenson and Kano (1988).

The use of CARS for imaging and for microscopy has been reviewed by Volkmer (2005).
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10.6 Stimulated Rayleigh-Wing Scattering

Stimulated Rayleigh-wing scattering is the light-scattering process that results from the ten-
dency of anisotropic molecules to become aligned along the electric field vector of an optical
wave. Stimulated Rayleigh-wing scattering was described theoretically by Bloembergen and
Lallemand (1966) and by Chiao et al. (1966), and was observed experimentally by Mash et al.
(1965) and Cho et al. (1967). Other early studies were conducted by Denariez and Bret (1968)
and by Foltz et al. (1968).

The molecular orientation effect was described in Section 4.4 for the case in which the
applied optical field Ẽ(t) contains a single frequency component, and it was found that the
average molecular polarizability is modified by the presence of the applied field. The molecular
polarizability can be expressed as

〈α〉 = α0 + αNL, (10.6.1)

where the usual, weak-field polarizability is given by

α0 = 1
3α‖ + 2

3α⊥, (10.6.2)

where α‖ and α⊥ denote the polarizabilities measured parallel to the perpendicular to the
symmetry axis of the molecule, respectively (see Fig. 10.6.1). In addition, the lowest-order
nonlinear contribution to the polarizability is given by

αNL = ᾱ2
〈
Ẽ2〉, (10.6.3)

where

ᾱ2 = 2

45n0

(α‖ − α⊥)2

kT
. (10.6.4)

In order to describe stimulated Rayleigh-wing scattering, we need to determine the response
of the molecular system to an optical field that contains both laser and Stokes components,
which we describe by the equation

Ẽ(r, t) = ALei(kLz−ωLt) + ASei(−kSz−ωSt) + c.c. (10.6.5)

For the present, we assume that the laser and Stokes waves have the same linear polarization and
are counterpropagating. The analysis for the case in which the waves have arbitrary polarization
and/or are copropagating is somewhat more involved and is discussed briefly below.

Since the intensity, which is proportional to 〈Ẽ2〉, now contains a component at the beat
frequency ωL −ωS , the nonlinear contribution to the mean polarizability 〈α〉 is no longer given
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FIGURE 10.6.1: Illustration of the polarizabilities of an anisotropic molecule for the case α‖ > α⊥.

TABLE 10.6.1: Properties of SRWS for several materials.

Substance G
(m/TW)

τ

(psec)
�ν = 1/2πτ

(GHz)

CS2 30 2 80

Nitrobenzene 30 48 3.3

Bromobenzene 14 15 10

Chlorobenzene 10 8 20

Toluene 10 2 80

Benzene 6 3 53

by Eq. (10.6.3), which was derived for the case of a monochromatic field. We assume that, in
general, αNL is described by the equation

τ
dαNL

dt
+ αNL = ᾱ2Ẽ2. (10.6.6)

In this equation τ represents the molecular orientation relaxation time and is the characteristic
response time of the SRWS process; see Table 10.6.1 for typical values of τ . Eq. (10.6.6) has
the form of a Debye relaxation equation; recall that we have studied equations of this sort in
our general discussion of two-beam coupling in Section 7.4.

If Eq. (10.6.6) is solved in steady state with Ẽ(t) given by Eq. (10.6.5), we find that the
nonlinear contribution to the polarizability of a molecule located at position z is given by

αNL(z, t) = 2ᾱ2
(
ALA∗

L + ASA∗
S

) +
(

2ᾱ2ALA∗
Seiqz−�t

1 − i�τ

)
+ c.c., (10.6.7)
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where we have introduced the wavevector magnitude q and frequency � associated with the
material excitation, which are given by

q = kL + kS and � = ωL − ωS. (10.6.8)

Note that because the denominator of the second term in the expression for αNL(z, t) is a com-
plex quantity, the nonlinear response will in general be shifted in phase with respect to the
intensity distribution associated with the interference of the laser and Stokes fields. We shall
see below that this phase shift is the origin of the gain of the stimulated Rayleigh-wing scatter-
ing process.

We next derive the equation describing the propagation of the Stokes field. This derivation
is formally identical to that presented in Section 7.4 in our general discussion of two-beam
coupling. To apply that treatment to the present case, we need to determine the values of the
refractive indices n0 and n2 that are relevant to the problem at hand. We find that n0 is obtained
from the usual Lorentz–Lorenz law (see also Eq. (3.9.8a)) as

n2
0 − 1

n2
0 + 2

= 1
3Nα0 (10.6.9a)

and that the nonlinear refractive index is given (see also Eqs. (4.1.18) and (4.4.26)) by

n2 =
(

n2
0 + 2

3

)4 1

2n2
0ε0c

Nᾱ2. (10.6.9b)

Then, as in Eq. (7.4.15), we find that the spatial evolution of the Stokes wave is described
by

dAS

dz
= 2in0n2ωS

c

(
ALA∗

L + ASA∗
S

)
AS + 2in0n2ωS

c

ALA∗
LAS

1 + i�τ
. (10.6.10)

Here the first term on the right-hand side leads to a spatial variation of the phase of the Stokes,
whereas the second term leads to both a phase variation and to amplification of the Stokes wave.
The gain associated with stimulated Rayleigh-wing scattering can be seen more clearly in terms
of the equation relating the intensities of the two waves, which are defined by

Ij = 2n0ε0c|Aj |2, j = L,S. (10.6.11)

The spatial variation of the intensity of the Stokes wave is therefore described by

dIS

dz
= 2n0ε0c

[
AS

dA∗
S

dz
+ A∗

S

dAS

dz

]
. (10.6.12)
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Through use of Eq. (10.6.10), we can write this result as

dIS

dz
= gRWILIS, (10.6.13)

where we have introduced the gain factor gRW for stimulated Raleigh-wing scattering, which is
given by

gRW = g
(max)
RW

(
2�τ

1 + �2τ 2

)
, (10.6.14a)

where g
(max)
RW denotes the maximum value of the gain factor, which is given by

g
(max)
RW = n2ωS

c
=

(
n2

0 + 2

3

)4 2ωSN(α‖ − α⊥)2

45kT n2
0ε0c2

. (10.6.14b)

We have made use of Eqs. (10.6.4) and (10.6.9b) in obtaining the second form of the expression
for g

(max)
RW .

FIGURE 10.6.2: Frequency dependence of the gain factor for stimulated Rayleigh-wing scattering.

The frequency dependence of the gain factor for stimulated Rayleigh-wing scattering as
predicted by Eq. (10.6.14a) is illustrated in Fig. 10.6.2. We see that amplification of the ωS

wave occurs for ωS < ωL and that attenuation occurs for ωS > ωL. The maximum gain occurs
when � ≡ ωL − ωS is equal to 1/τ .

The nature of the stimulated Rayleigh-wing scattering process is illustrated schematically
in Fig. 10.6.3. The interference of the forward-going wave of frequency ωL and wavevector
magnitude kL and the backward-going wave of frequency ωS and wavevector magnitude kS

produces a fringe pattern that moves slowly through the medium in the forward direction with
phase velocity v = �/q. The tendency of the molecules to become aligned along the electric
field vector of the total optical wave leads to planes of maximum molecular alignment alter-
nating with planes of minimum molecular alignment. As mentioned above, these planes are
shifted in phase with respect to the maxima and minima of the intensity distributions. The scat-
tering of the laser field from this periodic array of aligned molecules leads to the generation of



490 Chapter 10

FIGURE 10.6.3: Nature of stimulated Rayleigh-wing scattering.

the Stokes wave. The scattered radiation is shifted to lower frequencies because the material
disturbance causing the scattering is moving in the forward direction. The scattering process
shows gain because the generation of Stokes radiation tends to reinforce the modulated portion
of the interference pattern, which leads to increased molecular alignment and thus to increased
scattering of Stokes radiation.

10.6.1 Polarization Properties of Stimulated Rayleigh-Wing Scattering

A theoretical analysis of the polarization properties of stimulated Rayleigh-wing scattering has
been conducted by Chiao and Godine. The details of their analysis are quite complicated; here
we shall simply quote some of their principal results.

In order to treat the polarization properties of stimulated Rayleigh-wing scattering, one
must consider the tensor properties of the material response. The analysis of Chiao and Godine
presupposes that the nonlinear contribution to the susceptibility obeys the equation of motion

τ
d

dt
�χik + �χik = C

(〈
ẼiẼk

〉 − 1
3δik

〈
Ẽ · Ẽ

〉)
, (10.6.15)

where, ignoring for the present local-field corrections, the proportionality constant C is given
by

C = Nε2
0(α‖ − α⊥)2

15kT
. (10.6.16)

Note that the trace of the right-hand side of Eq. (10.6.15) vanishes, as required by the fact that
Rayleigh-wing scattering is described by a traceless, symmetric permittivity tensor.
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TABLE 10.6.2: Dependence of the gain factor for stimulated Rayleigh-wing scattering
in the backward direction on the polarization of the laser and Stokes waves for the cases
of linear and circular polarizationa.

a The arrows on the circles denote the direction in which the electric field vector rotates in time at a fixed
position in space. The gain factors are given relative to that given by Eqs. (10.6.14) for the case of linear and
parallel polarization.

TABLE 10.6.3: Relation between laser polarization and the Stokes polarization expe-
riencing maximum gain in backward stimulated Rayleigh-wing scattering.

By requiring that the Stokes wave obey the wave equation with a susceptibility given by
the solution to Eq. (10.6.15), and taking account of rotation of the pump laser polarization
(see, for example, the discussion in Section 4.2), Chiao and Godine calculate the gain factor
for stimulated Rayleigh-wing scattering for arbitrary polarization of the laser and Stokes fields.
Some of their results for special polarization cases are summarized in Table 10.6.2.

For any state of polarization of the pump wave, some particular polarization of the Stokes
wave will experience maximum gain. As a consequence of the large value of the gain re-
quired to observe stimulated light scattering (gRWILL � 25), the light generated by stimulated
Rayleigh-wing scattering will have a polarization that is nearly equal to that for which the gain
is maximum. The relation between the laser polarization and the Stokes polarization for which
the gain is maximum is illustrated in Table 10.6.3. Note that the generated wave will be nearly,
but not exactly, the polarization conjugate (in the sense of vector phase conjugation, as dis-
cussed in Section 7.2) of the incident laser wave. In particular, the polarization ellipse of the
generated wave will be rounder and tilted with respect to that of the laser wave.
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Zel’dovich and Yakovleva (1980) have studied theoretically the polarization properties of
stimulated Rayleigh-wing scattering for the case in which the pump radiation is partially po-
larized. They predict that essentially perfect vector phase conjugation can be obtained by
stimulated Rayleigh-wing scattering for the case in which the pump radiation is completely
depolarized in the sense that the state of polarization varies randomly over the transverse dimen-
sions of the laser beam. The wavefront-reconstructing properties of stimulated Rayleigh-wing
scattering have been studied experimentally by Kudriavtseva et al. (1978), and the vector phase
conjugation properties have been studied experimentally by Miller et al. (1990).

The analysis of stimulated Rayleigh-wing scattering in the forward and near-forward di-
rection is much more complicated than that of backward stimulated Rayleigh-wing scattering
because the possibility of Stokes–anti-Stokes coupling (as described in Section 10.4 for stimu-
lated Raman scattering) must be included in the analysis. This situation has been described by
Chiao et al. (1966) and by Chiao and Godine (1969).

Problems

1. Estimation of the properties of stimulated Raman scattering. By making reasonable as-
sumptions regarding the value of the parameter (dα/dq), perform an order-of-magnitude
estimate of the gain factor for stimulated Raman scattering for condensed matter, and com-
pare this value with the measured values given in Table 10.2.1.

2. Polarization properties of stimulated Rayleigh-wing scattering. By carrying out the pre-
scription described in the first full paragraph following Eq. (10.6.16), verify that the entries
in Table 10.6.2 are correct.
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Chapter 11

The Electrooptic and Photorefractive
Effects

11.1 Introduction to the Electrooptic Effect

The electrooptic effect is the change in refractive index of a material induced by the presence
of a static (or low-frequency) electric field.

In some materials, the change in refractive index depends linearly on the strength of the
applied electric field. This change is known as the linear electrooptic effect or Pockels effect.
The linear electrooptic effect can be described in terms of a nonlinear polarization given by

Pi(ω) = 2ε0

∑
jk

χ
(2)
ijk (ω = ω + 0)Ej (ω)Ek(0). (11.1.1)

Since the linear electrooptic effect can be described by a second-order nonlinear susceptibility,
it follows from the general discussion of Section 1.5 that a linear electrooptic effect can occur
only for materials that are noncentrosymmetric. Although the linear electrooptic effect can be
described in terms of a second-order nonlinear susceptibility, a very different mathematical for-
malism has historically been used to describe the electrooptic effect; this formalism is described
in Section 11.2 of this chapter.

In centrosymmetric materials (such as liquids and glasses), the lowest-order change in the
refractive index depends quadratically on the strength of the applied static (or low-frequency)
field. This effect is known as the Kerr electrooptic effect∗ or as the quadratic electrooptic effect.
It can be described in terms of a nonlinear polarization given by

Pi(ω) = 3ε0

∑
jkl

χ
(3)
ijkl(ω = ω + 0 + 0)Ej (ω)Ek(0)El(0). (11.1.2)

∗ The quadratic electrooptic effect is often referred to simply as the Kerr effect. More precisely, it is called the Kerr
electrooptic effect to distinguish it from the Kerr magnetooptic effect.

Nonlinear Optics. https://doi.org/10.1016/B978-0-12-811002-7.00020-5
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11.2 Linear Electrooptic Effect

In this section we develop a mathematical formalism that describes the linear electrooptic effect.
Other treatments of the linear electrooptic effect are given in Cook and Jaffe (1979), Kaminow
(1974), Thompson and Hartfield (1978), and Yariv and Yeh (1984). In an anisotropic material,
the constitutive relation between the field vectors D and E has the form

Di = ε0

∑
j

εijEj (11.2.1a)

or explicitly, ⎡
⎣Dx

Dy

Dz

⎤
⎦ = ε0

⎡
⎣εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎤
⎦

⎡
⎣Ex

Ey

Ez

⎤
⎦ . (11.2.1b)

For a lossless, non-optically active material, the dielectric permeability tensor εij is repre-
sented by a real symmetric matrix, which therefore has six independent elements—that is,
εxx, εyy, εzz, εxy = εyx, εxz = εzx , and εyz = εzy . A general mathematical result states that any
real, symmetric matrix can be expressed in diagonal form by means of an orthogonal transfor-
mation. Physically, this result implies that there exists some new coordinate system (X,Y,Z),
related to the coordinate system x, y, z of Eq. (11.2.1b) by rotation of the coordinate axes, in
which Eq. (11.2.1b) has the much simpler form⎡

⎣DX

DY

DZ

⎤
⎦ = ε0

⎡
⎣εXX 0 0

0 εYY 0
0 0 εZZ

⎤
⎦

⎡
⎣EX

EY

EZ

⎤
⎦ . (11.2.2)

This new coordinate system is known as the principal-axis system, because in it the dielectric
tensor is represented as a diagonal matrix.

We next consider the energy density per unit volume,

U = 1
2D ·E = 1

2ε0
∑
ij

εijEiEj , (11.2.3)

associated with a wave propagating through the anisotropic medium. In the principal-axis
coordinate system, the energy density can be expressed in terms of the components of the
displacement vector as

U = 1

2ε0

[
D2

X

εXX

+ D2
Y

εYY

+ D2
Z

εZZ

]
. (11.2.4)

This result shows that the surfaces of constant energy density in D space are ellipsoids. The
shapes of these ellipsoids can be described in terms of the coordinates (X,Y,Z) themselves. If
we let

X =
(

1

2ε0U

)1/2

DX, Y =
(

1

2ε0U

)1/2

DY , Z =
(

1

2ε0

)1/2

DZ, (11.2.5)
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Eq. (11.2.4) becomes

X2

εXX

+ Y 2

εYY

+ Z2

εZZ

= 1. (11.2.6)

The surface described by this equation is known as the optical indicatrix or as the index ellip-
soid. The equation describing the index ellipsoid takes on its simplest form in the principal-axis
system; in other coordinate systems it is given by the general expression for an ellipsoid, which
we write in the form (

1

n2

)
1
x2 +

(
1

n2

)
2
y2 +

(
1

n2

)
3
z2 + 2

(
1

n2

)
4
yz

+ 2

(
1

n2

)
5
xz + 2

(
1

n2

)
6
xy = 1. (11.2.7)

The coefficients (1/n2)i are optical constants that describe the optical indicatrix in the new
coordinate system; they can be expressed in terms of the coefficients εXX, εYY , εZZ by means
of the standard transformation laws for coordinate transformations, but the exact nature of the
relationship is not needed for our present purposes.

The index ellipsoid can be used to describe the optical properties of an anisotropic material
by means of the following procedure (Born and Wolf, 1975). For any given direction of propa-
gation within the crystal, a plane perpendicular to the propagation vector and passing through
the center of the ellipsoid is constructed. The curve formed by the intersection of this plane
with the index ellipsoid forms an ellipse. The semimajor and semiminor axes of this ellipse
give the two allowed values of the refractive index for this particular direction of propagation;
the orientations of these axes give the polarization directions of the D vector associated with
these refractive indices.

We next consider how the optical indicatrix is modified when the material system is sub-
jected to a static or low-frequency electric field. This modification is conveniently described in
terms of the impermeability tensor ηij , which is defined by the relation

Ei = 1

ε0

∑
j

ηijDj . (11.2.8)

Note that this relation is the inverse of that given by Eq. (11.2.1a), and thus that ηij is
the matrix inverse of εij , that is, that ηij = (ε−1)ij . We can express the optical indicatrix
in terms of the elements of the impermeability tensor by noting that the energy density is
equal to U = (1/2ε0)

∑
ij ηijDiDj . If we now define coordinates x, y, z by means of relations

x = Dx/(2ε0U)1/2, and so on, we find that the expression for U as a function of D becomes

1 = η11x
2 + η22y

2 + η33z
2 + 2η12xy + 2η23yz + 2η13xz. (11.2.9)
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By comparison of this expression for the optical indicatrix with that given by Eq. (11.2.7), we
find that (

1

n2

)
1
= η11,

(
1

n2

)
2
= η22,

(
1

n2

)
3
= η33,(

1

n2

)
4
= η23 = η32,

(
1

n2

)
5
= η13 = η31,

(
1

n2

)
6
= η12 = η21.

(11.2.10)

We next assume that ηij can be expressed as a power series in the strength of the components
Ek of the applied electric field as

ηij = η
(0)
ij +

∑
k

rijkEk +
∑
kl

sijklEkEl + · · · . (11.2.11)

Here rijk is the tensor that describes the linear electrooptic effect, sijkl is the tensor that de-
scribes the quadratic electrooptic effect, etc. Since the dielectric permeability tensor εij is real
and symmetric, its inverse ηij must also be real and symmetric, and consequently the electroop-
tic tensor rijk must be symmetric in its first two indices. For this reason, it is often convenient to
represent the third-rank tensor rijk as a two-dimensional matrix rhk using contracted notation
according to the prescription

h =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 for ij = 11,

2 for ij = 22,

3 for ij = 33,

4 for ij = 23 or 32,

5 for ij = 13 or 31,

6 for ij = 12 or 21.

(11.2.12)

In terms of this contracted notation, we can express the lowest-order modification of the optical
constants (1/n2)i that appears in expression (11.2.7) for the optical indicatrix as

�

(
1

n2

)
i

=
∑
j

rijEj , (11.2.13a)

where we have made use of Eqs. (11.2.10) and (11.2.11). This relationship can be written
explicitly as ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

�(1/n2)1

�(1/n2)2

�(1/n2)3

�(1/n2)4

�(1/n2)5

�(1/n2)6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

r11 r12 r13

r21 r22 r23

r31 r32 r33

r41 r42 r43

r51 r52 r53

r61 r62 r63

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎣Ex

Ey

Ez

⎤
⎦ . (11.2.13b)
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The quantities rij are known as the electrooptic coefficients and give the rate at which the
coefficients (1/n2)i change with increasing electric field strength.

We remarked earlier that the linear electrooptic effect vanishes for materials possessing in-
version symmetry. Even for materials lacking inversion symmetry, where the coefficients do
not necessarily vanish, the form of rij is restricted by any rotational symmetry properties that
the material may possess. For example, for any material (such as ADP and potassium dihydro-
gen phosphate [KDP]) possessing the point group symmetry 4̄2m, the electrooptic coefficients
must be of the form

rij =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0

r41 0 0
0 r41 0
0 0 r63

⎤
⎥⎥⎥⎥⎥⎥⎦

(for class 4̄2m), (11.2.14)

where we have expressed rij in the standard crystallographic coordinate system, in which the
Z direction represents the optic axis of the crystal. We see from Eq. (11.2.14) that the form
of the symmetry properties of the point group 4̄2m requires 15 of the electrooptic coefficients
to vanish and two of the remaining coefficients to be equal. Hence, rij possesses only two
independent elements in this case.

Similarly, the electrooptic coefficients of crystals of class 3m (such as lithium niobate) must
be of the form

rij =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −r22 r13

0 r22 r13

0 0 r33

0 r42 0
r42 0 0
r22 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(for class 3m), (11.2.15)

and the electrooptic coefficients of crystals of the class 4mm (such as barium titanate) must be
of the form

rij =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 r13

0 0 r13

0 0 r33

0 r42 0
r42 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(for class 4mm). (11.2.16)

The properties of several electrooptic materials are summarized in Table 11.2.1.
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TABLE 11.2.1: Properties of several electrooptic materialsa.

Material Point
group

Electrooptic
coefficients
(10−12 m/V)

Refractive
index

Potassium dihydrogen phosphate,
KH2PO4 (KDP)

4̄2m r41 = 8.77
r63 = 10.5

n0 = 1.514
ne = 1.472
(at 0.5461 µm)

Potassium dideuterium phosphate,
KD2PO4 (KD∗P)

4̄2m r41 = 8.8
r63 = 26.4

n0 = 1.508
ne = 1.468
(at 0.5461 µm)

Lithium niobate, LiNbO3 3m r13 = 9.6
r22 = 6.8
r33 = 30.9
r42 = 32.6

n0 = 2.3410
ne = 2.2457
(at 0.5 µm)

Lithium tantalate, LiTaO3 3m r13 = 8.4
r22 = −0.2
r33 = 30.5
r51 = 20

n0 = 2.176
ne = 2.180
(at 0.633 nm)

Barium titanate, BaTiO3
b 4mm r13 = 19.5

r33 = 97
r42 = 1640

n0 = 2.488
ne = 2.424
(at 514 nm)

Strontium barium niobate,
Sr0.6Ba0.4NbO6 (SBN:60)

4mm r13 = 55
r33 = 224
r42 = 80

n0 = 2.367
ne = 2.337
(at 514 nm)

Zinc telluride, ZnTe 4̄3m r41 = 4.0 n0 = 2.99
(at 0.633 µm)

a From a variety of sources. See, for example, B.J. Thompson and E. Hartfield in The Handbook of Optics (W.G. Driscoll and
W. Vaughan, eds.), McGraw-Hill, New York, 1978, and W.R. Cook, Jr. and H. Jaffe, “Electrooptic Coefficients,” in Landolt-
Bornstein, New Series, Vol. II (K.-H. Hellwege, ed.), Springer-Verlag, 1979, pp. 552–651. The electrooptic coefficients are given
in the MKS units of m/V. To convert to the cgs units of cm/statvolt each entry should be multiplied by 3 × 104.
b ε

‖
dc

= 135, ε⊥
dc

= 3700.

11.3 Electrooptic Modulators

As an example of the application of the formalism developed in the last section, we now con-

sider how to construct an electrooptic modulator using the material KDP. Of course, the analysis

is formally identical for any electrooptic material of point group 4̄2m.
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KDP is a uniaxial crystal, and hence in the absence of an applied electric field the index
ellipsoid is given in the standard crystallographic coordinate system by the equation

X2

n2
0

+ Y 2

n2
0

+ Z2

n2
e

= 1. (11.3.1)

Note that this (X,Y,Z) coordinate system is the principal-axis coordinate system in the absence
of an applied electric field. If an electric field is applied to crystal, the index ellipsoid becomes
modified according to Eqs. (11.2.13b) and (11.2.14) and takes the form

X2

n2
0

+ Y 2

n2
0

+ Z2

n2
e

+ 2r41EXYZ + 2r41EY XZ + 2r63EZXY = 1. (11.3.2)

Note that (since cross terms containing YZ, XZ, and XY appear in this equation) the (X,Y,Z)

coordinate system is not the principal-axis coordinate system when an electric field is applied
to the crystal. Note also that the crystal will no longer necessarily be uniaxial in the presence
of a dc electric field.

Let us now assume that the applied electric field has only a Z component, so that Eq. (11.3.2)
reduces to

X2

n2
0

+ Y 2

n2
0

+ Z2

n2
e

+ 2r63EZXY = 1. (11.3.3)

This special case is often encountered in device applications. The new principal-axis coordinate
system, which we designate (x, y, z), can now be found by inspection. If we let

X = x − y√
2

, Y = x + y√
2

, Z = z, (11.3.4)

we find that Eq. (11.3.3) becomes(
1

n2
0

+ r63Ez

)
x2 +

(
1

n2
0

− r63Ez

)
y2 + z2

n2
e

= 1, (11.3.5)

which describes an ellipsoid in its principal-axis system. This ellipsoid can alternatively be
written as

x2

n2
x

+ y2

n2
y

+ z2

n2
e

= 1, (11.3.6)

where, in the physically realistic limit r63Ez � 1, the new principal values of the refractive
index are given by

nx = n0 − 1
2n3

0r63Ez, (11.3.7a)

ny = n0 + 1
2n3

0r63Ez. (11.3.7b)
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FIGURE 11.3.1: The electrooptic effect in KDP. (a) Principal axes in the absence of an applied field.
(b) Principal axes in the presence of an applied field. (c) The intersection of the index ellipsoid with the
plane z = Z = 0.

Fig. 11.3.1 shows how to construct a modulator based on the electrooptic effect in KDP.
Part (a) shows a crystal that has been cut so that the optic axis (Z axis) is perpendicular to the
plane of the entrance face, which contains the X and Y crystalline axes. Part (b) of the figure
shows the same crystal in the presence of a longitudinal (z-directed) electric field Ez = V/L,
which is established by applying a voltage V between the front and rear faces. The principal
axes (x, y, z) of the index ellipsoid in the presence of this field are also indicated. In practice,
the potential difference is applied by coating the front and rear faces with a thin film of a
conductive coating. Historically, thin layers of gold have been used, although more recently the
transparent conducting material indium tin oxide has successfully been used.

Part (c) of Fig. 11.3.1 shows the curve formed by the intersection of the plane perpendicular
to the direction of propagation (i.e., the plane z = Z = 0) with the index ellipsoid. For the case
in which no static field is applied, the curve has the form of a circle, showing that the refractive
index has the value n0 for any direction of polarization.∗ For the case in which a field is applied,

∗ The absence of birefringence effects in this situation is one of the primary motivations for orienting the crystal
for propagation along the z direction.
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this curve has the form of an ellipse. In drawing the figure, we have arbitrarily assumed that
the factor r63Ez is negative; consequently the semimajor and semiminor axes of this ellipse are
along the x and y directions and have lengths nx and ny < nx , respectively.

Let us next consider a beam of light propagating in the z = Z direction through the modula-
tor crystal shown in Fig. 11.3.1. A wave polarized in the x direction propagates with a different
phase velocity than a wave polarized in the y direction. In propagating through the length L of
the modulator crystal, the x and y polarization components will thus acquire the phase differ-
ence

� = (ny − nx)
ωL

c
, (11.3.8)

which is known as the retardation. By introducing Eqs. (11.3.7) into this expression we find
that

� = n3
0r63EzωL

c
.

Since Ez = V/L, this result shows that the retardation introduced by a longitudinal electrooptic
modulator depends only on the voltage V applied to the modulator and is independent of the
length of the modulator. In particular, the retardation can be represented as

� = n3
0r63ωV

c
. (11.3.9)

It is convenient to express this result in terms of the quantity

Vλ/2 = πc

ωn3
0r63

, (11.3.10)

which is known as the half-wave voltage. Eq. (11.3.9) then becomes

� = π
V

Vλ/2
. (11.3.11)

Note that a half-wave (π radians) of retardation is introduced when the applied voltage is equal
to the half-wave voltage. Half-wave voltages of longitudinal-field electrooptic materials are
typically of the order of 10 kV for visible light.

Since the x and y polarization components of a beam of light generally experience different
phase shifts in propagating through an electrooptic crystal, the state of polarization of the light
leaving the modulator will generally be different from that of the incident light. Fig. 11.3.2
shows how the state of polarization of the light leaving the modular depends on the value of the
retardation � for the case in which vertically (X) polarized light is incident on the modulator.
Note that light of any ellipticity can be produced by controlling the voltage V applied to the
modulator.
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FIGURE 11.3.2: Polarization ellipses describing the light leaving the modulator of Fig. 11.3.1 for various
values of the retardation. In all cases, the input light is linearly polarized in the vertical (X) direction.

FIGURE 11.3.3: Construction of a voltage-controllable intensity modulator.

Fig. 11.3.3 shows one way of constructing an intensity modulator based on the configuration
shown in Fig. 11.3.1. The incident light is passed through a linear polarizer whose transmission
axis is oriented in the X direction. The light then enters the modulator crystal, where its x and
y polarization components propagate with different velocities and acquire a phase difference,
whose value is given by Eq. (11.3.11). The light leaving the modulator then passes through a
quarter-wave plate oriented so that its fast and slow axes coincide with the x and y axes of the
modulator crystal, respectively. The beam of light thereby acquires the additional retardation
�B = π/2. For reasons that will become apparent later, �B is called the bias retardation. The
total retardation is then given by

� = π
V

Vλ/2
+ π

2
. (11.3.12)
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In order to analyze the operation of this modulator, let us represent the electric field of the
incident radiation after passing through the initial polarizer as

Ẽ = Eine
−iωt + c.c., (11.3.13a)

where

Ein = EinX̂ = Ein√
2
(x̂ + ŷ). (11.3.13b)

After the beam passes through the modulator crystal and quarter-wave plate, the phase of the y

polarization component will be shifted with respect to that of the x polarization component by
an amount �, so that (to within an unimportant overall phase factor) the complex field amplitude
becomes

E = Ein√
2

(
x̂ + ei� ŷ

)
. (11.3.14)

Only the Ŷ = (−x̂ + ŷ)/
√

2 component of this field will be transmitted by the final polarizer.
The field amplitude measured after this polarizer is hence given by Eout = (E · Ŷ)Ŷ, or by

Eout = Ein

2

(−1 + ei�
)
Ŷ. (11.3.15)

If we now define the transmission T of the modulator of Fig. 11.3.3 as

T = |Eout|2
|Ein|2 , (11.3.16)

we find through use of Eq. (11.3.15) that the transmission is given by

T = sin2(�/2). (11.3.17)

The functional form of these transfer characteristics is shown in Fig. 11.3.4. We see that
the transmission can be made to vary from zero to one by varying the total retardation between
zero and π radians. We can also see the motivation for inserting the quarter-wave plate into the
setup of Fig. 11.3.3 in order to establish the bias retardation �B = π/2. For the case in which
the applied voltage V vanishes, the total retardation will be equal to the bias retardation, and
the transmission of the modulator will be 50%. Since the transmission T varies approximately
linearly with the retardation � for retardations near � = π/2, the transmission will vary nearly
linearly with the value V of the applied voltage. For example, if the applied voltage is given by

V (t) = Vm sinωmt, (11.3.18)
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FIGURE 11.3.4: Transmission characteristics of the electrooptic modulator shown in Fig. 11.3.3.

the retardation will be given by

� = π

2
+ πVm

Vλ/2
sinωmt. (11.3.19)

The transmission predicted by Eq. (11.3.17) is hence given by

T = sin2
(

π

4
+ πVm

2Vλ/2
sinωmt

)
(11.3.20)

= 1

2

[
1 + sin

(
πVm

Vλ/2
sinωmt

)]
, (11.3.21)

which, for πVm/Vλ/2 � 1, becomes

T = 1

2

(
1 + πVm

Vλ/2
sinωmt

)
. (11.3.22)

The electrooptic effect can also be used to construct a phase modulator for light. For exam-

ple, if the light incident on the electrooptic crystal of Fig. 11.3.1 is linearly polarized along the x

(or the y) axis of the crystal, the light will propagate with its state of polarization unchanged

but with its phase shifted by an amount that depends on the value of the applied voltage. The

voltage-dependent part of the phase shift is hence given by

φ = (nx − n0)
ωL

c
= −n3

0r63EzωL

2c
= n3

0r63V ω

2c
. (11.3.23)
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11.4 Introduction to the Photorefractive Effect

The photorefractive effect∗ is the change in refractive index of an optical material that results
from the optically induced redistribution of electrons and holes. The photorefractive effect is
quite different from most of the other nonlinear-optical effects described in this book in that it
cannot be described by a nonlinear susceptibility χ(n) for any value of n. The reason for this
behavior is that, under a wide range of conditions, the change in refractive index in steady state
is independent of the intensity of the light that induces the change. Because the photorefrac-
tive effect cannot be described by means of a nonlinear susceptibility, special methods must
be employed to describe it; these methods are described in the next several sections. The pho-
torefractive effect tends to give rise to a strong optical nonlinearity; experiments are routinely
performed using milliwatts of laser power. However, the effect tends to be rather slow, with
response times of 0.1 sec being typical.

The origin of the photorefractive effect is illustrated schematically in Fig. 11.4.1. We imag-
ine that a photorefractive crystal is illuminated by two intersecting beams of light of the same
frequency. These beams interfere to produce the spatially modulated intensity distribution I (x)

shown in the upper graph. Free charge carriers, which we assume to be electrons, are generated
through photoionization at a rate that is proportional to the local value of the optical intensity.

These carriers can diffuse through the crystal or can drift in response to a static electric
field. Both processes are observed experimentally. In drawing the figure we have assumed that
diffusion is the dominant process, in which case the electron density is smallest in the regions
of maximum optical intensity, because electrons have preferentially diffused away from these
regions. The spatially varying charge distribution ρ(x) gives rise to a spatially varying electric
field distribution, whose form is shown in the third graph. Note that the maxima of the field
E(x) are shifted by 90◦ with respect to those of the charge density distribution ρ(x). The reason
for this behavior is that the Maxwell equation ∇ ·D = ρ when applied to the present situation
implies that dE/dx = ρ/ε, and the spatial derivative that appears in this equation leads to a
90-degree phase shift between E(x) and ρ(x). The last graph in the figure shows the refractive
index variation �n(x) that is produced through the linear electrooptic effect (Pockels effect) by
the field E(x).† Note that �n(x) is shifted by 90◦ with respect to the intensity distribution I (x)

that produces it. This phase shift has the important consequence that it can lead to the transfer
of energy between the two incident beams. This transfer of energy is described in Section 11.6.

The properties of some photorefractive crystals are summarized in Table 11.4.1.

∗ Within the context of this book, we use the term photorefractive effect in the specific sense described in this
section. Many workers in the field of nonlinear optics follow this convention. It should be noted that within
certain communities, the term photorefractive effect is used to describe any light-induced change in refractive
index.

† In drawing the figure, we have assumed that the electrooptic coefficient is positive. Note that the relation

�(1/n2) = reffE implies that �n = − 1
2n3reffE.
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FIGURE 11.4.1: Origin of the photorefractive effect. (a) Two light beams form an interference pattern
within a photorefractive crystal. (b) The resulting distributions of intensity I (x), charge density ρ(x),
induced static field amplitude E(x), and induced refractive index change �n(x) are illustrated.

TABLE 11.4.1: Properties of some photorefractive crystalsa.

Material Useful
wavelength
range (µm)

Carrier drift
length μτE at

E = 2 kV/cm (µm)

τd
(sec)

n3reff
(pm/V)

n3reff/εdc

(pm/V)

InP:Fe 0.85–1.3 3 10−4 52 4.1

GaAs:Cr 0.8–1.8 3 10−4 43 3.3

LiNbO3:Fe3+ 0.4–0.7 <10−4 300 320 11

Bi12SiO20 0.4–0.7 3 105 82 1.8

Sr0.4Ba0.6Nb2O6 0.4–0.6 – 102 2460 4.0

BaTiO3 0.4–0.9 0.1 102 11,300 4.9

KNbBO3 0.4–0.7 0.3 10−3 690 14
a τ is the carrier recombination time; τd is the dielectric relaxation time in the dark. Adapted from Glass et al. (1984).

11.5 Photorefractive Equations of Kukhtarev et al.

In this section we see how to describe the photorefractive effect by means of a model
(Fig. 11.5.1) due to Kukhtarev and co-workers.∗ This model presupposes that the photore-

∗ See Kukhtarev et al. (1977, 1979). This model is also described in several of the chapters of the book edited by
Günter and Huignard (1988).
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fractive effect is due solely to one type of charge carrier, which for definiteness we assume to
be the electron. As illustrated in part (a) of the figure, we assume that the crystal contains NA

acceptors and N0
D donors per unit volume, with NA � N0

D . We assume that the acceptor levels
are completely filled with electrons that have fallen from the donor levels and that these filled
acceptor levels cannot be ionized by thermal or optical effects. Thus, at temperature T = 0 and
in the absence of an optical field, each unit volume of the crystal contains NA ionized donors,
NA electrons bound to acceptor impurities, and N0

D − NA neutral donor levels that can partic-
ipate in the photorefractive effect. We further assume that electrons can be excited thermally
or optically from the donor levels into the conduction band, as illustrated in part (b) of the
figure. We let ne, N+

D , and ND denote the number densities of conduction band electrons, ion-
ized donors, and un-ionized donors, respectively. Note that ND + N+

D must equal N0
D , but that

N+
D is not necessarily equal to ne, because some donors lose their electrons to the acceptors

and because electrons can migrate within the crystal, leading to regions that are not electrically
neutral.

FIGURE 11.5.1: Energy levels and populations used in the model of Kukhtarev et al. to describe the
photorefractive effect.

We next assume that the variation in level populations can be described by the rate equations

∂N+
D

∂t
= (sI + β)

(
N0

D − N+
D

) − γ neN
+
D, (11.5.1)

∂ne

∂t
= ∂N+

D

∂t
+ 1

e
(∇ · j) (11.5.2)

where s is a constant proportional to the photoionization cross section of a donor, β is the
thermal generation rate, γ is the recombination coefficient, −e is the charge of the electron,
and j is the electrical current density. Eq. (11.5.1) states that the ionized donor concentration
can increase by thermal ionization or photoionization of unionized donors and can decrease by
recombination. Eq. (11.5.2) states that the mobile electron concentration can increase in any
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small region either because of the ionization of donor atoms or because of the flow of electrons
into the local region. The flow of current is described by the equation

j = neeμE + eD∇ne + jph, (11.5.3)

where μ is the electron mobility, D is the diffusion constant (which by the Einstein relation is
equal to kBT μ/e), and jph is the photovoltaic (also known as the photogalvanic) contribution
to the current. The last contribution results from the tendency of the photoionization process to
eject the electron in a preferred direction in anisotropic crystals. For some materials (such as
barium titanate and bismuth silicon oxide) this contribution to j is negligible, although for others
(such as lithium niobate) it is very important. For lithium niobate jph has the form jph = pI ĉ,
where ĉ is a unit vector in the direction of the optic axis of the crystal and p is a constant.
The importance of the photovoltaic current has been discussed by Glass (1978) and Glass et al.
(1974).

The field E appearing in Eq. (11.5.3) is the static (or possibly low-frequency) electric field
appearing within the crystal due to any applied voltage or to any charge separation within the
crystal. It must satisfy the Maxwell equation

εdc∇ · E = −e
(
ne + NA − N+

D

)
, (11.5.4)

where εdc is the static dielectric constant of the crystal. The modification of the optical prop-
erties is described by assuming that the optical-frequency dielectric constant is changed by an
amount

�ε = −ε2reff|E|. (11.5.5)

For simplicity, here we are treating the dielectric properties in the scalar approximation; the
tensor properties can be treated explicitly using the formalism developed in Section 11.2.∗
Note that the scalar form of Eq. (11.2.13a) is �(1/ε) = reff|E|, from which Eq. (11.5.5) follows
directly. The optical field Ẽopt is assumed to obey the wave equation

∇2Ẽopt + 1

c2

∂2

∂t2
(ε + �ε)Ẽopt = 0. (11.5.6)

Eqs. (11.5.1) through (11.5.6) constitute the photorefractive equations of Kukhtarev et al.
They have been solved in a variety of special cases and have been found to provide an adequate
description of most photorefractive phenomena. We shall consider their solution in special cases
in the next two sections.

∗ See also the calculation of reff for one particular case in Eq. (11.6.14b) in the next section.
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11.6 Two-Beam Coupling in Photorefractive Materials

Under certain circumstances, two beams of light can interact in a photorefractive crystal in such
a manner that energy is transferred from one beam to the other. This process, which is often
known as two-beam coupling, can be used, for example, to amplify a weak, image-bearing
signal beam by means of an intense pump beam. Exponential gains of 10 per centimeter are
routinely observed.

A typical geometry for studying two-beam coupling is shown in Fig. 11.6.1. Signal and
pump waves, of amplitudes As and Ap, respectively, interfere to form a nonuniform intensity
distribution within the crystal. Because of the nonlinear response of the crystal, this nonuniform
intensity distribution produces a refractive index grating within the material. However, this
grating is displaced from the intensity distribution in the direction of the positive (or negative,
depending on the sign of the dominant charge carrier and the sign of the effective electrooptic
coefficient) crystalline c axis. As a result of this phase shift, the light scattered from Ap and
As interferes constructively with As , whereas the light scattered from As into Ap interferes
destructively with Ap, and consequently the signal wave is amplified whereas the pump wave
is attenuated.

FIGURE 11.6.1: Typical geometry for studying two-beam coupling in a photorefractive crystal.

In order to describe this process mathematically, we assume that the optical field within the
crystal can be represented as

Ẽopt(r, t) = [
Ap(z)eikp·r + As(z)e

iks·r]e−iωt + c.c. (11.6.1)

We assume that Ap(z) and As(z) are slowly varying functions of the coordinate z. The intensity
distribution of the light within the crystal can be expressed as I = n0ε0c〈Ẽ2

opt〉 or as

I = I0 + (
I1e

iqx + c.c.
)
, (11.6.2a)

where

I0 = 2n0ε0c
(|Ap|2 + |As |2

)
,

I1 = 2n0ε0c
(
ApA∗

s

)
(êp · ês), and q ≡ qx̂ = kp − ks. (11.6.2b)
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Here êp and ês are the polarization unit vectors of the pump and signal waves, which are
assumed to be linearly polarized. The quantity q is known as the grating wavevector. Note that
the intensity distribution can also be described by the expression

I = I0
[
1 + m cos(qx + φ)

]
, (11.6.3)

where m = 2|I1|/I0 is known as the modulation index and where φ = tan−1(Im I1/Re I1).
In order to determine how the optical properties of the photorefractive material are modi-

fied by the presence of the pump and signal fields, we first solve Eqs. (11.5.1) through (11.5.4)
of Kukhtarev et al. to find the static electric field E induced by the intensity distribution of
Eqs. (11.6.2). This static electric field can then be used to calculate the change in the optical-
frequency dielectric constant through use of Eq. (11.5.5). Since Eqs. (11.5.1) through (11.5.4)
are nonlinear (i.e., they contain products of the unknown quantities ne, N+

D , j, and E), they
cannot easily be solved exactly. For this reason, we assume that the depth of modulation m is
small (i.e., |I1| � I0) and seek an approximate steady-state solution of Eqs. (11.5.1) through
(11.5.4) in the form

E = E0 + (
E1e

iqx + c.c.
)
, j = j0 + (

j1e
iqx + c.c.

)
,

ne = ne0 + (
ne1e

iqx + c.c.
)
, N+

D = N+
D0 + (

N+
D1d

iqx + c.c.
)
, (11.6.4)

where E = Ex̂ and j = j x̂. We assume that the quantities E1, j1, ne1, and ND1 are small in the
sense that the product of any two of them can be neglected.

We next introduce Eq. (11.6.4) into Eqs. (11.5.1) through (11.5.4) and equate terms with
common x dependences. We thereby find several sets of equations. The set that is independent
of the x coordinate depends only on the large quantities (subscript zero) and is given (in the
same order as Eqs. (11.5.1) through (11.5.4)) by

(sI0 + β)
(
N0

D − N+
D0

) = γ ne0N
+
D0, (11.6.5a)

j0 = constant, (11.6.5b)

j0 = ne0eμE0 + jph,0, (11.6.5c)

N+
D0 = ne0 + NA. (11.6.5d)

Eqs. (11.6.5a) and (11.6.5d) can be solved directly to determine the mean electron density ne0

and mean ionized donor density N+
D0. Since in most realistic cases the inequality ne0 � NA is

satisfied, the densities are given simply by

N+
D0 = NA, (11.6.6a)

ne0 = (sI0 + β)
(
N0

D − NA

)
γNA

. (11.6.6b)
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The two remaining equations, (11.6.5b) and (11.6.5c), determine the mean current density j0

and mean field E0. Let us assume for simplicity that the photovoltaic contribution jph is negli-
gible for the material under consideration. The value of E0 then depends on the properties of
any external electric circuit to which the crystal is connected. In the common situation in which
no voltage is externally applied to the crystal, E0 and hence j0 vanish.

We next consider the equation for the first-order quantities (quantities with the subscript 1)
by considering the portions of Eqs. (11.5.1) through (11.5.4) with the spatial dependence eiqx .
The resulting equations are (we assume that E0 = 0):

sI1
(
N0

D − NA

) − (sI0 + β)N+
D1 = γ ne0N

+
D1 + γ ne1NA, (11.6.7a)

j1 = 0, (11.6.7b)

−ne0eE1 = iqkBT ne1, (11.6.7c)

iqε0εdcE1 = −e
(
ne1 − N+

D1

)
. (11.6.7d)

We solve these equations algebraically (again assuming that ne0 � NA) to find that the ampli-
tude of the spatially varying part of the static electric field is given by

E1 = −i

(
sI1

sI0 + β

)(
ED

1 + ED/Eq

)
, (11.6.8)

where we have introduced the characteristic field strengths

ED = qkBT

e
, Eq = e

ε0εdeq
Neff, (11.6.9)

where Neff = NA(N0
D − NA)/N0

D can be interpreted as an effective trap density. Note that
in the common circumstance where NA � N0

D , Neff is given approximately by Neff � NA.
The quantity ED is called the diffusion field strength and is a measure of the field strength
required to inhibit the separation of charge due to thermal agitation. The quantity Eq is called
the maximum space charge field and is a measure of the maximum electric field that can be
created by redistributing charge of mean density eNeff over the characteristic distance 2π/q.
Note from Eq. (11.6.8) that E1 is shifted in phase with respect to the intensity distribution I1

and that E1 is proportional to the depth of modulation m in the common case of β � sI0.
Recall that the change in the optical-frequency dielectric constant is proportional to the

amplitude E1 of the spatially modulated component of the static electric field. For this reason,
it is often of practical interest to maximize the value of E1. We see from Eq. (11.6.8) that E1 is
proportional to the product of the factor sI1/(sI0 + β), which can be maximized by increasing
the depth of modulation m = 2|I1|/I0,∗ with the factor ED/(1 + ED/Eq). Since each of the
characteristic field strengths ED and Eq depends on the grating wavevector, this second factor

∗ Recall, however, that the present derivation is valid only if m � 1.
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can be maximized by using the optimum value of q. To show the dependence of E1 on q, we
can rewrite Eq. (11.6.8) as

E1 = −i

(
sI1

sI0 + β

)
Eopt

2(q/qopt)

1 + (q/qopt)2
, (11.6.10a)

where

qopt =
(

Neffe
2

kBT ε0εdc

)1/2

, Eopt =
(

NeffkBT

4ε0εdc

)1/2

. (11.6.10b)

Note that qopt is of the order of magnitude of the Debye–Hückel screening wave number of
Eq. (4.6.7).

FIGURE 11.6.2: Dependence of the modulated component of the space charge field on the magnitude q

of the grating wavevector.

The dependence of E1 on q is shown in Fig. 11.6.2. Note that the grating wavevector q can
be varied experimentally by controlling the angle between the pump and signal beams, since
(see Fig. 11.6.1) q is given by the formula

q = 2n
ω

c
sin θ. (11.6.11)

Through an experimental determination of the optimum value of the magnitude of the grat-
ing wavevector, the value of the effective trap density Neff can be obtained through use of
Eq. (11.6.10b).

Let us next calculate the spatial growth rate that the signal wave experiences as the result of
two-beam coupling in photorefractive materials. For simplicity, we assume that the photoion-
ization rate sI0 is much greater than the thermal ionization rate β (which is the usual case in
practice), so the field amplitude E1 of Eq. (11.6.8) can be expressed through use of Eqs. (11.6.2)
as

E1 = −i
ApA∗

s

|As |2 + |Ap|2 (êp · ês)Em, (11.6.12a)
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where

Em = ED

1 + ED/Eq

. (11.6.12b)

According to Eq. (11.5.5), this field produces a change in the dielectric constant of amplitude
�ε = −ε2reffE1. For the particular geometry of Fig. 11.6.1, the product ε2reff has the form
(Feinberg et al., 1980; see also Feinberg and MacDonald, 1989)

ε2reff =
∑
ijklm

rijk

(
εil ê

s
l

)(
εjmê

p
m

)
q̂k, (11.6.13)

where ês
l and ê

p
m denote the l and m cartesian components of the polarization unit vectors of the

signal and pump waves, respectively, and q̂k denotes the k cartesian component of a unit vector
in the direction of the grating vector. For crystals of point group 4mm (such as barium titanate),
one finds that for ordinary waves

reff = r13 sin
(αs + αp

2

)
(11.6.14a)

and that for extraordinary waves

reff = n−4[n4
0r13 cosαs cosαp + 2n2

en
2
0r42 cos 1

2(αs + αp)

+ n4
er33 sinαs sinαp

]
sin 1

2(αs + αp). (11.6.14b)

Here αs and αp denote the angles between the propagation vectors of the signal and pump
waves and the positive crystalline c axis, respectively, and n is the refractive index experienced
by the beam that scatters off the grating.

Note from Table 11.2.1 that for barium titanate the electrooptic coefficient r42 is much
larger than either r13 or r33. We see from Eqs. (11.6.14) that only through the use of light of
extraordinary polarization can one utilize this large component of the electrooptic tensor.

The change in the dielectric constant �ε = −ε2reffE1 produces a nonlinear polarization
given by

P NL = (
�ε eiq·r + c.c.

)(
Ase

iks·r + Apeikp·r). (11.6.15)

Recall that q = kp − ks. The part of the nonlinear polarization having the spatial variation
exp(iks · r) can act as a phase-matched source term for the signal wave and is given by

P NL
s = �ε∗Apeiks·r = −iε2reffEm

|Ap|2As

|Ap|2 + |As |2 eiks·r. (11.6.16a)
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Likewise, the portion of P NL that can act as a phase-matched source term for the pump wave
is given by

P NL
p = �εAse

ikp·r = iε2reffEm

|As |2Ap

|Ap|2 + |As |2 eikp·r. (11.6.16b)

We next derive coupled-amplitude equations for the pump and signal fields using the for-
malism described in Section 2.1. We define zs and zp to be distances measured along the signal
and pump propagation directions. We find that in the slowly varying amplitude approximation
the signal amplitude varies as

2ik
dAs

dzs

eiks·r = −ω2

c2
P NL

s , (11.6.17a)

which through use of Eq. (11.6.16a) becomes

dAs

dzs

= ω

2c
n3reffEm

|Ap|2As

|Ap|2 + |As |2 . (11.6.17b)

We find that the intensity Is = 2nε0c|As |2 of the signal wave varies spatially as dIs/dzs =
nε0c(A

∗
s dAs/dzs + c.c.), or as

dIs

dzs

= �
IsIp

Is + Ip

, (11.6.18a)

where∗

� = ω

c
n3reffEm. (11.6.18b)

A similar derivation shows that the pump intensity varies spatially as

dIp

dzp

= −�
IsIp

Is + Ip

. (11.6.18c)

Note that Eq. (11.6.18a) predicts that the signal intensity grows exponentially with propagation
distance in the common limit Is � Ip.† The strong amplification available from photorefrac-
tive two-beam coupling allows this process to be used for various practical applications. For

∗ Following convention, we use the same symbol � to denote the photorefractive gain coefficient and the retardation
of Section 11.3.

† Here we implicitly assume that � is a positive quantity. If � is negative, the wave that we have been calling the
pump wave will be amplified and the wave that we have been calling the signal wave will be attenuated. The
sign of � depends on the sign of reff, which can be either positive or negative, and on the sign of Em. Note that,
according to Eqs. (11.6.9) and (11.6.12b), the sign of Em depends on the sign of the dominant charge carrier (our
derivation has assumed the case of an electron) and on the sign of q, which is the x component of kp − ks. For
the case of barium titanate, the dominant charge carriers are usually holes, and the wave whose wavevector has a
positive component along the crystalline c axis is amplified.
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the application of photorefractive two-beam coupling to the design of efficient polarizers, see
Heebner et al. (2000).

The treatment of two-beam coupling given above has assumed that the system is in steady
state. Two-beam coupling under transient conditions can also be treated using the material
equations of Kukhtarev et al. It has been shown (Kukhtarev et al., 1977; Refrégier et al., 1985;
Valley, 1987) that, under the assumption that ne � N+

D,N+
D � N0

D , and β � sI0, the electric
field amplitude E1 obeys the equation

τ
∂E1

∂t
+ E1 = −iEm

ApA∗
s

|Ap|2 + |As |2 (êp · ês) (11.6.19)

with Em given by Eq. (11.6.12b) and with the response time τ given by

τ = τd

1 + ED/EM

1 + ED/Eq

, (11.6.20a)

where

τd = ε0εdc

eμne0
, EM = γNA

qμ
. (11.6.20b)

Here, as in Section 11.5, γ denotes the recombination coefficient and μ denotes the carrier
mobility. Note that the photorefractive response time τ scales linearly with the dielectric relax-
ation time τd .∗ Since the mean electron density ne0 increases linearly with optical intensity (see
Eq. (11.6.6b)), we see that the photorefractive response time becomes faster when the crystal is
excited using high optical intensities.

We next write the coupled-amplitude equations for the pump and signal fields in terms of
the field amplitude E1 as

∂Ap

∂xp

= −ω

2npc
reffAsE1, (11.6.21a)

∂As

∂xs

= −ω

2nsc
reffApE1. (11.6.21b)

Eqs. (11.6.19) through (11.6.21) describe the transient behavior of two-beam coupling.

∗ The dielectric relaxation time is the characteristic time in which charge imbalances neutralize in a conducting
material. The expression for the dielectric relaxation time is derived by combining the equation of continu-
ity ∂ρ/∂t = −∇ · j with Ohm’s law in the form j = σE to find that ∂ρ/∂t = −σ∇ · E = −(σ/ε0εdc)∇ · D =
−(σ/ε0εdc)ρ ≡ −ρ/τd . By equating the electrical conductivity σ with the product ne0eμ, where μ is the carrier
mobility, we obtain the expression for τd quoted in the text.
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FIGURE 11.7.1: Geometry of four-wave mixing in a photorefractive material.

11.7 Four-Wave Mixing in Photorefractive Materials

Next we consider the mutual interaction of four beams of light in a photorefractive crystal. We
assume the geometry of Fig. 11.7.1. Note that the pump beams 1 and 2 are counterpropagating,
as are beams 3 and 4. Thus the interaction shown in the figure can be used to generate beam 4
as the phase conjugate of beam 3.

The general problem of the interaction of four beams of light in a photorefractive material
is very complicated, because the material response consists of four distinct gratings—namely,
one grating due to the interference of beams 1 and 3 and of 2 and 4, one grating due to the
interference of beams 1 and 4 and of 2 and 3, one grating due to the inference of beams 1 and 2,
and one grating due to the interference of beams 3 and 4. However, under certain experimental
situations, only one of these gratings leads to appreciable nonlinear coupling among the beams.
If one assumes that the polarizations, propagation directions, and coherence properties of the
input beams are selected so that only the grating due to the interference of beams 1 and 3 and
beams 2 and 4 is important, the coupled-amplitude equations describing the propagation of the
four beams become (Cronin-Golomb et al., 1984; see also Fischer et al., 1981)

dA1

dz
= − γ

S0

(
A1A

∗
3 + A∗

2A4
)
A3 − αA1, (11.7.1a)

dA2

dz
= − γ

S0

(
A∗

1A3 + A2A
∗
4

)
A4 + αA2, (11.7.1b)

dA3

dz
= γ

S0

(
A∗

1A3 + A2A
∗
4

)
A1 − αA3, (11.7.1c)

dA4

dz
= γ

S0

(
A1A

∗
3 + A∗

2A4
)
A2 + αA4. (11.7.1d)

In these equations, we have introduced the following quantities:

γ = ωreffn
3
0Em

2c cos θ
(11.7.2a)
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with Em given by Eq. (11.6.12b),

S0 =
4∑

i=1

|Ai |2, (11.7.2b)

and α = 1
2α0/ cos θ , where α0 is the intensity absorption coefficient of the material and where

for simplicity we have assumed that θ = θ1 = θ4.
Cronin-Golomb et al. (1984) have shown that Eqs. (11.7.1) can be solved for a large number

of cases of interest. The solutions show a variety of interesting features, including amplified
reflection, self-oscillation, and bistability.

11.7.1 Externally Self-Pumped Phase-Conjugate Mirror

One interesting feature of four-wave mixing in photorefractive materials is that it can be used to
construct a self-pumped phase-conjugate mirror of the sort illustrated in Fig. 11.7.2. In such a
device, only the signal wave A3 is applied externally. Waves A1 and A2 grow from noise within
the resonator that surrounds the photorefractive crystal. Oscillation occurs because wave A1 is
amplified at the expense of wave A3 by the process of two-beam coupling. The output wave
A4 is generated by four-wave mixing involving waves A1, A2, and A3. Such a device was
constructed by White et al. (1982) and is described further by Cronin-Golomb et al. (1984).

FIGURE 11.7.2: Geometry of the externally self-pumped phase-conjugate mirror. Only the A3 wave is
applied externally; this wave excites the oscillation of the waves A1 and A2, which act as pump waves
for the four-wave mixing process that generates the conjugate wave A4.

11.7.2 Internally Self-Pumped Phase-Conjugate Mirror

Even more remarkable than the device just described is the internally self-pumped phase con-
jugate mirror, which is illustrated in Fig. 11.7.3. Once again, only the signal wave A3 is applied
externally. By means of a complicated nonlinear process analogous to self-focusing, beams A1

and A2 are created. Reflection of these waves at the corner of the crystal feeds these waves
back into the path of the applied wave A3. Four-wave mixing processes involving waves A1,
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A2, and A3 then create the output wave A4 as the phase conjugate of A3. This device was
first demonstrated by Feinberg (1982) and analyzed theoretically by MacDonald and Feinberg
(1983). Because of the complicated nature of the coupling that occurs in this device, it can
produce complicated dynamical behavior including deterministic chaos, as demonstrated by
Gauthier et al. (1987). Because of the ease with which a phase-conjugate signal can be pro-
duced, such devices lend themselves to practical applications such as the construction of new
types of interferometers (Gauthier et al., 1989).

FIGURE 11.7.3: Geometry of the internally self-pumped phase conjugate mirror. Only the A3 wave is
applied externally; this wave excites the oscillation of the waves A1 and A2, which act as pump waves
for the four-wave mixing process that generates the conjugate wave A4.

11.7.3 Double Phase-Conjugate Mirror

Another application of four-wave mixing in photorefractive crystals is the double phase-
conjugate mirror of Fig. 11.7.4. In such a device the waves A2 and A3 are applied externally;
these waves are assumed to be mutually incoherent, so that no gratings are formed by their
interference. The nonlinear interaction leads to the generation of the output wave A1, which
is the phase conjugate of A2, and to the output wave A4, which is the phase conjugate of A3.
However, A1 is phase-coherent with A3, whereas A4 is phase-coherent with A2. The double
phase-conjugate mirror possesses the remarkable property that one of the output waves can be
an amplified phase-conjugate wave, even though the two input waves are mutually incoherent.

The nature of the nonlinear coupling that produces the double phase-conjugate mirror can
be understood from the coupled-amplitude equations (11.7.1). For simplicity, we consider the
limit in which α is negligible and in which the input waves A2 and A3 are not modified by the
nonlinear interaction, so that only Eqs. (11.7.1a) and (11.7.1d) need to be considered. We see
that each output wave is driven by two terms, one of which is a two-beam-coupling term that
tends to amplify the output wave, and the other of which is a four-wave-mixing term that causes
each output to be the phase conjugate of its input wave. It has been shown by Cronin-Golomb
et al. (1984) and by Weiss et al. (1987) that the requirement for the generation of the two output
waves is that |γ |l be greater than 2. Operation of the double phase-conjugate mirror has been
demonstrated experimentally by Weiss et al. (1987).
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FIGURE 11.7.4: Geometry of the double phase-conjugate mirror. Waves A2 and A3 are applied exter-
nally and need not be phase-coherent. The generated wave A1 is the phase conjugate of A2, and the
generated wave A4 is the phase conjugate of A3.

11.7.4 Other Applications of Photorefractive Nonlinear Optics

Because the photorefractive effect leads to a large nonlinear response, it lends itself to a variety
of applications. Certain of these have applications have been reviewed by Günter and Huignard
(1988, 1989) and by Boyd and Grynberg (1992). The use of the photorefractive effect to support
spatial solitons has been reviewed by Królikowski et al. (2003).

Problems

1. Numerical evaluation of photorefractive quantities. Consider the process of two-beam cou-
pling in barium titanate in the geometry of Fig. 11.6.1. Estimate the numerical values of
the physical quantities ED , Eq , Eopt, E1, reff, �ε, and �. Assume that the effective trap
density Neff is equal to 1012 cm−3, that the thermal generation rate is negligible, that the
modulation index m is 10−3, and that θs = θp = 5◦.

2. Transient two-beam coupling. Verify Eq. (11.6.19).
3. Relation between electrooptic and nonlinear optics tensors. Determine the mathematical

relationship between the second-order susceptibility χ
(2)
ijk and the linear electrooptic co-

efficient rijk. Similarly, determine the mathematical relationship between the third-order

susceptibility χ
(3)
ijkl and the quadratic electrooptic coefficient sijkl .
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Chapter 12

Optically Induced Damage and
Multiphoton Absorption

12.1 Introduction to Optical Damage

A topic of great practical importance is optically induced damage of optical components. Opti-
cal damage is important because it ultimately limits the maximum amount of power that can be
transmitted through a particular optical material. Optical damage thus imposes a constraint on
the efficiency of many nonlinear optical processes in that it limits the maximum field strength
E that can be used to excite the nonlinear response. In this context, it is worth pointing out that
present laser technology can produce laser beams of sufficient intensity to exceed the damage
thresholds of all known materials. Additional information regarding the properties of laser-
induced material damage can be found in Bloembergen (1974), Lowdermilk and Milam (1981),
Manenkov and Prokhorov (1986), Raizer (1965), and Wood (1986).

There are several different physical mechanisms that can lead to optically induced damage.
These mechanisms, and an approximate statement of the conditions under which each might be
observed, are as follows:
• Linear absorption, leading to localized heating and cracking of the optical material. This

is the dominant damage mechanism for continuous-wave and long-pulse (� 1 µsec) laser
beams.

• Avalanche breakdown, which is the dominant mechanism for pulsed lasers (shorter than
�1 µsec) for intensities in the range of 109 W/cm2 to 1012 W/cm2.

• Multiphoton ionization or multiphoton dissociation of the optical material, which is the
dominant mechanism for intensities in the range 1012 to 1016 W/cm2.

• Direct (single cycle) field ionization, which is the dominant mechanism for intensities
>1020 W/cm2.
We begin by briefly summarizing some of the basic empirical observations regarding opti-

cal damage. When a collimated laser beam interacts with an optical material, optical damage

Nonlinear Optics. https://doi.org/10.1016/B978-0-12-811002-7.00021-7
Copyright © 2020 Elsevier Inc. All rights reserved. 523
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FIGURE 12.1.1: For a collimated laser beam, optical damage tends to occur at the exiting surface of an
optical material, because the boundary conditions on the electric field vector lead to an enhancement at
the exiting surface and a deenhancement at the entering surface.

usually occurs at a lower threshold on the surfaces than in the interior. This observation sug-
gests that cracks and other imperfections on an optical surface can serve to initiate the process of
optical damage, either by enhancing the local field strength in regions near the cracks or by pro-
viding a source of nearly free electrons needed to initiate the avalanche breakdown process. It is
also observed (Lowdermilk and Milam, 1981) that surface damage occurs with a lower thresh-
old at the exiting surface than at the entering surface of an optical material. One mechanism
leading to this behavior results from the nature of the electromagnetic boundary conditions at a
dielectric/air interface, which lead to a deenhancement in field strength at the entering surface
and an enhancement at the exiting surface. This process is illustrated pictorially in Fig. 12.1.1.
Another physical mechanism that leads to the same sort of front/back asymmetry is diffraction
from defects at the front surface which can lead to significant intensity variation (hot spots) at
the exiting surface. This effect has been described, for instance, by Genin et al. (2000).

12.2 Avalanche-Breakdown Model

The avalanche-breakdown mechanism is believed to be the dominant damage mechanism for
most pulsed lasers. The nature of this mechanism is that a small number N0 of free electrons
initially present within the optical material are accelerated to high energies through their in-
teraction with the laser field. These electrons can then impact-ionize other atoms within the
material, thereby producing additional electrons which are subsequently accelerated by the
laser field and which eventually produce still more electrons. Some fraction of the energy im-
parted to each electron will lead to a localized heating of the material, which can eventually
lead to damage of the material due to cracking or melting. The small number of free electrons
required to initiate the avalanche breakdown mechanism can be created by several processes,
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including thermal excitation, quantum mechanical tunneling by means of the Keldysh mecha-
nism (Ammosov et al., 1986), multiphoton excitation, or free electrons resulting from crystal
defects.

We next describe the avalanche-breakdown model in a more quantitative manner. We note
that the energy Q imparted to an electron initially at rest and subjected to an electric field Ẽ

(assumed quasistatic for present) for a time duration t is given by

Q = eẼd where d = 1
2at2 = 1

2

(
eẼ/m

)
t2 (12.2.1)

or

Q = e2Ẽ2t2/2m for t � τ. (12.2.2)

This result holds for times t � τ , where τ is the mean time between collisions. For longer time
durations, the total energy imparted to the electron will be given approximately by the energy
imparted to the electron in time interval τ (that is, by e2Ẽ2τ 2/2m) multiplied by the number of
such time intervals (that is, by t/τ ), giving

Q = e2Ẽ2tτ/2m for t > τ. (12.2.3)

The rate at which the electron gains energy is given in this limit by∗

P = dQ

dt
= e2Ẽ2τ/2m. (12.2.4)

We next assume that the number density of free electrons N(t) changes in time according
to

dN

dt
= f NP

W
, (12.2.5)

where W is the ionization threshold of the material under consideration, P is the absorbed
power given by Eq. (12.2.4), and f is the fraction of the absorbed power that leads to further
ionization so that 1−f represents the fraction that leads to heating. The solution to Eq. (12.2.5)
is thus

N(t) = N0e
gt where g = f e2Ẽ2τ

2Wm
. (12.2.6)

∗ This result can also be deduced by noting that the rate of Joule heating of a conducting material is given by

NP = 1
2σẼ2,

where N is the number density of electrons and σ is the electrical conductivity, which, according to the standard
Drude formula, is given by

σ = (Ne2/m)τ

1 + ω2τ2
.

This result constitutes a generalization of that of Eq. (12.2.4) and reduces to it in the limit ωτ � 1.
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We next introduce the assumption that optical damage will occur if the electron density N(Tp)

at the end of the laser pulse of duration Tp exceeds some damage threshold value Nth, which
is often assumed to be of the order of 1018 cm−3. The condition for the occurrence of laser
damage can thus be expressed as

f e2Ẽ2τTp

2mW
> ln(Nth/N0). (12.2.7)

The right-hand side of this equality depends only weakly on the assumed values of Nth and N0

and can be taken to have a value of the order of 30. This result can be used to find that the
threshold intensity for producing laser damage is given by

Ith = nε0c
〈
Ẽ2〉 = 2nε0c

Wm

f e2τTp

ln(Nth/N0). (12.2.8)

If we evaluate this expression under the assumption that n ≈ 1, W ≈ 5 eV, τ ≈ 10−15 s, Tp ≈
10−9 s, and f ≈ 0.01, we find that Ith � 40 GW/cm2, in reasonable agreement with measured
values.

12.3 Influence of Laser Pulse Duration

There is a well-established scaling law that relates the laser damage threshold to the laser pulse
duration Tp for pulse durations in the approximate range of 10 ps to 10 ns. In particular, this
scaling law states that the fluence (energy per unit area) required to produce damage increases
with pulse duration as T

1/2
p , and correspondingly the intensity required to produce laser damage

decreases with pulse duration as T
−1/2
p . This scaling law can be interpreted as a statement that

(for this range of pulse durations) optical damage depends not solely on laser fluence or on laser
intensity but rather upon their geometrical mean. It should be noted that this observed scaling
law is inconsistent with the predictions given by the simple model that leads to Eq. (12.2.8),
which implies that laser damage should depend only on the laser intensity. Some possible phys-
ical processes that could account for this discrepancy are described below. Data illustrating the
observed scaling law are shown in Fig. 12.3.1, and more information regarding this law can be
found in Lowdermilk and Milam (1981) and Du et al. (1994).

The T
1/2
p scaling law can be understood, at least in general terms, by noting that the

avalanche-breakdown model ascribes the actual damage mechanism to rapid localized heat-
ing of the optical material. The local temperature distribution T (r, t) obeys the heat transport
equation (see also Eq. (4.5.2))

(ρC)
∂T̃

∂t
− κ∇2T̃ = N(1 − f )P̃ , (12.3.1)
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FIGURE 12.3.1: Measured dependence of laser damage threshold on laser pulse duration (Stuart et al.,
1995).

where f , N , and P have the same meanings as in the previous section, κ is the thermal con-
ductivity, and (ρC) is the heat capacity per unit volume. Let us temporarily ignore the source
term on the right-hand side of this equation, and estimate the distance L over which a tempera-
ture rise 	T will diffuse in a time interval Tp. Replacing derivatives with ratios and assuming
diffusion in only one dimension, as indicated symbolically in Fig. 12.3.2, we find that

(ρC)
	T

Tp

= κ
	T

L2
, (12.3.2)

or that

L = (DTp)1/2 where D = κ/ρc is the diffusion constant. (12.3.3)

The heat deposited by the laser pulse is thus spread out over a region of dimension L that is
proportional to T

1/2
p , and the threshold for optical damage will be raised by this same factor.

Although this explanation for the T
1/2
p dependence is widely quoted, and although it leads to the

observed dependence on the pulse duration Tp, some doubt has been expressed (Bloembergen,
1997) regarding whether values of D for typical materials are sufficiently large for thermal
diffusion to be important. Nonetheless, detailed numerical calculations (Stuart et al., 1995,
1996) that include the effects of multiphoton ionization, Joule heating, and avalanche ionization
are in good agreement with experimental results.

Different considerations come into play for excitation with laser pulses of fsec duration,
because under these circumstances the pulse is shorter than some of the material relaxation
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FIGURE 12.3.2: Illustration of the diffusion of heat following absorption of an intense laser pulse.

times. The topic of optical damage from fsec pulses has been treated by Davis et al. (1996),
Glezer et al. (1996), and Pronko et al. (1995).

12.4 Direct Photoionization

In this process the laser field strength is large enough to rip electrons away from the atomic
nucleus. This process is expected to become dominant if the peak laser field strength exceeds
the atomic field strength Eat = e/4πε0a

2
0 = 5 × 1011 V/m. Fields this large are obtained at

intensities of

Iat = 1
2nε0cE

2
at ≈ 4 × 1016 W/cm2 = 4 × 1020 W/m2.

For laser pulses of duration 100 fsec or longer, laser damage can occur at much lower intensities
by means of the other processes described above. Direct photoionization is described in more
detail in Chapter 13.

12.5 Multiphoton Absorption and Multiphoton Ionization

In this section we calculate the rate at which multiphoton absorption processes occur. Some
examples of multiphoton absorption processes are shown schematically in Fig. 12.5.1. Two-
photon absorption was first reported experimentally by Kaiser and Garrett (1961).

Some of the reasons for current interest in the field of multiphoton absorption include the
following:
1. Multiphoton spectroscopy can be used to study high-lying electronic states and states not

accessible from the ground state because of selection rules.
2. Two-photon microscopy (Denk et al., 1990 and Xu and Webb, 1997) has been used to elim-

inate much of the background associated with imaging through highly scattering materials,
both because most materials scatter less strongly at longer wavelengths and because two-
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FIGURE 12.5.1: Several examples of multiphoton absorption processes.

FIGURE 12.5.2: Fluorescence from a dye solution (20 µM solution of fluorescence in water) under
(a) one-photon excitation and (b) two-photon excitation. Note that under two-photon excitation, fluores-
cence is excited only at the focal spot of the incident laser beam. Photographs courtesy of W. Webb.

photon excitation provides sensitivity only in the focal volume of the incident laser beam.
Such behavior is shown in Fig. 12.5.2.

3. Multiphoton absorption and multiphoton ionization can lead to laser damage of optical
materials and be used to write permanent refractive index structures into the interior of
optical materials. See for instance the articles listed at the end of this chapter under the
heading Optical Damage with Femtosecond Laser Pulses.

4. Multiphoton absorption constitutes a nonlinear loss mechanism that can limit the effi-
ciency of nonlinear optical devices such as optical switches (see also the discussion in
Section 7.3).
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In principle, we already know how to calculate multiphoton absorption rates by means of the
formulas presented earlier in Chapter 3. For instance, the linear absorption rate is proportional
to Imχ(1)(ω). Similarly, the two-photon absorption rate is proportional to Imχ(3)(ω = ω +
ω − ω). We have already seen how to calculate these quantities. However, the method we used
to calculate χ(3) becomes tedious to apply to higher-order processes (e.g., χ(5) for three-photon
absorption, etc.). For this reason, we now develop a simpler approach that generalizes more
easily to N -photon absorption for arbitrary N .

12.5.1 Theory of Single- and Multiphoton Absorption and Fermi’s Golden Rule

Let us next see how to use the laws of quantum mechanics to calculate single- and multiphoton
absorption rates. We begin by deriving the standard result for the single-photon absorption rate,
and we then generalize this result to higher-order processes.

The calculation uses procedures similar to those used in Section 3.2 to calculate the non-
linear optical susceptibility. We assume that the atomic wavefunction ψ(r, t) obeys the time-
dependent Schrödinger equation

i�
∂ψ(r, t)

∂t
= Ĥψ(r, t), (12.5.1)

where the Hamiltonian Ĥ is represented as

Ĥ = Ĥ0 + V̂ (t). (12.5.2)

Here Ĥ0 is the Hamiltonian for a free atom and

V̂ (t) = −μ̂Ẽ(t), (12.5.3)

where μ̂ = −er̂ , is the interaction energy with the applied optical field. For simplicity we take
this field as a monochromatic wave of the form

Ẽ(t) = Ee−iωt + c.c. (12.5.4)

that is switched on suddenly at time t = 0.
We assume that the solutions to Schrödinger’s equation for a free atom are known, and that

the wavefunctions associated with the energy eigenstates can be represented as

ψn(r, t) = un(r)e−iωnt , where ωn = En/�. (12.5.5)

We see that expression (12.5.5) will satisfy Eq. (12.5.1) (with Ĥ set equal to Ĥ0) if un(r )

satisfies the eigenvalue equation

Ĥ0un(r) = Enun(r). (12.5.6)
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We return now to the general problem of solving Schrödinger’s equation in the presence of
a time-dependent interaction potential V̂ (t):

i�
∂ψ(r, t)

∂t
= (

Ĥ0 + V̂ (t)
)
ψ(r, t). (12.5.7)

Since the energy eigenstates of Ĥ0 form a complete set, we can express the solution to
Eq. (12.5.7) as a linear combination of these eigenstates—that is, as

ψ(r, t) =
∑

l

al(t)ul(r)e−iωl t . (12.5.8)

We introduce Eq. (12.5.8) into Eq. (12.5.7) and find that

i�
∑

l

dal

dt
ul(r)e−iωl t + i�

∑
l

(−iωl)al(t)ul(r)e−iωl t

=
∑

l

al(t)Elul(r)e−iωl t +
∑

l

al(t)V̂ ul(r)e−iωl t , (12.5.9)

where (since El = �ωl) clearly the second and third terms cancel. To simplify this expression
further, we multiply both sides (from the left) by u∗

m(r) and integrate over all space. Making
use of the orthonormality condition∫

u ∗
m(r)ul(r) d3r = δml, (12.5.10)

we obtain

i�
dam

dt
=

∑
l

al(t)Vmle
−iωlmt , (12.5.11)

where ωlm = ωl − ωm and where

Vml =
∫

u ∗
m(r)V̂ ul(r) d3r (12.5.12)

are the matrix elements of the interaction Hamiltonian V̂ . Eq. (12.5.11) is a matrix form of the
Schrödinger equation.

Oftentimes, as in the case at hand, Eq. (12.5.11) cannot be solved exactly and must be
solved using perturbation techniques. To this end, we introduce a strength parameter λ which
is assumed to vary continuously between zero and one; the value λ = 1 is taken to correspond
to the physical situation at hand. We replace Vml by λVml in Eq. (12.5.11) and expand am(t) in
powers of the interaction as

am(t) = a (0)
m (t) + λa (1)

m (t) + λ2a (2)
m (t) + · · · . (12.5.13)



532 Chapter 12

By equating powers of λ on each side of the resulting form of Eq. (12.5.11) we obtain the set
of equations

da
(N)

m

dt
= (i�)−1

∑
l

a
(N−1)
l Vmle

−iωlmt , N = 1,2,3, . . . . (12.5.14)

12.5.2 Linear (One-Photon) Absorption

Let us first see how to use Eq. (12.5.14) to describe linear absorption. We set N = 1 to corre-
spond to an interaction first-order in the field. We also assume that in the absence of the applied
laser field the atom is in the state g (typically the ground state) so that

a (0)
g (t) = 1, a

(0)
l (t) = 0 for l �= g (12.5.15)

for all times t . Through use of Eqs. (12.5.3) and (12.5.4), we represent Vmg as

Vmg = −μmg

(
Ee−iωt + E∗eiωt

)
. (12.5.16)

Eq. (12.5.14) then becomes

da
(1)

m

dt
= −(i�)−1μmg

[
Eei(ωmg−ω)t + E∗ei(ωmg+ω)t

]
.

This equation can be integrated to give

a (1)
m (t) = −(i�)−1μmg

∫ t

0
dt ′

[
Eei(ωmg−ω)t ′ + E∗ei(ωmg+ω)t ′]

= μmgE

�(ωmg − ω)

[
ei(ωmg−ω)t − 1

] + μmgE
∗

�(ωmg + ω)

[
ei(ωmg+ω)t − 1

]
. (12.5.17)

The resonance structure of this expression is illustrated schematically in Fig. 12.5.3. Note that
the first term in this expression can become resonant for the process of one-photon absorption,
and that (if state m lies below state g) the second term can become resonant for the process of
stimulated emission. As our present interest is in the process of one-photon absorption, we drop
the second term from consideration. The neglect of the second term is known as the rotating
wave approximation. Since a

(1)
m (t) is a probability amplitude, the probability p

(1)
m (t) that the

atom is in state m at time t is given by

p(1)
m (t) = ∣∣a (1)

m (t)
∣∣2 = |μmgE|2

�2

∣∣∣∣ei(ωmg−ω)t − 1

ωmg − ω

∣∣∣∣
2

= |μmgE|2
�2

4 sin2[(ωmg − ω)t/2]
(ωmg − ω)2

≡ |μmgE|2
�2

f (t), (12.5.18)
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FIGURE 12.5.3: (a) The first term in Eq. (12.5.17) describes the process of one-photon absorption,
whereas (b) the second term describes the process of stimulated emission.

FIGURE 12.5.4: Approximation of f (t) of Eq. (12.5.20) as a Dirac delta function.

where

f (t) = 4 sin2[(ωmg − ω)t/2]
(ωmg − ω)2

. (12.5.19)

Let us examine the time dependence of this expression for large values of the interaction time t .
Note that we can express f (t) as

f (t) = t2
(

sin2 x

x2

)
where x ≡ (ωmg − ω)t/2. (12.5.20)

Note further (see also Fig. 12.5.4) that the peak value of f (t) is t2, but the width of the
central peak is of the order of 2π/t . Thus, the area under the central peak is of the order of 2πt ,
and for large t the function becomes highly peaked. These facts suggest that, for large t , f (t) is
proportional to t times a Dirac delta function. In fact, it can be shown that

lim
t→∞f (t) = 2πtδ(ωmg − ω). (12.5.21)
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FIGURE 12.5.5: Level m is spread into a density of states described by the function ρf (ωmg).

Thus, for large t the probability to be in the upper level m can be represented, at least formally,
by

p(1)
m (t) = |μmgE|2t

�2
2πδ(ωmg − ω). (12.5.22)

This result is somewhat unphysical because of the presence of the delta function on the right-
hand side. The origin of this unphysical behavior is our assumption that the transition frequency
ωmg is taken to be perfectly well defined. In fact, in physically realistic situations, the transi-
tion frequency ωmg is not perfectly well defined but is spread into a continuous distribution
by various line-broadening mechanisms, as illustrated schematically in Fig. 12.5.5. One of-
ten expresses this thought by saying that the final state m is spread into a density of final
states ρf (ωmg), defined such that ρf (ωmg)dωmg is the probability that the transition frequency
lies between ωmg and ωmg + dωmg . In the context of atomic physics, ρf (ωmg) is often known
as the atomic lineshape function. The density of final states is normalized such that∫ ∞

0
ρf (ωmg) dωmg = 1. (12.5.23)

A well-known example of a density of final states is the Lorentzian lineshape function

ρf (ωmg) = 1

π

�/2

(ω̄mg − ωmg)2 + (�/2)2
(12.5.24)

where ω̄mg is the line-center transition frequency and � is the full-width at half maximum of
the distribution in angular frequency units. For a transition broadened by the finite lifetime of
its upper level, � is the population decay rate of the upper level.

For a transition characterized by a density of final states, the probability p
(1)
m (t) to be in the

upper level given by Eq. (12.5.22) must be averaged over all possible values of the transition
frequency. One obtains

p(1)
m (t) = |μmgE|2t

�2

∫ ∞

0
ρf (ωmg)2πδ(ωmg − ω)dωmg

= 2π |μmgE|2t
�2

ρf (ωmg = ω). (12.5.25)
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The notation ρf (ωmg = ω) means that the density of final states is to be evaluated at the fre-
quency ω of the incident laser light. Since the probability for the atom to be in the upper level
is seen to increase linearly with time, we can define a transition rate for linear absorption as

R(1)
mg = p

(1)
m (t)

t
= 2π |μmgE|2

�2
ρf (ωmg = ω). (12.5.26)

This result is a special case of what is known as Fermi’s golden rule. Linear absorption is often
described in terms of an absorption cross section σ

(1)
mg (ω), defined such that

R(1)
mg = σ (1)

mg (ω)I, (12.5.27)

where I = 2nε0c|E|2. By comparison with Eq. (12.5.26) we find that

σ (1)
mg (ω) = π

nε0c

|μmg|2
�2

ρf (ωmg = ω). (12.5.28)

12.5.3 Two-Photon Absorption

Let us next treat the case of two-photon absorption. To do so, we need to solve the set of
equations (12.5.14) for N = 1 and N = 2 to obtain the second-order probability amplitude
a

(2)
n (t) for the atom to be in level n at time t . The conventions for labeling the various levels

are shown in Fig. 12.5.6. Our strategy is to solve Eq. (12.5.14) first for N = 1 to obtain a
(1)

m (t),
which is then used on the right-hand side of Eq. (12.5.14) with N = 2. In fact, the expression
we obtain for a

(1)
m (t) is identical to that of Eq. (12.5.17), obtained in our treatment of linear

absorption. We again drop the second term (which does not lead to two-photon absorption). In
addition, we express Vnm as follows:

Vnm = −μnm

(
Ee−iωt + E∗eiωt

)
� −μnmEe−iωt . (12.5.29)

Here we have dropped the negative-frequency contribution to Vnm for reasons analogous to
those described above in connection with Eq. (12.5.17). We thus obtain

d

dt
a (2)
n (t) = (i�)−1

∑
m

a (1)
m (t)Vnme−iωmnt

= −(i�)−1
∑
m

μnmμmgE
2

�(ωmg − ω)

[
ei(ωng−2ω)t − ei(ωnm−ω)t

]
. (12.5.30)

We next drop the second term in square brackets, which describes the transient response of the
system but does not lead to two-photon absorption. The resulting equation can be integrated
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FIGURE 12.5.6: Definition of energy levels used in the calculation of the two-photon transition rate.

directly to obtain

a (2)
n (t) =

∑
m

μnmμmgE
2

�2(ωmg − ω)

[
ei(ωmg−2ω)t − 1

ωng − 2ω

]
. (12.5.31)

The calculation now proceeds analogously to that for the linear absorption. The probability to
be in level n is given by

p(2)
n (t) = ∣∣a (2)

n (t)
∣∣2 =

∣∣∣∣∑
m

μnmμmgE
2

�2(ωmg − ω)

∣∣∣∣
2∣∣∣∣ei(ωmg−2ω)t − 1

ωng − 2ω

∣∣∣∣
2

. (12.5.32)

For large t , the expression becomes (using the same reasoning as in Eqs. (12.5.18)–(12.5.22))

p(2)
n (t) =

∣∣∣∣∑
m

μnmμmgE
2

�2(ωmg − ω)

∣∣∣∣
2

2πtδ(ωng − 2ω), (12.5.33)

and if we assume that level n is smeared into a density of states we obtain

p(2)
n (t) =

∣∣∣∣∑
m

μnmμmgE
2

�2(ωmg − ω)

∣∣∣∣
2

2πtρf (ωng = 2ω). (12.5.34)

Since the probability for the atom to be in the upper level is seen to increase linearly with time,
we can define a transition rate for two-photon absorption given by

R(2)
ng = p

(2)
n (t)

t
. (12.5.35)

It is convenient to recast this result in terms of a two-photon cross section defined by

R(2)
ng = σ (2)

ng (ω)I 2, (12.5.36)
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where I = 2nε0c|E|2 is the intensity of the incident light beam. We find that

σ (2)
ng (ω) = 1

4n2ε2
0c2

∣∣∣∣∑
m

μnmμmg

�2(ωmg − ω)

∣∣∣∣
2

2πρf (ωng = 2ω). (12.5.37)

Experimentally, two-photon cross sections are often quoted with intensities measured in pho-
tons per unit area per unit time. The two-photon cross section thus has dimensions of area-

squared times time per photon, with units of m4 s photon−1. Cross sections are often mea-
sured in units of Göppert-Mayer (GM), where 1 GM is equal to 10−58 m4 s photon−1 or
10−50 cm4 s photon−1. With this convention, Eqs. (12.5.36) and (12.5.37) must be replaced
by

R(2)
ng = σ̄ (2)

ng (ω)Ī 2 where Ī = 2nε0c

�ω
|E|2 (12.5.38)

and where

σ̄ (2)
ng (ω) = ω2

4n2ε2
0c2

∣∣∣∣∑
m

μnmμmg

�(ωmg − ω)

∣∣∣∣
2

2πρf (ωng = 2ω). (12.5.39)

We can perform a numerical estimate of σ̄ (2) by assuming that a single level dominates the
sum in Eq. (12.5.39) and assuming that the one-photon transition is highly nonresonant so that
ωmg − ω ≈ ω. We also assume that the laser frequency is tuned to the peak of the two photon
resonance, so that ρf (ωng = 2ω) ≈ (2π�n)

−1, where �n is the width of level n. We then obtain

σ̄ (2)
ng ≈ |μnmμmg|2

4ε2
0�

2c2�n

. (12.5.40)

To evaluate this expression, we assume that both μnm and μmg are of the order of ea0 = 8 ×
10−30 Cm and that �n = 2π(1 × 1013) rad/sec. We then obtain

σ̄ (2)
ng ≈ 2.5 × 10−58 m4 s

photon2
. (12.5.41)

This value is in good order-of-magnitude agreement with those measured by Xu and Webb
(1996) for a variety of molecular fluorophores. There can be considerable variation in the values
of molecular two-photon cross sections. Drobizhev et al. (2001) report a two-photon cross
section as large as 1.1 × 10−54 m4 sec/photon2 in a dendrimer molecule.
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12.5.4 Multiphoton Absorption

The results of this section are readily generalized to higher-order processes. One obtains, for
instance, the following set of relations:

R(1)
mg =

∣∣∣∣μmgE

�

∣∣∣∣
2

2πρf (ωmg − ω), (12.5.42)

R(2)
ng =

∣∣∣∣∑
m

μnmμmgE
2

�2(ωmg − ω)

∣∣∣∣
2

2πρf (ωng − 2ω), (12.5.43)

R(3)
og =

∣∣∣∣∑
mn

μonμnmμmgE
3

�3(ωng − 2ω)(ωmg − ω)

∣∣∣∣
2

2πρf (ωog − 3ω), (12.5.44)

R(4)
pg =

∣∣∣∣∑
omn

μpoμonμnmμmgE
4

�4(ωog − 3ω)(ωng − 2ω)(ωmg − ω)

∣∣∣∣
2

2πρf (ωpg − 4ω), (12.5.45)

and so on.

Problems

1. Relation between the two-photon absorption cross section and χ(3). Derive an expression
relating the two-photon absorption cross section σ (2) to the third-order susceptibility χ(3).
Be sure to indicate the frequency dependence of χ(3).

2. Multiphoton absorption coefficients. Starting with the expressions for the rates of one-,
two-, and three-photon absorption quoted above, deduce expressions for the one-, two-,
and three-photon absorption coefficients α, β, and γ defined by the equation

dI

dz
= −αI − βI 2 − γ I 3.

Make order-of-magnitude estimates of β and γ for condensed matter, and compare them to
typical measured values as tabulated in the scientific literature.
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Chapter 13

Ultrafast and Intense-Field Nonlinear
Optics

13.1 Introduction

There is currently great interest in the physics of ultrashort laser pulses. Recent advances have
led to the generation of laser pulses with durations of the order of 1 attosecond (Hentschel et
al., 2001). Ultrashort pulses can be used to probe the properties of matter on extremely short
time scales. Within the context of nonlinear optics, ultrashort laser pulses are of interest for at
least two separate reasons. The first reason is that the nature of nonlinear optical interactions
is often profoundly modified through the use of ultrashort laser pulses, in part because of the
broad spectral bandwidth necessarily associated with such pulses. The next two sections of this
chapter treat various aspects of the resulting modifications of the nature of nonlinear optical in-
teractions. The second reason is that ultrashort laser pulses tend to possess extremely high peak
intensities (because laser pulse energies tend to be established by the energy-storage capabili-
ties of laser gain media), and thus short laser pulses tend to have much higher peak powers than
longer pulses. The second half of this chapter is devoted to a survey of the sorts of nonlinear
optical processes that can be excited by extremely intense laser fields.

13.2 Ultrashort-Pulse Propagation Equation

In this section and the following, we treat aspects of the propagation of ultrashort laser pulses
through optical systems. Some physical processes that will be included in this analysis include
the influence of high-order dispersion, space–time coupling effects, and self-steepening lead-
ing to the formation of optical shock waves. In the present section we derive a form of the
pulse-propagation equation relevant to the propagation of an ultrashort laser pulse through a
dispersive, nonlinear, nonlinear optical medium. In many ways, this equation can be considered
to be a generalization of the pulse-propagation equation (the so-called nonlinear Schrödinger

Nonlinear Optics. https://doi.org/10.1016/B978-0-12-811002-7.00022-9
Copyright © 2020 Elsevier Inc. All rights reserved. 541
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equation) of Section 7.5. To derive this generalized equation, we begin with the wave equation
in the time domain (see, for instance, Eq. (2.1.15)) which we express as

∇2Ẽ(r, t) − 1

ε0c2

∂2D̃(1)(r, t)
∂t2

= 1

ε0c2

∂2P̃ (r, t)
∂t2

. (13.2.1)

We express the field quantities in terms of their Fourier transforms as

Ẽ(r, t) =
∫

E(r,ω)e−iωtdω/2π, (13.2.2a)

D̃(1)(r, t) =
∫

D(1)(r,ω)e−iωtdω/2π, (13.2.2b)

P̃ (r, t) =
∫

P(r,ω)e−iωtdω/2π, (13.2.2c)

where all of the integrals are to be performed over the range −∞ to ∞. We assume that
D(1)(r,ω) and E(r,ω) are related by the usual linear dispersion relation as

D(1)(r,ω) = ε0ε
(1)(ω)E(r,ω) (13.2.3)

and that P̃ represents the nonlinear part of the material response. By introducing these forms
into Eq. (13.2.1), we obtain a relation that can be regarded as the wave equation in the frequency
domain, and which is given by

∇2E(r,ω) + ε(1)(ω)(ω2/c2)E(r,ω) = −(ω2/ε0c
2)P (r,ω). (13.2.4)

Our goal is to derive a wave equation for the slowly varying field amplitude Ã(r, t) defined by

Ẽ(r, t) = Ã(r, t) ei(k0z−ω0t) + c.c., (13.2.5)

where ω0 is the central frequency of the pulse and k0 = [ε(1)(ω0)]1/2ω0/c is the linear portion
of the wavevector magnitude at this frequency. We represent Ã(r, t) in terms of its spectral
content as

Ã(r, t) =
∫

A(r,ω) e−iωtdω/2π. (13.2.6)

Note that E(r,ω) and A(r,ω) are related as in Eq. (7.5.16) by

E(r,ω) � A(r,ω − ω0)e
ik0z. (13.2.7)

In terms of the quantity A(r,ω) (the slowly varying field amplitude in the frequency do-
main) the wave equation (13.2.4) becomes[

∇2⊥ + ∂2

∂z2
+ 2ik0

∂

∂z
+ [

k2(ω) − k 2
0

]]
A(r,ω) = − ω2

ε0c2
P(r,ω)e−ik0z (13.2.8)
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where we have introduced

k2(ω) = ε(1)(ω)(ω2/c2). (13.2.9)

We next approximate k(ω) as a power series in the frequency difference ω − ω0 as

k(ω) = k0 + (ω − ω0)k1(ω0) + D(ω) (13.2.10a)

where

D(ω) =
∞∑

n=2

1

n!(ω − ω0)
nkn(ω0) (13.2.10b)

and where kn(ω0) = dnk(ω)/dωn, evaluated at ω = ω0. We thus express k2(ω) as

k2(ω) = k2
0 + 2 (ω − ω0) k1k0 (13.2.11)

+ 2k0D(ω) + 2 (ω − ω0) k1D(ω) + (ω − ω0)
2 k2

1 + D2(ω).

Here D(ω) represents high-order dispersion. We have displayed explicitly the linear term
k1(ω − ω0) in the power series expansion because k1 has a direct physical interpretation as
the inverse of the group velocity. We now introduce this expression into the wave equation in
the form of Eq. (13.2.8), which then becomes

[∇2⊥ + ∂2

∂z2
+ 2ik0

∂

∂z
+ 2(ω − ω0)k0k1 + 2k0D + 2(ω − ω0)k1D

+ (ω − ω0)
2k2

1

]
A(r,ω) = (

ω2/ε0c
2)P(z,ω)e−ik0z, (13.2.12)

where we have dropped the contribution D(ω)2 because it is invariably small. We now convert
this equation back to the time domain. To do so, we multiply each term of the equation by
exp [−i (ω − ω0) t] and integrate over all values of ω − ω0. We obtain

[
∇2⊥ + ∂2

∂z2
+ 2ik0

(
∂

∂z
+ k1

∂

∂t

)
+ 2ik1D̃

∂

∂t
+ 2k0D̃ − k 2

1
∂2

∂t2

]
Ã (r, t)

= − 1

ε0c2

∂2P̃

∂t2
e−i(k0z−ω0t), (13.2.13)

where D̃ represents the differential operator

D̃ =
∞∑

n=2

1

n!kn

(
i
∂

∂t

)n

= −1

2
k2

∂2

∂t2
− i

6
k3

∂3

∂t3
+ · · · . (13.2.14)
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We next examine the form of the right-hand side of this equation. We represent the time-
domain polarization in terms of its slowly varying amplitude (slowly varying in space and
time)∗ p̃(r, t) as

P̃ (r, t) = p̃(r, t)ei(k0z−ω0t) + c.c. (13.2.16)

We thus find that

∂P̃

∂t
=

(
−iω0p̃ + ∂p̃

∂t

)
ei(k0z−ω0t) + c.c.

= −iω0

[(
1 + i

ω0

∂

∂t

)
p̃

]
ei(k0z−ω0t) + c.c. (13.2.17a)

and

∂2P̃

∂t2
= −ω 2

0

[(
1 + i

ω0

∂

∂t

)2

p̃

]
ei(k0z−ω0t) + c.c. (13.2.17b)

By introducing this expression into the wave equation in the form (13.2.13), we obtain

[
∇2⊥ + ∂2

∂z2
+ 2ik0

(
∂

∂z
+ k1

∂

∂t

)
+ 2k0D̃ + 2ik1D̃

∂

∂t
− k 2

1
∂2

∂t2

]
Ã(r, t)

= − ω 2
0

ε0c2

(
1 + i

ω0

∂

∂t

)2

p̃(r, t) . (13.2.18)

Next we convert this equation to a retarded time frame specified by the coordinates z′ and τ

defined by

z′ = z and τ = t − 1

vg

z = t − k1z, (13.2.19)

so that (see also Eq. (7.5.29) for a somewhat different development)

∂

∂z
= ∂

∂z′ − k1
∂

∂τ
and

∂

∂t
= ∂

∂τ
. (13.2.20)

∗ For example, for the case of a material with an instantaneous third-order response, the polarization amplitude is
given by

p̃(r, t) = ε0χ(3)|Ã(r, t)|2Ã (r, t) . (13.2.15)
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In this new reference frame, the wave equation becomes

[
∇2⊥ + ∂2

∂z′ 2
− 2k1

∂

∂z′
∂

∂τ
+ k 2

1
∂2

∂τ 2
+ 2ik0

(
∂

∂z′ − k1
∂

∂τ
+ k1

∂

∂τ

)

+ 2k0D̃ + 2ik1D̃
∂

∂τ
− k 2

1
∂2

∂τ 2

]
Ã(r, τ ) = (13.2.21)

− ω 2
0

ε0c2

(
1 + i

ω0

∂

∂τ

)2

p̃(r, τ ) .

We now drop the term ∂2/∂z′ 2 by arguing that it is much smaller than k0 ∂/∂z′. This approxi-
mation is conventionally known as the slowly varying amplitude (or envelope) approximation
(see for example Eq. (2.2.9)), but especially in the present context it might better be called the
slowly evolving wave approximation in that it entails the spatial and not the temporal evolution
of the field amplitude. The resulting equation then becomes[

∇2⊥ − 2k1
∂

∂z′
∂

∂τ
+ 2ik0

∂

∂z′ + 2k0D̃ + 2ik1D̃
∂

∂τ

]
Ã(r, τ )

= − ω 2
0

ε0c2

(
1 + i

ω0

∂

∂τ

)2

p̃(r, τ ) . (13.2.22)

This equation can alternatively be written as[
∇2⊥ + 2ik0

∂

∂z′

(
1 + ik1

k0

∂

∂τ

)
+ 2k0D̃

(
1 + ik1

k0

∂

∂τ

)]
Ã (r, τ )

= − ω 2
0

ε0c2

(
1 + i

ω0

∂

∂τ

)2

p̃(r, τ ) . (13.2.23)

Note that two of the terms in this equation depend on the ratio k1/k0. This ratio can be evaluated
as follows: k1/k0 = v−1

g /(n0ω0/c) = ng/(n0ω0), where we have introduced the group index
ng = c/vg . We now ignore the effects of dispersion in evaluating this ratio, that is, we set ng

equal to n so that the ratio is given by k1/k0 = 1/ω0. Note that we have otherwise retained
the effects of dispersion on the overall propagation of the pulse by means of the quantity D̃.
It is believed that the effects of dispersion on the ratio k1/k0 are higher-order effects and can
therefore be neglected. In this approximation the wave equation becomes[

∇2⊥ + 2ik0
∂

∂z′

(
1 + i

ω0

∂

∂τ

)
+ 2k0D̃

(
1 + i

ω0

∂

∂τ

)]
Ã (r, τ )

= − ω 2
0

ε0c2

(
1 + i

ω0

∂

∂τ

)2

p̃(r, τ ), (13.2.24)
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which can also be expressed as[(
1 + i

ω0

∂

∂τ

)−1

∇2⊥ + 2ik0
∂

∂z′ + 2k0D̃

]
Ã(r, τ )

= − ω2
0

ε0c2

(
1 + i

ω0

∂

∂τ

)
p̃(r, τ ). (13.2.25)

This equation, in either form, is known as the envelope equation∗ or as the ultrashort-pulse prop-
agation equation. It was first obtained by Brabec and Krausz (1997), and thus is also known as
the Brabec–Krausz equation. It can be considered to be a generalization of the usual nonlinear
Schrödinger equation (7.5.32) in that it includes the effects of high-order dispersion (through
the term that includes D̃), space–time coupling (through the presence of the differential oper-
ator ∂/∂τ on the left-hand side of the equation), and self-steepening (through the presence of
the differential operator ∂/∂τ on the right-hand side). This equation is believed to be accurate
in describing the propagation of pulses as short as one optical cycle in duration. We recall that
this equation is valid only within the slowly evolving wave and paraxial approximations. It can
be used to treat many types of nonlinear response. For instance, for a material displaying an
instantaneous third- and fifth-order nonlinearity, p̃ is given by p̃ = ε0χ

(3)|Ã|2Ã+ε0χ
(5)|Ã|4Ã.

These envelope equations can also be used to treat a material possessing a dispersive non-
linear optical response. For ultrashort laser pulses, the value of χ(3) can vary appreciably for
different frequency components of the pulse. The effects of the dispersion of χ(3) can be mod-
eled in lowest approximation (see for instance Diels and Rudolph, 1996, p. 139) by representing
χ(3)(ω) ≡ χ(3)(ω = ω + ω − ω) as

χ(3)(ω) = χ(3)(ω0) + (ω − ω0)
dχ(3)

dω
, (13.2.26)

where the derivative is to be evaluated at frequency ω0. Thus p(ω) can be expressed as

p(ω) = 3ε0

[
χ(3)(ω0) + (ω − ω0)

dχ(3)

dω

]
|A(ω)|2A(ω). (13.2.27)

This relation can be converted to the time domain through use of the same procedure used in
going from Eq. (13.2.12) to Eq. (13.2.13). One finds that

p̃(r, τ ) = 3ε0

[
χ(3)(ω0) + dχ(3)

dω
i

∂

∂τ

]
|Ã(r, τ ) |2Ã(r, τ ) . (13.2.28)

∗ Eqs. (13.2.24) and (13.2.25) are known as envelope equations because they describe the propagation of the field

envelope Ã(r, t). Of course, the nonlinear Schrödinger equation in the form of Eq. (7.5.32) is also an envelope
equation, although many authors reserve the name envelope equation for Eqs. (13.2.24) and (13.2.25) or their
generalizations.
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Here we have approximated the Fourier transform of |Ã(r, τ ) |2Ã(r, τ ) as |A(ω)|2A(ω). This
expression for p̃ can be used directly in any of Eqs. (13.2.22) through (13.2.25). We consider
Eq. (13.2.24). However, since Eq. (13.2.26) contains only a linear correction term in (ω − ω0),
and consequently Eq. (13.2.28) contains only a contribution first-order in ∂/∂τ , for reasons of
consistency one wants to include in the resulting pulse-propagation equation only contributions
first-order in ∂/∂τ . Noting that(

1 + i

ω0

∂

∂τ

)2

=
(

1 + 2i

ω0

∂

∂τ
− 1

ω2
0

∂2

∂τ 2

)
≈

(
1 + 2i

ω0

∂

∂τ

)
, (13.2.29)

one finds that in this approximation the ultrashort-pulse propagation equation becomes[
∇2⊥ + 2ik0

∂

∂z′

(
1 + i

ω0

∂

∂τ

)
+ 2k0D̃

(
1 + i

ω0

∂

∂τ

)]
Ã(r, τ )

= (−3/c2)ω2
0 χ(3)(ω0)

[
1 +

(
2 + ω0

χ(3)(ωo)

dχ(3)

dω

)
i

ω0

∂

∂τ

]
|Ã(r, τ )|2Ã(r, τ ).

(13.2.30)

This equation is a generalization of Eq. (13.2.24) in that it allows for dispersion in χ(3)(ω), but
it is an approximation in that it includes only terms that are first order in ∂/∂τ . Procedures for
incorporating other sorts of nonlinearities into the present formalism have been described by
Gaeta (2000).

13.3 Interpretation of the Ultrashort-Pulse Propagation Equation

Let us now attempt to obtain some intuitive understanding of the various physical processes
described by the ultrashort pulse propagation equation. For definiteness, we use the form of
Eq. (13.2.24). As a first step, we study a simplified version of this equation obtained by ignoring
the correction terms (i/ω0)∂/∂τ by replacing the factors

[
1 + (i/ω0)(∂/∂τ)

]
by unity and by

including only the lowest-order contribution (known as second-order dispersion) to D̃. One
obtains

∂Ã(r, τ )

∂z′ =
[

i

2k0
∇2⊥ − i

2
k2

∂2

∂τ 2
+ 3iω0

2n0c
χ(3)(ω0) |Ã(r, τ )|2

]
Ã(r, τ ). (13.3.1)

Written in this form, the equation leads to the interpretation that the field amplitude A varies
with propagation distance z′ (the left-hand side) because of three physical effects (the three
terms on the right-hand side). The term involving the transverse Laplacian describes the spread-
ing of the beam as a consequence of diffraction, the term involving the second time derivative
describes the temporal spreading of the pulse as a consequence of group velocity dispersion,
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and the third term describes the nonlinear acquisition of phase. It is useful to introduce distance
scales over which each of the terms becomes appreciable. We define these scales as follows:

Ldif = 1
2 k0w

2
0 (diffraction length), (13.3.2a)

Ldis = T 2/|k2| (dispersion length), (13.3.2b)

LNL = 2n0c

3ω0χ(3)|A|2 = 1

(ω0/c)n2I
(nonlinear length). (13.3.2c)

In these equations w0 is a measure of the characteristic beam radius, and T is a measure of
the characteristic pulse duration. The significance of these distance scales is that for a given
physical situation the process with the shortest distance scales is expected to be dominant.
For reference, we note that the optical constants for fused silica at a wavelength of 800 nm
are given by n2 = 3.5 × 10−20 m2/W and k2 = 446 fsec2/cm = 4.46 fsec2/m. Through use of
Eq. (13.3.2b), for example, we see that for a 20-fsec pulse propagating through fused silica Ldis

is approximately 0.9 cm. Thus in propagating through 0.9 cm of fused silica a 20-fsec pulse
approximately doubles in pulse duration as a consequence of group velocity dispersion.

13.3.1 Self-Steepening

Let us next examine the influence of the correction factor
[
1 + (i/ω0) (∂/∂τ)

]
on the nonlinear

source term of Eq. (13.2.25). To isolate this influence, we drop the correction factor in other
places in the equation. Also, to include the effects of the dispersion of χ(3), we use the ultrashort
pulse propagation equation in the form given by (13.2.30). We also transform back to the lab-
oratory reference frame z, t (not the z′, τ frame in which the pulse is nearly stationary) so that
the factor k1∂Ã/∂t = (1/vg)∂Ã/∂t = (n

(g)

0 /c)∂Ã/∂t appears explicitly in the wave equation,
which takes the form

∂Ã

∂z
+ n

(g)

0

c

∂Ã

∂t
= i

2k0
∇2⊥Ã − i

2
k2

∂2Ã

∂t2
+ i3ω0

2n0c
χ(3)(ω0)|Ã|2Ã

+ i3ω0

2n0c
χ(3)(ω0)

(
2 + ω0

χ(3)(ω0)

dχ(3)

dω

)
i

ω0

∂

∂t
|Ã|2A.

(13.3.3)

We now introduce nonlinear coefficients γ1 and γ2 defined by

γ1 = 3ω0

2n0c
χ(3)(ω0) and γ2 = 3ω0

2n0c
χ(3)(ω0)

(
1 + 1

2

ω0

χ(3)

dχ(3)

dω

)
. (13.3.4)

Note that in the absence of dispersion of the nonlinear susceptibility the nonlinear coefficients
γ1 and γ2 are equal. In terms of these quantities, Eq. (13.3.3) can be expressed more concisely
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as

∂Ã

∂z
+ n

(g)

0

c

∂Ã

∂t
= i

2k0
∇2⊥Ã − i

2
k2

∂2Ã

∂t2
+ iγ1|A|2A − 2γ2

1

ω0

∂

∂t
(|Ã|2A). (13.3.5)

Next we note that the time derivative in the last term can be written as

∂

∂t
(|Ã|2Ã) = ∂

∂t
(Ã2Ã∗) = Ã2 ∂Ã∗

∂t
+ 2Ã∗Ã∂Ã

∂t

= 2|Ã|2 ∂Ã

∂t
+ Ã2 ∂Ã∗

∂t
.

(13.3.6)

The first contribution to the last form can be identified as an intensity-dependent contribution
to the group velocity. The second contribution does not have a simple physical interpretation,
but can be considered to represent a dispersive four-wave mixing term. To proceed, we make
use of Eq. (13.3.6) to express Eq. (13.3.5) as

∂Ã

∂z
+ n

(g)

eff

c

∂Ã

∂t
= i

2k0
∇2⊥Ã − i

2
k2

∂2Ã

∂t2
+ iγ1|A|2A − 2γ2

ω0
Ã2 ∂Ã∗

∂t
(13.3.7)

where

n
(g)

eff = n
(g)

0 + 4γ2c

ω0
|Ã|2 ≡ n

(g)

0 + n
(g)

2 I. (13.3.8)

In the last form of this relation, we have introduced the coefficient of the intensity dependence
of the group index as

n
(g)

2 = 3

n2
0ε0c

χ(3)(ω0)

[
1 + 1

2

ω0

χ(3)(ω0)

dχ(3)

dω

]
. (13.3.9)

Through use of Eq. (4.1.19), we see that this expression can be rewritten as

n
(g)

2 = 4n2

[
1 + 1

2

ω0

χ(3)(ω0)

dχ(3)

dω

]
. (13.3.10)

We thus see that the last term in Eq. (13.3.4) leads to an intensity dependence of the group
index ng as well as to the last term of Eq. (13.3.7), which as mentioned above is a dispersive
four-wave mixing contribution. We also see from Eq. (13.3.9) that the intensity dependence of
the group index depends both on the susceptibility itself and on its dispersion.
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FIGURE 13.3.1: Self-steepening and optical shock-wave formation. (a) The incident optical pulse is
assumed to have a Gaussian time evolution. (b) After propagation through a nonlinear medium, the pulse
displays self-steepening, typically on its trailing edge. (c) If the self-steepening becomes sufficiently
pronounced that the intensity changes instantaneously, an optical shock wave is formed.

The intensity dependence of the group velocity leads to the phenomena of self-steepening
and optical shock wave formation. These phenomena are illustrated in Fig. 13.3.1. Note that for
the usual situation in which n

(g)

2 is positive, the peak of the pulse is slowed down more than the
edges of the pulse, leading to steepening of the trailing edge of the pulse. If this edge becomes
infinitely steep, it is said to form an optical shock wave. Self-steepening has been described by
DeMartini et al. (1967), by Yang and Shen (1984), and by Gaeta (2000). Note also that we can
define a self-steepening distance scale analogous to these of Eqs. (13.3.2) by

Lss = cT

n
(g)

2 I
. (13.3.11)

For the usual situation in which n
(g)

2 ≈ n2, Lss is much larger than LNL (because, except for
extremely short pulses, cT 
 1/k0), and thus self-steepening tends to be difficult to observe.

13.3.2 Space–Time Coupling

Let us now examine the influence of space–time coupling, that is, the influence of the dif-
ferential operator

[
1 + (i/ω0) ∂/∂τ

]−1 on the left-hand side of Eq. (13.2.25). We can see the
significance of this effect most simply by considering propagation through a dispersionless,
linear material so that the wave equation becomes

(
1 + i

ω0

∂

∂τ

)−1

∇2⊥ Ã(r, τ ) + 2ik0
∂

∂z′ Ã(r, τ ) = 0. (13.3.12)

The first term is said to represent space–time coupling because it involves both temporal and
spatial derivatives of the field amplitude. To examine the significance of this mathematical form,
it is useful to write this equation as

∇2⊥Ã(r, τ ) +
(

1 + i

ω0

∂

∂τ

)
2ik0

∂

∂z′ Ã(r, τ ) = 0. (13.3.13)
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Let us first consider the somewhat artificial example of a field of the form Ã(r, τ ) = a(r)e−iδωτ ;
such a field is a monochromatic wave at frequency ω0 + δω. We substitute this form into
Eq. (13.3.13) and obtain

∇2⊥a(r ) +
(

1 + δω

ω0

)
2ik0

∂

∂z′ a(r) = 0, (13.3.14)

which can alternatively be expressed as

∇2⊥a(r) + 2i

(
k0 + δk

)
∂

∂z′ a(r) = 0 (13.3.15)

where δk = k0 (δω/ω0). This wave thus diffracts as a wave of frequency ω0 + δω rather
than a wave of frequency ω0. More generally, for the case of an ultrashort pulse, the operator[
1 + (i/ω0)∂/∂τ

]
describes the fact that different frequency components of the pulse diffract

into different cone angles. Thus, after propagation, different frequency components will have
different radial dependences. These effects and their implications for self-focusing have been
described by Rothenberg (1992).

13.3.3 Supercontinuum Generation

When a short intense light pulse propagates through a nonlinear optical medium, it often
undergoes significant spectral broadening. This process has since come to be known as super-
continuum generation (SCG). A particularly dramatic example of such behavior was reported
by Alfano and Shapiro (1970), who observed broadening over much of the visible spectrum
when laser pulses of 4 ps duration and 530 nm wavelength were focused into samples of calcite,
quartz, sodium chloride, and several glasses. Self-focusing of the laser light to beam diameters
of the order of 20 microns was observed to accompany the spectral broadening. SCG excited
by femtosecond pulses has been observed by Fork et al. (1983). SCG has also been observed in
gases Corkum et al. (1986).

The basic underlying mechanism of SCG is believed to be that of self-phase modulation,
which was described earlier in subsection 7.5.1. Except for the case of SCG in optical fibers,
SCG is found to occur primarily when it is accompanied by the breakup of the laser beam into
small-scale filaments. The explosive increase in pulse intensity associated with self-focusing
dramatically enhances the process of self-phase modulation, as well as other nonlinear pro-
cesses such as self-steepening (Yang and Shen, 1984). Gaeta (2000) has emphasized that under
conditions of catastrophic self-focusing the process of self-steeping leads to the formation of
an optical shock wave on the trailing edge of the optical pulse which thereby leads to the gen-
eration of an extremely broad output spectrum.
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13.4 Intense-Field Nonlinear Optics

Most nonlinear optical phenomena∗ can be described by assuming that the material polarization
can be expanded as a power series in the applied electric field amplitude. This relation in its
simplest form is given by

P̃ (t) = ε0χ
(1)Ẽ(t) + ε0χ

(2)Ẽ(t)2 + ε0χ
(3)Ẽ(t)3 + · · · . (13.4.1)

However, for sufficiently large field strengths, this power series expansion does not converge.
We saw in Chapter 6 that under resonant conditions this power-series description breaks down
if the Rabi frequency 
 = μbaE/� associated with the interaction of the laser field with the
atom becomes comparable to 1/T1, where T1 is the atomic excited-state lifetime. However,
the power-series description of Eq. (13.4.1) can become invalid even under highly nonresonant
conditions. For example, this equation will certainly become invalid if the laser field amplitude
E becomes comparable to or larger than the atomic field strength

Eat = e

4πε0a
2
0

= e

4πε0(4πε0�
2/me2)2

= 6 × 1011 V/m, (13.4.2)

which corresponds to a laser intensity of†

Iat = 1
2ε0cE

2
at = 4 × 1016 W/cm2 = 4 × 1020 W/m2. (13.4.3)

In fact, lasers that can produce intensities larger than 1020 W/cm2 are presently available (see
for instance Mourou et al., 1998). In the remainder of the present chapter we explore some
of the physical phenomena that can occur through use of fields of such intensity. Additional
information on this topic can be found for example in the review article of Brabec and Krausz
(2000a).

Let us begin by considering briefly the conceptual framework one might use to describe
intense-field nonlinear optics. Recall that the quantum-mechanical calculation of the nonlinear
optical susceptibility presented in Chapter 3 presupposes that the Hamiltonian of an atom in the
presence of a laser field is of the form

Ĥ = Ĥ0 + V̂ (t), (13.4.4)

where Ĥ0 is the Hamiltonian of an isolated atom and V̂ (t) = −μẼ(t) represents the interaction
energy of the atom with the laser field. Schrödinger’s equation is then solved for this Hamil-
tonian through use of perturbation theory under the assumption V (t) � H0. For the case of
intense-field nonlinear optics, the nature of this inequality is the reverse—that is, the interac-
tion energy V (t) is much larger than H0. This observation suggests that it should prove useful
to begin our study of intense-field nonlinear optics by considering the motion of a free electron
in an intense laser field.

∗ The photorefractive effect of Chapter 11 being an obvious exception.
† Here we take the peak field strength of the optical wave, which we assume to be linearly polarized, to be Eat.
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13.5 Motion of a Free Electron in a Laser Field

Let us initially ignore both relativistic effects and the influence of the magnetic field associated
with the laser beam. We assume the laser beam to be linearly polarized and of the form Ẽ(t) =
Ẽ(t)x̂, where Ẽ(t) = Ee−iωt + c.c. The equation of motion of the electron is then given by

m ¨̃x = −eẼ(t) or m ¨̃x = −eEe−iωt + c.c., (13.5.1)

which leads to the solution

x̃(t) = xe−iωt + c.c., (13.5.2)

where

x = eE/mω2. (13.5.3)

The time-averaged kinetic energy associated with this motion is given by K = 1
2m〈 ˙̃x(t)2〉 or,

since

˙̃x(t) = (−iωx)e−iωt + c.c., (13.5.4)

by

K = e2E2

mω2
= e2E2

0

4mω2
, (13.5.5)

where E0 denotes the peak value of the electric field of the laser illumination. This energy is
known as the jitter energy or the quiver energy (as it is associated with the oscillation of the
electron about its equilibrium position) or as the ponderomotive energy (Kibble, 1966). This
energy can be appreciable. By way of example, consider a laser field of wavelength 1.06 µm.
One finds by numerical evaluation that the ponderomotive energy is equal to 13.6 eV (a typical
atomic energy) for I = 1.3 × 1014 W/cm2 = 1.3 × 1018 W/m2, is equal to 4.2 keV for I = Iat

(which is given by Eq. (13.4.3)), and is equal to mc2 = 500 keV for I = 4.8 × 1018 W/cm2 =
4.8 × 1022 W/m2.

The equation of motion (13.5.1) and its solution (13.5.2) are linear in the laser field ampli-
tude. Both magnetic and relativistic effects can induce nonlinearity in the electronic response.
Let us consider briefly the influence of magnetic effects; see also Problem 1 at the end of
this chapter for a more detailed analysis. The electric field of Eq. (13.5.1) has a magnetic
field associated with it. Assuming propagation in the z direction, this magnetic field is of the
form B̃(t) = B̃(t)ŷ, where B̃(t) = Beiωt + c.c. and where, assuming propagation in vacuum,
B = E/c. According to Eq. (13.5.4) the electron has a velocity in the x direction, and it will
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thus will experience a magnetic force F = −ev × B in the z direction. The equation of motion
for the z component of the velocity is thus

m ¨̃z =
[(

− ieE

mω

)
e−iωt + c.c.

][
Be−iωt + c.c.

]
. (13.5.6)

The right-hand side of this equation consists of terms at zero frequency and at frequencies ±2ω.
When Eq. (13.5.6) is solved, one finds that the z-component of the electron motion consists
of oscillations at frequency 2ω and amplitude eEB/m2ω3. This motion is superposed on a
uniform drift velocity. The velocity associated with this oscillatory motion leads to a magnetic
force in the x direction at frequency 3ω. In similar manner, all harmonics of the laser frequency
appear in the atomic motion.∗

As just noted, relativistic effects also lead to nonlinearities in the atomic response. The
origin of this effect is the relativistic change in electron mass that occurs when the electron
velocity becomes comparable to the speed of light c in vacuum. The resulting motion can be
described in a relatively straightforward manner. Landau and Lifshitz (1960) show that for beam
of peak field strength E0, i.e., Ẽ(t) = E0 cos(ωt − ωz/c), linearly polarized in the x-direction,
the electron moves in a figure-8 pattern superposed on a uniform translational motion in the
z-direction. In the reference frame moving with the uniform translational velocity, the electron
motion can be described the equations

x = βc

ω
cosη, y = 0, z = β2c

8ω
sin 2η, (13.5.7)

where

η = ω(t − z/c), (13.5.8a)

β = eE0/γ
′ω, (13.5.8b)

γ ′ 2 = m2c2 + e2E2
0/2ω2. (13.5.8c)

For circularly polarized radiation described by Ex = E0 cos(ωt − ωz/c), Ey = E0 sin(ωt −
ωz/c), there is no induced drift velocity, and the electron moves with uniform angular velocity
in a circle of radius ecE0/γ

′ω2; this motion can be described by the equations

x = βc

ω
sinωt, y = βc

ω
cosωt, z = 0, (13.5.9)

where β has the same definition as above, but with γ ′ 2 = m2c2 + e2E2
0/ω2. These conclusions

are summarized in Fig. 13.5.1. More detailed treatments of the motion of a free electron in a

∗ This conclusion arises, for instance, as a generalization of the results of Problem 7 of Chapter 4.
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FIGURE 13.5.1: Motion of a free electron in (a) a linearly polarized laser field and (b) a circularly
polarized field. Note that for linearly polarized light the motion is in the xz plane and that for circularly
polarized light is in the xy plane.

laser field can be found in Sarachik and Schappert (1970) and in Castillo-Herrara and Johnston
(1993).

It is convenient to introduce a dimensionless parameter a to quantify the strength of the
applied laser field. This parameter can be interpreted as the Lorentz-invariant, dimensionless
vector potential and is defined by the relation

a2 = K

mc2
= e2E2

m2c2ω2
. (13.5.10)

This relation can also be expressed as

a2 = 1

2π

Ir0λ
2

mc3
, (13.5.11)

where r0 = e2/4πε0 mc2 is the classical electron radius, λ = 2πc/ω is the vacuum wavelength
of the laser radiation, and I = 2ε0cE

2 is the laser intensity. The interpretation of the parameter
a is that a2 � 1 is the nonrelativistic regime, a2 � 1 is the relativistic regime, and a2 
 1 is the
ultrarelativistic regime.

13.6 High-Harmonic Generation

High-harmonic generation is a dramatic process in which an intense laser beam∗ illuminates
an atomic medium and all odd harmonics qω of the laser frequency ω up to some cutoff order

∗ Intense in the sense that the ponderomotive energy K is much larger than the ionization potential IP .
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FIGURE 13.6.1: Corkum’s model of high-harmonic generation. (a) Trajectory of an electron in the pres-
ence of a linearly polarized laser field of frequency ω with an intensity above the threshold for ionization.
The electron emits a brief pulse of radiation each time it collides with the atomic core. The radiation from
a collection of such electrons thus has the form shown in (b). The spectrum of the emitted radiation is
determined by the square of the Fourier transform of this pulse train, and thus has the form shown in (c).

qmax are emitted in the forward direction. It is found that most of the harmonics are emitted
with comparable efficiency. This observation demonstrates that high-harmonic generation is
not a perturbative (i.e., is not a χ(q)) process. For a perturbative process, each successively
higher order would be expected to be emitted with a smaller efficiency. Harmonic orders as
large as q = 221 have been observed Chang et al. (1999). More recently, Popmintchev et
al. (2012) reported high-harmonic generation from helium excited by 80-fsec pulses from an
optical parametric chirped-pulse amplification system operating at 3.9 µm. They observed a co-
herent high-harmonic continuum reaching to 1.6 keV, corresponding to greater than the 5000th
harmonic order. High-harmonic generation is typically observed using laser intensities in the
range 1014–1016 W/cm2.

Many of the features of high-harmonic generation can be understood in terms of a model
due to Corkum (1993). One imagines an atom in the presence of a linearly polarized laser field
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FIGURE 13.6.2: Schematic representation of the empirical relation �ωqmax = 3.17K + IP . The nu-
merical factor of 3.17 is a consequence of detailed analysis of the dynamics of an electron interacting
simultaneously with an external laser field and the atomic core.

sufficiently intense to ionize the atom. Even though the electron kinetic energy K might greatly
exceed the ionization potential IP of the atom, because of the oscillatory nature of the optical
field the electron will follow an oscillatory trajectory that returns it to the atomic core once each
optical period, as illustrated in Fig. 13.6.1. Because of the 1/r2 nature of the Coulomb potential,
the electron will feel an appreciable force and thus an acceleration only when it is very close
to the atomic core. The radiated field is proportional to the instantaneous acceleration, and the
field radiated by any individual electron will thus consist of a sequence of pulses separated by
the optical period of the fundamental laser field. However, in a collection of atoms, roughly half
of the ejected electrons will be emitted near the positive maximum of the oscillating laser field
and half near the negative maximum, and consequently the emitted radiation will consist of a
sequence of pulses separated by half the optical period of the fundamental laser field. These
pulses are mutually coherent, and thus the spectrum of the emitted radiation is the Fourier
transform of this pulse train, which is a series of components separated by twice the laser
frequency. Thus only odd harmonics are emitted, in consistency with the general symmetry
properties of centrosymmetric material media, as described in Section 1.5.

Arguments based on energetics can be used to estimate the maximum harmonic order qmax.
The process of high-harmonic generation is illustrated symbolically in Fig. 13.6.2. The energy
available to the emitted photon is the sum of the available kinetic energy of the electron less
the (negative) ionization energy of the atom. This line of reasoning might suggest qmax�ω =
K + IP , but detailed calculations show that the coefficient of the kinetic energy term is in fact
3.17, so

qmax�ω = 3.17K + IP . (13.6.1)

This prediction is in good agreement with laboratory data.
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FIGURE 13.6.3: Experimental data of Ferray et al. (1988) illustrating high-harmonic generation.

We conclude this section with a brief historical summary of progress in the field of intense-
field nonlinear optics and high-harmonic generation. Agostini et al. (1979) reported the ob-
servation of a phenomenon that has come to be called above-threshold ionization (ATI). This
group measured the energy spectra of electrons produced by photoionization and observed
multiple peaks separated by the photon energy �ω. This observation attracted great theo-
retical interest because, according to then-current theoretical models based on lowest-order
perturbation theory, only one peak associated with the minimum number of photons needed to
produce ionization was expected to be present. More recent work has included the possibility
of double ionization in which two electrons are ejected as part of the photoionization process
(Walker et al., 1994). One of the earliest observations of high-harmonic generation was that of
Ferray et al. (1988), who observed up to the 33rd harmonic with laser intensities as large as
1013 W/cm2 using Ar, Kr, and Xe gases (Fig. 13.6.3). Kulander and Shore (1989) presented
one of the first successful computer models of high-harmonic generation. L’Huillier and Balcou
(1993) observed HHG using pulses of 1 psec duration and intensities as large as 1015 W/cm2,
and observed harmonics up to the 135th order in Ne. Corkum (1993) presented the theoreti-
cal model of HHG described in the previous two paragraphs. Nearly simultaneously, Schafer
et al. (1993) presented similar ideas along with experimental data. Lewenstein et al. (1994)
presented a fully quantum-mechanical theory of HHG that clarified the underlying physics and
produced quantitative predictions. They find that under certain assumptions the coefficient of Ip
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in Eq. (13.6.1) should be 1.32 rather than unity. Chang et al. (1997) reported HHG in He excited
by 26-fsec laser pulses from a Ti : sapphire laser system operating at 800 nm. They observed
harmonic peaks up to a maximum of the 221st order and unresolved structure up to an energy
(460 eV or 2.7 nm wavelength) corresponding to the 297th order. Slightly shorter wavelengths
(λ = 2.5 nm, hν = 500 eV) have been observed by Schnürer et al. (1998). Durfee et al. (1999)
have shown how to phase match the process of HHG by propagating the laser beam through
a gas-filled capillary waveguide. Ghimire et al. (2011) reported the surprising observation of
HHG in a crystalline solid. Until that time, it had been assumed that the electron collision rate
in a solid would be too large to allow the occurrence of HHG. A theoretical explanation for this
result has been presented by Vampa et al. (2014).

13.7 Tunnel Ionization and the Keldysh Model

There are two distinct processes that can lead to photoionization of an atom or molecule. One
process is multiphoton ionization. This process is analogous to the process of multiphoton
absorption that we studied earlier, with the crucial distinction that in multiphoton absorption
the final state is a bound state of the electron, whereas in multiphoton ionization the final state
is a free state. This behavior is illustrated in part (a) Fig. 13.7.1.

FIGURE 13.7.1: Two processes of photoionization. (a) Multiphoton ionization. (b) Tunnel ionization.

The other process is tunnel ionization, as illustrated in part (b) of this figure. This process
occurs when the electric field of the laser light is sufficiently strong to significantly modify the
Coulomb potential that binds the electron to the positively charged atomic core. The nature of
the modification of the atomic binding in the presence of a strong laser field is illustrated in
Fig. 13.7.2.

Keldysh (1965) showed that there is a quantity now known as the Keldysh parameter γK that
determines which of the two process dominates. Specifically, multiphoton ionization dominates
for γK > 1 and tunneling ionization dominates for γK > 1. The Keldysh parameter is given by
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FIGURE 13.7.2: (a) The coulomb potential that binds the electron to the atomic core. (b) At a given
moment of time, the electric field of the applied laser field produces a potential of the form shown.
(c) The total potential is the sum of the Coulomb and the laser contributions. (d) through (f) At a half
cycle later of the laser period, the potential is inverted in sign leading to the total potential shown in (f).

either of the two expressions (Brabec and Krausz, 2000b)

γK = eE

ωL

√
2mIP

= √
IP /2K (13.7.1)

where ωL is the laser frequency, m is the effective electron mass, IP is the ionization potential
of the atom, and K is the ponderomotive energy of Eq. (13.5.5). The Keldysh parameter can be
given by the equivalent expression (Lenzer and Rudolph, 2008)

γK = ωτ = (ωL/|eE|)√mrIP (13.7.2)

Refinements to the Keldysh model have been presented by other workers, and in particular by
Ammosov et al. (1986).

13.8 Nonlinear Optics of Plasmas and Relativistic Nonlinear Optics

A plasma is a partially or fully ionized gas. Plasmas play an important role in nonlinear optics
in two different ways: (1) Nonlinear optical processes such as multiphoton ionization can create
a plasma. The optical properties of the material system are thereby modified even by the linear
response of the plasma. (2) A plasma (no matter how it is generated) can respond in an intrinsi-
cally nonlinear manner to an applied optical field. In the present section we briefly survey both
sorts of nonlinear optical response.
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Let us first consider the process of plasma formation. We let Ne denote the number of free
electrons per unit volume and Ni the corresponding number of positive ions. We also let NT

denote the total number of atoms present, both ionized and un-ionized. We assume that these
quantities obey the rate equation

dNe

dt
= dNi

dt
= (NT − Ni)σ

(N)IN − rNeNi. (13.8.1)

Here σ (N) is the N -photon absorption cross section (see also Section 12.5) and r is the
electron–ion recombination rate. For short laser pulses of the sort often used to study plasma
nonlinearities, recombination is an unlikely event and the last term in this equation can usually
be ignored. In this case, the electron density increases monotonically during the laser pulse.

Let us next consider the (linear) optical properties of a plasma. We found above (Eqs. (13.5.2)
and (13.5.3)) that the position of an electron in the field Ẽ(t) = Ee−iωt + c.c. will vary ac-
cording to x̃(t) = xe−iωt + c.c. where x = eE/mω2. The dipole moment associated with this
response is p̃(t) ≡ pe−iωt + c.c. = −ex̃(t). The polarizability α(ω) defined by p = ε0α(ω)E

is thus given by

α(ω) = − e2

ε0mω2
. (13.8.2)

The dielectric constant of a collection of such electrons is thus given by

ε = 1 + Nα(ω) = 1 − Ne2

ε0mω2
, (13.8.3)

which is often expressed as

ε = 1 − ω2
p

ω2
, where ω2

p = Ne2

ε0m
(13.8.4)

and where ωp is known as the plasma frequency. For N sufficiently small that ω2
p < ω2 (known

as an underdense plasma), the dielectric constant is positive, n = √
ε is real, and light waves

can propagate. Conversely, for N sufficiently large that ω2
p > ω2 (an overdense plasma), the

dielectric constant is negative, n = √
ε is imaginary, and light waves cannot propagate.

By way of comparison, we recall that for a bound electron the linear polarizability is given
(see Eq. (1.4.17) and note that χ(1)(ω) = Nε0α(ω)) by

α(ω) = e2/mε0

ω2
0 − ω2 − 2iωγ

, (13.8.5)

which in the highly nonresonant limit ω � ω0 reduces to

αbound = e2

ε0mω2
0

. (13.8.6)
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Note that the polarizability of a free electron is opposite in sign and (for the common situation
ω � ω0) much larger in magnitude than that of a bound electron. Thus the process of plasma
formation creates a large negative contribution to the refractive index. Note also that we have
ignored the contribution of the ionic core to the polarizability because it is very much smaller
than the electronic contribution, because the mass of the ion is much larger than that of the
electron.

Let us next consider nonlinear optical effects that occur within a plasma. There are two
primary mechanisms of nonlinearity: (1) ponderomotive effects and (2) relativistic effects.

Ponderomotive effects result from the tendency of charged particles such as electrons to be
expelled from regions of high field strength. These effects are particularly important for laser
pulses sufficiently long in duration for particle motion to be important. Ponderomotive effects
share an identical origin with the electrostrictive effects described in Section 9.2; the effect
is simply given a different name in the context of plasma nonlinearities. Despite the fact that
α(ω) is negative for a free electron (the ponderomotive case) but positive for bulk matter (the
electrostrictive case), both effects lead to an increase in refractive index. In the ponderomotive
case, the electron, which makes a negative contribution to the refractive index, is expelled from
the laser beam, leading to an increase in refractive index.

Another mechanism of nonlinearity in plasmas is provided by relativistic effects (Wagner
et al., 1997). In a sufficiently intense laser beam (I � 1020 W/m2) a free electron can be ac-
celerated to relativistic velocities in a half optical period T/2. To demonstrate this result, we
first calculate the electric field strength Erel required to accelerate an electron to velocity v = c

in a time t = T/2 = π/ω. We set c equal to the acceleration (eErel/m) times t = (π/ω), from
which we find that

Erel = 2mc2

λe
(13.8.7)

where λ = 2πc/ω. The optical intensity Irel = 1
2ε0cE

2
rel associated with this field strength is of

the other of 1020 W/m2 at a vacuum wavelength of 1 µm.
In analyzing the nonlinear response of an electron plasma, both ponderomotive and rela-

tivistic effects must be taken into account. However, the treatment simplifies considerably for
the case of a linearly polarized excitation field because of a fortuitous cancellation of two of the
contributions to the nonlinear response (Sprangle et al., 1987). The surviving contribution is the
time-averaged change in electron mass due to relativistic effects. We next treat this contribution
in detail.

Even when the electron velocity v is considerably smaller than velocity of light in vacuum c,
appreciable nonlinear effects can be induced by the relativistic change in the electron mass, that
is, the change in electron mass from m to γm where

γ = 1√
1 − v2/c2

. (13.8.8)
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The value of the plasma frequency and consequently the refractive index of the plasma is
thereby modified such that

n2 = 1 − ω2
p

γω2
, (13.8.9)

where as before ω2
p = Ne2/ε0m. Detailed analysis (Max et al., 1974; Sprangle et al., 1987)

shows that the value of the relativistic factor γ to be used in Eq. (13.8.9) is given in general
(that is, even in the strongly relativistic limit) by the expression

γ 2 = 1 + e2E2
0

m2ω2c2
, (13.8.10)

where E0 is the peak field amplitude of the incident laser field. In writing this result in the form
shown, we have assumed that the transverse contribution to the velocity is much larger than the
longitudinal component.

We next calculate the nonlinear coefficient n2 by determining the lowest-order change in
refractive index. The relativistic factor γ is given by the square root of expression (13.8.10),
which to lowest order becomes

γ = 1 + 1

2

e2E2
0

m2ω2c2
≡ 1 + x, (13.8.11)

where the parameter x has been introduced for future convenience. We can thus write
Eq. (13.8.9) as

n2 = 1 − ω2
p

ω2(1 + x)
� 1 − ω2

p

ω2
(1 − x)

= n2
0 + ω2

p

ω2
x, (13.8.12)

where n2
0 = 1 − ω2

p/ω2. We can thus express n as

n � n0 + 1

2n0

ω2
p

ω2
x ≡ n0 + n2I. (13.8.13)

Setting I equal to 1
2n0ε0cE

2
0 , we find that

n2 = ω2
pe2

2n2
0ε0m2c3ω4

. (13.8.14)
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This expression gives the relativistic contribution to the nonlinear refractive index. Note that
this process is purely relativistic: Planck’s constant does not appear in this expression. Note
further that expression (13.8.14) can be rewritten in the intuitively revealing form

n2 = 1

2πn2
0

(
ωp

ω

)2[
λ2

(mc2)/(r0/c)

]
, (13.8.15)

where λ = 2πc/ω and r0 = e2/4πε0mc2 = 2.6 × 10−15 m is the classical electron radius.
The term in square brackets can be interpreted as the fundamental relativistic unit of nonlinear
refractive index, that is, an area (λ2) divided by the fundamental unit of power Prel (the electron
rest mass mc2 divided by the transit time of light across the classical radius of the electron).
Numerically we find that

Prel = mc2

(r0/c)
= (0.5 × 106)(1.6 × 10−19)

(2.6 × 10−15/3 × 108)
= 9.2 × 109 W. (13.8.16)

At a wavelength of λ = 1 µm, one thus finds that

n2 = 1

2πn2
0

(
ωp

ω

)2( 10−12

9.2 × 109

)
= 1

2πn2
0

(
ω0

ω

)2

1.1 × 10−22 m2

W
. (13.8.17)

On the basis of the expression for n2 just derived, one can calculate the critical power for
self-focusing in a plasma. Since in general the expression for the critical power is given by
Eq. (7.1.10) as

Pcr = (0.61)2πλ2

8n0n2
� λ2

8n0n2
, (13.8.18)

we find through use of Eq. (13.8.14) that

Pcr = π

4
n0c

(
mc2

e

)2(
ω

ωp

)2

= 6.7

(
ω

ωp

)2

GW. (13.8.19)

An expression for the critical power was first derived by Sprangle et al. (1987) using slightly
different assumptions, yielding a similar expression but with the factor (π/4) in the first form
replaced by 2 and thus the numerical factor 6.7 in the second form replaced by 17. Relativis-
tic self-focusing has been observed experimentally by Monot et al. (1995). Note further that
Eq. (13.8.19) can be reexpressed in the suggestive form

Pcr = π

4
n0

(
ω

ωp

)2(
mc2

r0/c

)
. (13.8.20)

Here, as in Eq. (13.8.16), the last factor denotes the relativistic unit of optical power.
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13.9 Nonlinear Quantum Electrodynamics

We saw in Eq. (13.8.7) that there is a characteristic field strength Erel = 2mc2/eλ at which
relativistic effects become important. There is another field strength EQED at which effects
associated with the quantum vacuum become important. This field strength is defined by the
relations

EQED = m2c3

e�
= mc2

eλ̄c

, where λ̄c = �

mc
. (13.9.1)

Here λ̄c = 3.6 × 10−11 cm = 3.6 × 10−13 m is the (reduced) Compton wavelength of the elec-
tron. The Compton wavelength is one measure of the size of the electron in the sense that
the position of the electron cannot be localized to an accuracy better than λ̄c.∗ The QED field
strength is thus a measure of the field strength required to accelerate an electron to relativistic
velocities in a distance of the order of the size of the electron. Consequently a field of this
magnitude is large enough to lead to the spontaneous creation of electron–positron pairs.

The QED field strength is given numerically by

EQED = 1.32 × 1016 V/cm = 1.32 × 1018 V/m. (13.9.2)

This field strength is often referred to as the Schwinger limit. The intensity of a wave whose
peak field amplitude is equal to EQED is consequently

IQED = 1
2ε0cE

2
QED = 4 × 1029 W/cm2 = 4 × 1033 W/m2. (13.9.3)

This value exceeds the intensity that can be produced by the most powerful lasers currently
available. From a different perspective, IQED designates the largest laser intensity that could
possibly be produced, in that a laser field of any larger intensity would be immediately ab-
sorbed as the result of electron–positron creation. Nonetheless, in the rest frame of a relativistic
electron of energy W , produced, for example, by a particle accelerator, the intensity of a laser
beam is greatly increased by relativistic effects. This increase occurs because the electric field
strength in the electron rest frame is larger than the field in the laboratory frame by the factor
γ = W/mc2. In fact, electron–positron pair creation resulting from the interaction of a rela-
tivistic electron with a laser beam has been observed experimentally (Burke et al., 1997).

Nonlinear quantum electrodynamic effects have been predicted even for field strengths con-
siderably smaller than EQED. Euler and Kockel (1935) have shown that there is an intrinsic

∗ This conclusion follows as a consequence of the time–energy uncertainty relation, which we take in the form

�E�t � �. We take the energy uncertainty to be the rest energy of an electron �E = mc2, and we set the time
uncertainty to �t = �x/c. We thus find that the minimum uncertainty in position is �x = �/mc; we take this
length as the definition of the reduced Compton wavelength λ̄c. This result can be understood more intuitively
by noting that a photon of wavelength shorter than ∼λ̄c would have an energy sufficiently large to create an
electron–positron pair, thus rendering moot the question of the location of the original electron.
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nonlinearity to the electromagnetic vacuum that leads to a field-dependent dielectric tensor of
the form

εik = δik +
(

e2

4πε0

)2
�

45πm4c7

[
2
(
E2 − B2c2)δik + 7BiBkc

2]. (13.9.4)

This equation has been converted to SI units from the equation in its original published form.
Note that the term containing (E2 −B2c2) vanishes for electromagnetic plane waves in vacuum,
because of the relation |E| = |B|c. The dielectric response relevant to plane-wave laser beams
is thus

εik = δik +
(

e2

4πε0

)2 7�

45πm4c7
BiBkc

2, (13.9.5)

which can be expressed through use of Eq. (13.9.1) as

εik = δik + 7

45π

(
e2

4πε0�c

)
BiBkc

2

E2
QED

. (13.9.6)

Since the magnetic field (rather than the electric field) appears in the expression for the
dielectric response, the tensor properties of the nonlinearity of the vacuum are different from
those of typical optical nonlinearities. Nonetheless, by suppressing the tensor nature of the
response, we can describe the nonlinearity in terms of a standard third-order susceptibility, and
such a description is useful for comparing the size of this effect with that of other nonlinear
optical processes. To proceed, we define the (scalar) change in dielectric constant as

�ε = 7

45π

(
e2

4πε0�c

)
B2c2

E2
QED

(13.9.7)

and equate this quantity with χ(3)E2, with the identification of B with E/c. We thus find that

χ(3) = 7

45π

(
e2

4πε0�c

)
1

E2
QED

(13.9.8)

or, through use of Eq. (13.9.2) that

χ(3) = 7

45π

1

137

1

E2
QED

= 2.1 × 10−39 m2/V2. (13.9.9)

We can express this result in terms of an intensity-dependent refractive index through use of
Eq. (4.1.20), and find that

n2 = 5.9 × 10−37 m2/W. (13.9.10)
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Recall, for comparison, that for silica glass n2 = 3.2 × 10−20 m2/W. Recall further that strong
self-action effects are expected only if the power of a laser beam exceeds the critical power for
self-focusing (Eq. (7.1.10))

Pcr = λ2

8n0n2
. (13.9.11)

We find by combining Eqs. (13.9.10) and (13.9.11) that at a wavelength of 1 µm,

Pcr = 2.1 × 1023 W, (13.9.12)

which is considerably larger than the power of any laser source currently contemplated.

Problem

1. Consider the nonrelativistic motion of a free electron in the laser field Ẽ(z, t) = E0 cosωt x̂,
B̃(z, t) = B0 cosωt ŷ with B0c = E0. Assume that the electron is injected into the field at
rest at position x = 0, y = 0 at time t0.
(a) Solve the equation of motion for the electron and thereby determine x(t), y(t), z(t),

vx(t), vy(t), and vz(t) for all t > t0. Plot the trajectory of the electron of the electron
motion, both in the laboratory frame and in a reference frame in which the electron is
on average at rest (specify what frame this is). Note that some of these results depend
on the value of t0; for those that do, show plots for several different values of t0.

(b) Ignoring the magnetic contribution, calculate the peak and time-averaged kinetic en-
ergy of the electron.

(c) Repeat for circular polarization.
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Chapter 14

Nonlinear Optics of Plasmonic Systems

14.1 Introduction to Plasmonics

In the present chapter we explore the optical properties of plasmonic systems. The word plas-
monics is often associated with the properties of metals. The reason for this association is that
both the electrical and optical properties of metals are intimately related to the large number of
nearly free electrons present in the conduction band of a metal. In this chapter we will primar-
ily be concerned with the optical properties of metals, although the fundamental results that we
obtain equally well describe the optical properties of other types of plasmas. The properties of
nearly free electrons have been described earlier in this book, for instance as a limiting case of
the Lorentz model described in Section 1.4 and also in terms of relativistic effects of plasmas
as described in Section 13.7. The present chapter seeks to describe the properties of plasmonic
systems in a cohesive manner. Part of the reason for interest in plasmonic systems is that they
display very strong light-matter coupling, and this strong coupling leads to both linear and non-
linear properties that can be qualitatively different from those of nonplasmonic systems. This
coupling leads for example to a propagating wave, known as a surface plasmon polariton (SPP),
which is a mixed excitation of both electron and electromagnetic field oscillations. Plasmonic
systems also tend to display large nonlinear optical effects, both because metals often possess
a large value of χ(3) and because for the case of composite systems electric fields tend to be-
come enhanced in regions near a metallic particle. More detailed accounts of the the role of
plasmonics in nonlinear optics can be found in the accounts of Kauranen and Zayats (2012),
Maier (2007), and Novotny and Hecht (2006a).

14.2 Simple Derivation of the Plasma Frequency

The concept of a plasma frequency is central to the understanding of plasmonic systems. The
plasma frequency is the fundamental resonance frequency of a collection of free electrons.

Nonlinear Optics. https://doi.org/10.1016/B978-0-12-811002-7.00023-0
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FIGURE 14.2.1: A static electric field E0 is applied to a slab of metallic material of free change den-
sity N .

Moreover, the expression for the plasma frequency appears in many of the equations that de-
scribe a plasmonic system.

In order to derive a mathematical expression for the plasma frequency, we consider a thin
metallic slab of thickness L and cross sectional area A containing N free electrons per unit
volume, as shown in Fig. 14.2.1. A static electric field of strength E0 is initially applied to this
structure, which pulls the electrons upward leaving a region of positive charge at the bottom of
the structure. At time t = 0 the static field is suddenly switched off, and we wish to determine
the subsequent motion of the charge distribution.

As a simple model, we assume that the electron distribution moves as a rigid object. We
let x denote the distance through which the electron distribution has been displaced from its
equilibrium position. The total electric charge contained in the region at the top of the slab is
thus given by Q = −NeAx. Similarly, the total charge in the region at the bottom of the slab
is given by NeAx. Under the reasonable assumption of x � L, we can describe each of these
distributions in terms of a surface charge density (that is, charge per unit area) given by

σtop = −Nex ≡ −σ, (14.2.1)

σbottom = Nex. (14.2.2)

Each of these charge distributions gives rise to an electric field of magnitude σ/(2ε0) arranged
as shown in parts (a) and (b) of Fig. 14.2.2, as can be readily verified through use of Gauss’s
law. The total field in the region between the two charge distributions is thus given by the
superposition of these field contributions, that is, by

Etot = σ

ε0
= Nex

ε0
(14.2.3)

as shown in part (c) of the figure.
We now require that the collection of electrons located at the top of the stab, considered as

a rigid body, satisfies Newton’s second law in the form F = Mẍ, where the force F is given by
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FIGURE 14.2.2: The unbalanced charge at the bottom (a) and top (b) of the slab creates fields of mag-
nitude σ/(2ε0) oriented as shown. By the linear superposition principle, the total field is given by σ/ε0
within the slab and vanishes elsewhere (c).

QEtot, where as above Q = −NeAx. Also, the total mass of these electrons is M = NmAx,
where m is the mass of the electron. We thus find that

−Ne2x

ε0m
= ẍ, (14.2.4)

which has the solution

x(t) = x0e
−iωpt + c.c., (14.2.5)

where

ωp =
√

Ne2

ε0m
(14.2.6)

is known as the plasma frequency. It is the characteristic frequency at which a collection of
free electrons oscillates. This equation gives the standard result for the plasma frequency. It
can be generalized in several ways. For example, for the case of a conducting solid the electron
mass m can be replaced by the effective mass m∗ to take account of the band structure of the
material. Moreover, if the metallic slab is characterized by a relative dielectric permittivity ε,
then the expression for the plasma frequency becomes

ωp =
√

Ne2

εε0m∗ . (14.2.7)

14.3 The Drude Model

We next present a simple model that describes the optical properties of a metal or other plas-
monic system. The model treats the metal as a gas of free electrons. The model is related to
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the Lorentz model described elsewhere in this book by assuming that the restoring force and
thus the resonance frequency ω0 vanishes. In fact, many of the results of this section can be
obtained by taking the limit of ω0 → 0 of the Lorentz model. However, we will instead derive
the relevant equations here in order to make the present section self contained. For now, we will
treat only the linear response, and will treat nonlinear behavior in the following sections.

We consider the motion of a free electron exposed to a laser field of the form

Ẽ(t) = E0e
−iωt + c.c. (14.3.1)

We consider the force on the electron to be of the form

F̃ (t) = −eẼ(t) − 2mγ ˙̃x (14.3.2)

where γ represents a damping constant and where the dot denotes a time derivative. The equa-
tion of motion F̃ (t) = m ¨̃x thus becomes

¨̃x + 2γ ˙̃x = −eẼ(t)/m (14.3.3)

which has the solution

x̃(t) = x0e
−iωt + c.c. where x0 = eE0/m

ω2 + 2iωγ
. (14.3.4)

We next determine the susceptibility in the standard manner. We take the polarization amplitude
to be P(ω) = −ex0 and introduce the linear susceptibility through the relation P = ε0χ

(1)E0

and thus find that

χ(1) = − Ne2/m

ω2 + 2iωγ
= − ω2

p

ω2 + 2iωγ
(14.3.5)

where in obtaining the last form we have introduced the plasma frequency of Eq. (14.2.6). We
now use the standard result ε(1)(ω) = 1 + χ(1)(ω) to obtain

ε(1)(ω) = 1 − ω2
p

ω2 + 2iωγ
. (14.3.6)

This equation gives the standard Drude result. It can be expressed in terms of its real and
imaginary parts as

ε(1)(ω) =
[

1 − ω2
p

ω2 + 4γ 2

]
− i

[
2ω2

pγ

ω(ω2 + 4γ 2)

]
. (14.3.7)

Note that in the limit ω → 0 the real part of ε(1)(ω) approaches the value 1 − ω2
p/4γ 2 whereas

the imaginary part diverges. These functional dependences are plotted in Fig. 14.3.1 for the
representative case in which γ /ω0 is equal to 0.05.
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FIGURE 14.3.1: The frequency dependence of the real and imaginary parts of the dielectric permittivity
ε(ω) according to the Drude model.

For the special case in which loss is negligible and we can let γ approach zero in
Eq. (14.3.6), we can find a very simple expression for the dispersion relation (that is, the
relation between k and ω) for a free-electron gas. We note that k = nω/c and thus that
k2 = ε(1)(ω)ω2/c2. We then take ε(1)(ω) to be equal to 1 − ω2

p/ω2 and find that

k2c2 = ω2 − ω2
p. (14.3.8)

We see that the propagation constant k can be a real quantity, which is the case for a propagating
wave, only for ω > ω2

p. Light at frequencies smaller than ω2
p cannot propagate through a gas

of free electrons. If a wave is incident from a dielectric onto such a medium, it will be totally
reflected.

The standard Drude result of Eq. (14.3.6) can be generalized in several ways. For example,
the “1” in this equation can be replaced by ε∞ to obtain

ε(1)(ω) = ε∞ − ω2
p

ω2 − 2iωγ
. (14.3.9)

Here the first term ε∞ represents the nonresonant contribution of bound electrons, whereas the
second term represents the contribution of free electrons. A different generalization is to take
explicit account of the contributions of the bound electrons by adding to the right-hand side of
this last equation a Lorentz-like contribution so that it becomes

ε(1)(ω) = ε∞ − ω2
p

ω2 − 2iωγ
+ Nbe

2/(ε0m)

ω2
0 − ω2 − 2iωγb

. (14.3.10)

In this equation Nb is the number density of bound electrons, ω0 is the resonance frequency,
and γb is the damping coefficient for the bound electrons.
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More refined models for the response of free electrons to an electromagnetic field can be
obtained through use of the hydrodynamic model. Here the electrons are treated as comprising
an isotropic gas such that the electron velocity field v is required to obey the equation

mN

[
∂v
∂t

+ (v ·∇)v + v
τ

]
= −eN(E + v × B) − ∇p, (14.3.11)

where m is the effective electron mass, N is the number density, τ is the electron damping time,
and p is any pressure including quantum pressure (Sipe et al., 1980).

14.4 Optical Properties of Gold

In this section we review some of the linear and nonlinear optical properties of gold. We con-
centrate on gold because it is widely used in studies of plasmonics. Gold is classified as a
noble metal, that is, a metal that is resistant to corrosion in air. Its chemical stability is only
one reason for its choice as a preferred material for use in plasmonics. In addition, the number
density 5.90 × 1028 m−3 of free electrons in gold is large, thus leading to strong light-plasma
interactions.

The optical properties of gold are well known. Fig. 14.4.1 displays the measured dielectric
function ε(1)(ω) of gold along with two models of the frequency dependence of ε(1). The mea-
sured values are taken from the well-known study of Johnson and Christy (1972). We see that
the Drude model of Eq. (14.3.6) provides a very good fit to the data for frequencies lower than
approximately 3×1015 rad/sec. The Drude model fails at higher frequencies because it accounts
only for the free-electron response. A better fit is obtained by adding a Lorentz-oscillator con-
tribution to the dielectric response. This fit, based on the use of Eq. (14.3.10) provides a good
fit to the data for frequencies up to 4 × 1015 rad/sec. A good fit at higher frequencies could be
obtained by including more resonance frequencies in the model.

These optical properties can be understood in terms of the electronic structure of gold.
The (nearly filled) valence band is comprised of 5d electrons, and the approximately half-
filled conduction band is comprised of 6sp electrons. This band is referred to as the 6sp band
as it is believed that it has both s-like and p-like character. The electrons in the conduction
band can be considered to be essentially free electrons, and lead to a plasma frequency ωp of
1.28 × 1016 rad/sec. This frequency corresponds to a vacuum wavelength of 147 nm. Light of
wavelength shorter than approximately 500 nm can induce transitions from the valence band to
the conduction band. This absorption of blue light leads to the “gold” color of gold.

The nonlinear optical properties of gold are dominated by three primary mechanisms (Hache
et al., 1988; Boyd et al., 2014).
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FIGURE 14.4.1: The frequency dependence of the real and imaginary parts of the dielectric permittiv-
ity ε(ω) of gold. The curve labeled data gives the results of Johnson and Christy (1972). The curve
labeled Drude gives a good fit to the data for frequencies up to 3 × 1015 rad/sec. The curve labeled
Drude–Lorentz includes the influence of one resonance frequency and fits the data up to a frequency
of 4 × 1015 rad/sec. A good fit could be obtained at higher frequencies by including more resonance
frequencies into the model. The Drude-model fit makes use of the parameters ε∞ = 6, ωp = 1.28 × 1016

rad/sec corresponding to a wavelength of 147 nm, and 	 = 1.25 × 1014 s−1. The Drude–Lorentz fit
makes use of the parameters ε∞ = 1, ω0 = 4.19 × 1015 rad/sec, and 	 = 9 × 1014 s−1.

The first mechanism is the contribution of the “free” electrons in the conduction band. Of
course, this contribution would vanish (in the electric dipole approximation that we consider
here) for electrons that are entirely free of any restoring force, for the simple reason that if there
is no restoring force there can be no nonlinearity in this force. However, when these electrons
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are confined within a nanoparticle, they display nonlinear optical effects. These effects can be
modeled by performing a “particle-in-a-box” calculation. Hache et al. have performed such a
calculation and find that a typical value of the third-order susceptibility is 10−18 m2/V2.

The second mechanism is interband transitions between the conduction and valence bands.
The nonlinear response can be understood as saturation of this absorption process. For light
at the resonance frequency, this contribution can be considered to produce a primarily imag-
inary contribution to χ(3). Hache et al. estimate this contribution to be of the order of
2.4i × 10−16 m2/V2.

The third mechanism is what is known as the hot-electron contribution. This contribution
involves electrons that are laser-excited from the 5d valence band to the 6sp conduction band.
The energy carried by this excitation process ends up heating the electrons in the conduction
band. The change in temperature of the conduction-band electrons modifies the Fermi–Dirac
distribution function, leading to an increased population for energies above the Fermi level
and a decrease in population for energies below the Fermi level. As a result, the dielectric
function of gold is changed in a strongly frequency-dependent manner. Because of the mech-
anism just described, the hot-electron contribution is often alternatively referred to as the
Fermi-smearing contribution. A typical value of the resulting third-order susceptibility χ(3)

is 1.4i × 10−16 m2/V2. Detailed experimental studies of the response time of the hot-electron
contribution have been reported by Sun et al. (1994). These authors find that the nonlinear
response is not instantaneous but is associated with a turn-on time of approximately 500 fs.
This value is determined by the time taken for the energy carried by the excitation process to
thermalize and heat the conduction electrons. Furthermore, the nonlinear response decays with
a relaxation time of several picoseconds. This is the time required for the temperature of the
electrons to equilibrate with that of the lattice. Since the heat capacity of the lattice is much
larger than that of the electrons, the hot-electron contribution essentially vanishes once this
equilibration has occurred. Because of the noninstantaneous nature of the nonlinear optical re-
sponse, the measured value of χ(3) is found to be strongly dependent on laser pulse duration.
The dependence has been analyzed by Boyd et al. (2014).

14.5 Surface Plasmon Polaritons

We next turn to the discussion of surface plasmon polariton (SPP). An SPP is an electromag-
netic disturbance that is fundamentally distinct from those that we have studied elsewhere in
this book. An SPP travels along the interface between two different materials, typically a metal
and a dielectric. The name polariton refers to a disturbance that entails the coupling of an elec-
tromagnetic wave with a material excitation; in this particular case the material excitation is a
plasma oscillation.

To describe the SPP mathematically, we consider the situation shown in Fig. 14.5.1. Here
the plane z = 0 separates two materials of dielectric permittivity εm and εd . For definiteness,
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FIGURE 14.5.1: (a) Symbolic representation of an SPP propagating in the z direction along the interface
between a metal and a dielectric. (b) Geometry and definition of quantities involved in the determination
of the dispersion relation for the propagation of an SPP.

we assume that εm is complex and that εd is real. We seek a solution of Maxwell’s equation that
describes a wave propagates in the x direction along the interface and that is localized in the
z direction near the interface at z = 0. We assume the wave to be p-polarized, that is, polarized
in the plane of the diagram. We represent the electric field of the light wave to be of the form

Ẽm(r, t) = (
Am,x x̂ + Am,z ẑ

)
ei(kxx−ωt)eikm,zz (14.5.1)

for z < 0 and of the form

Ẽd(r, t) = (
Ad,x x̂ + Ad,z ẑ

)
ei(kxx−ωt)eikd,zz (14.5.2)

for z > 0. Note that we have assumed that the waves have the same propagation constant kx for
propagation in the x direction, but we allow them to have different spatial dependences in the
z direction. We seek solutions for which both km,z and kd,z have imaginary components, which
allows the wave to be localized near the interface.

We next examine how the four field amplitudes Am,x , Am,z, Ad,x , and Ad,z are related to
one another. The Maxwell equation ∇ · D̃ = 0 applied to a monochromatic plane wave implies
that k · D̃ = 0 and thus that kxDj,x + kj,zDj,z = 0 for j = m,d. Since D̃j = εj Ẽj , we find that
kxεjEj,x + kj,zεjEj,z = 0 and thus that kxεjAj,x + kj,zεjAj,z = 0 and finally that

kxAm,x + km,zAm,z = 0,

kxAd,x + kd,zAd,z = 0. (14.5.3)

Other relations between the four field amplitudes arise from the boundary conditions at the
interface. The requirement that the components of the electric field Ẽ along the interface must
be continuous leads to the relation

Am,x − Ad,x = 0. (14.5.4)

Moreover, the requirement that the components of the D̃ field normal to the interface be con-
tinuous leads to the relation

εmAm,x − εdAd,x = 0. (14.5.5)
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These equations ((14.5.3), (14.5.4), and (14.5.5)) constitute a set of four homogeneous equa-
tions in four unknowns. They can readily be written in the form of a matrix equation, and the
condition for the existence of a nonvanishing solution is that the determinant of the matrix of
coefficients must vanish. This condition leads to the characteristic equation

kx(kd,zεm − km,zεd) = 0. (14.5.6)

This equation possesses two solutions. The solution kx = 0 does not correspond to an excitation
propagating along the interface and is not the solution of interest to us. The other solution,
which corresponds to a wave propagating along the interface in the x direction, is given by

kd,zεm − km,zεd = 0. (14.5.7)

To find the form of the electromagnetic wave corresponding to this solution, we also require that
Eqs. (14.5.1) and (14.5.2) each obey a wave equation of the form ∇2E− (ε/c2) ·(∂2E/∂t2) = 0
(see also Eq. (2.1.21)). This requirement leads to the equations

k2
x + k2

m,z = εm(ω2/c2) (14.5.8)

and

k2
x + k2

d,z = εd(ω
2/c2). (14.5.9)

Eqs. (14.5.7), (14.5.8), and (14.5.9) can now be solved simultaneously to find that

k2
x = ω2

c2

εmεd

εm + εd
or that kx = ω

c

√
εmεd

εm + εd
. (14.5.10)

This equation provides the dispersion relation for an SPP, that is, it tells how the longitudinal
component of the wavevector is related to the optical frequency. This dependence is displayed
graphically in Fig. 14.5.2.

form is One similarly finds that the component of the propagation vector perpendicular to
the interface are given by in each of the two media by

km,z = k

√
ε2

m

εm + εd
and kd,z = k

√
ε2

d

εm + εd
. (14.5.11)

We next interpret these results. We are seeking a solution that propagates in the x direction,
and we thus require kx of Eq. (14.5.10) to be a real quantity. We thus see that εmεd and εm + εd

must both have the same sign. We also require that both km,z and kd,z possess an imaginary
component so that they can describe a wave that decays exponentially aways from the interface
in both the positive and negative z directions. From the second of Eqs. (14.5.11) we see that
εm + εd must be negative, and thus by the first condition we see that the product εmεd must also



Nonlinear Optics of Plasmonic Systems 579

FIGURE 14.5.2: Plot of the dispersion relation for an SPP (Eq. (14.5.10)) at the interface between a
dielectric of various refractive indices a metal modeled by the lossless Drude model (Eq. (14.3.6)). Note
that the asymptotic value for large kx of the lower branch is given by ωp/

√
εd + 1).

be negative. Thus εm and εd must have opposite signs. Also, to satisfy the condition that εm +εd

be negative, we require that the absolute value of the negative quantity, which we identify with
εm, must be larger than εd. We have seen in Fig. 14.3.1 that metals can show a large, negative
value of εm. We anticipated these conclusions by calling one the materials the metal and calling
the other material the dielectric.

The propagation of SPPs show pronounced nonlinear effects. This result is to be expected,
because metals tend to be highly nonlinear and because for an SPP there is strong field confine-
ment at the interface. De Leon et al. (2014) have investigated nonlinear behavior for SPPs on a
gold–air interface. The report an intensity-dependent contribution to the propagation constant
kx given by


kx = γspSsp (14.5.12)

where Ssp in units of power per unit length (W/m) is a measure of the intensity of the laser
excitation in the one-transverse-dimension geometry of a surface excitation and γsp in units
of W−1 is the nonlinear coefficient of the SPP. These authors report a value of γsp = (8.08 +
i1.46) × 10−7 W−1.

14.6 Electric Field Enhancement in Plasmonic Systems

The interplay of metals and dielectrics can lead to strong resonant behavior, leading to strong
light-matter coupling and consequently to large linear and nonlinear optical effects. This strong
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light-matter coupling can most simply be understood as originating in the lightning-rod effect.
There is a strong enhancement of the local electric field in the vicinity of a sharp point or
tip. This strong field enhancement can lead to strong nonlinear optical effects, a well known
example of which is surface enhanced Raman scattering (Moskovits, 2005; Kneipp et al., 1996).
It is also the basis of near-field optical microscopy. Moreover, it can lead to enhancement of the
nonlinear optical response (Smith et al., 1997; Grésillon et al., 1999).

It is difficult to obtain analytic solutions to Maxwell’s equations for highly pointed objects
of the sort mentioned in the last paragraph. Instead, we will turn to a different model, that of
a dielectric or metal sphere placed in an otherwise uniform electric field. We will find that this
simple model gives us an opportunity to understand many of the feature of field enhancement
in plasmonic systems.

We consider a metallic∗ sphere of radius a and complex dielectric constant εm placed in a
background material of dielectric constant εb, as shown in Fig. 14.6.1. A uniform (except for the
disturbance caused by the metal particle) electric field of strength E0 fills the interaction region.
We assume that the wavelength λ of this radiation is much larger than the particle size a, and
thus we can treat this problem as if the applied field were static; this approximation for a << λ

is known as the quasistatic approximation.
This situation is a well-known problem in electrostatics, and we will simply quote the stan-

dard result (Stratton, 2007; Jackson, 1999; Maier, 2007). One finds that the field inside the
sphere is spatially uniform and is given by

Ein = 3εb

εm + 2εb
E0. (14.6.1)

The sphere thus acquires a dipole moment that can be expressed as

p = ε0εmαE0 (14.6.2)

where the polarizability of the sphere is given by

α = 4πa3 3εb

εm + 2εb
. (14.6.3)

The field outside the sphere is given by the sum of E0 and the well-known expression for the
field of a dipole. The field in the neighborhood of the dipole is shown in Fig. 14.6.1.

The nature of electric field enhancement in plasmonics can be understood by studying
Eq. (14.6.1), which relates the field Ein inside the sphere to the incident field E0. The coeffi-
cient [3εb/(εm +2εb)] can be understood as the local field enhancement factor for this situation.
We recall (see for instance Fig. 14.4.1) that metals possess a negative dielectric function that

∗ We will continue to call this particle a metal sphere, although the following analysis hold equally well for a
dielectric particle.



Nonlinear Optics of Plasmonic Systems 581

FIGURE 14.6.1: Electric field distribution in the neighborhood of a polarizable sphere placed in an
otherwise uniform electric field. The situation εm = 2 and εb = 1 is shown. Note that the electric field is
drawn in towards the region of the sphere.

is strongly frequency dependent. Under many circumstances the real part of the denominator
of the local field factor vanishes at some particular frequency, leading to a large enhancement
in the local field. This situation is known as the Fröhlich condition, and leads to the surface
plasmon resonance. For real materials, the local field factor [3εb/(εm + 2εb)] can be as large
as 30.

Problems

1. In Section 14.5 we assumed that the radiation incident upon the interface was p-polarized,
and we found solutions to Maxwell’s equations in the form of a surface plasmon polariton
(SPP). Do SPPs occur for s-polarization?

2. We noted that Eq. (14.5.6) possesses the solution kx = 0. Determine the form of the elec-
tromagnetic disturbance associated with this solution.
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Appendices

Appendix A The SI System of Units

In this appendix we review briefly the basic equations of electromagnetism when written in the
SI (System International, or rationalized mksa) system of units. Conversion between the SI and
gaussian systems of units is summarized in an additional appendix. The intent of this appendix
is to establish notation and not to present a rigorous exposition of electromagnetic theory. More
complete treatments of electromagnetism can be found for example in Jackson (1998), Marion
and Heald (1994), Purcell and Morin (2013), and Stratton (2008).

In the SI system, mechanical properties are measured in mks units, that is, distance is mea-
sured in meters (m), mass in kilograms (kg), and time in seconds (s). The unit of force is thus
the kg m/sec2, known as a newton (N), and the unit of energy is the kg m2/sec2, known as the
joule (J). The fundamental electrical unit is a unit of charge, known as the coulomb (C). It is
defined such that the force between two charged point particles, each containing 1 coulomb of
charge and separated by a distance of 1 meter, is 9.0 giganewton, which is the numerical value
of (4πε0)

−1. More generally, the force between two charged particles of charges q1 and q2

separated by the directed distance r = r r̂, where r̂ is a unit vector in the r direction, is given by

F = q1q2

4πε0r2
r̂. (A.1)

This result is known as Coulomb’s law. The parameter ε0 that appears in this equation is known
as the permittivity of free space and has the value ε0 = 8.85 × 10−12 F/m. Here F is the ab-
breviation for the farad, which is defined as 1 coulomb/volt. The unit of electrical current is
the ampere (A), which is 1 coulomb/sec. The unit of electrical potential (i.e., potential energy
per unit charge) is the volt, which is 1 joule/coulomb. Note that the units of ε0 can thus be
expressed as [F/m] = A2 s4 kg−1 m−3 = C2 N−1 = C V−1 m−1.
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In the SI system, Maxwell’s equations have the form∗

∇ × E = −∂B
∂t

, (A.2a)

∇ × H = ∂D
∂t

+ J, (A.2b)

∇ · D = ρ, (A.2c)

∇ · B = 0. (A.2d)

The units and names of the field vectors are as follows:

[E] = V/m (electric field), (A.3a)

[D] = C/m2 (electric displacement), (A.3b)

[B] = T (magnetic field, or magnetic induction), (A.3c)

[H] = A/m (magnetic intensity), (A.3d)

[P] = C/m2 (polarization), (A.3e)

[M] = A/m (magnetization). (A.3f)

In Eq. (A.3c), T notes the tesla, the unit of magnetic field strength. The tesla is equivalent to
the Wb/m2, where Wb denotes the weber, the unit of magnetic flux, which is equivalent to
1 joule/ampere or to 1 volt second.

The vectors P and M are known as the polarization and magnetization, respectively. The
polarization P represents the electric dipole moment per unit volume, which may be present in
a material. The magnetization M denotes the magnetic dipole moment per unit volume, which
may be present in the material. These quantities are discussed further in the discussion given
below.

The two additional quantities appearing in Maxwell’s equations are the free charge den-
sity ρ, measured in units of coulombs/m3, and the free current density J, measured in units of
amperes/m2. Under many circumstances, J is given by the expression

J = σE, (A.4)

which can be considered to be a microscopic form of Ohm’s law. Here σ is the electrical
conductivity, whose units are ohm−1 m−1. The ohm is the unit of electrical resistance and has
units of volt/ampere.

The relationships that exist among the four electromagnetic field vectors because of purely
material properties are known as the constitutive relations. These relations, even in the presence

∗ In this appendix, we dispense with our usual notation of using a tilde to denote time-varying quantities.
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of nonlinearities, have the form

D = ε0E + P, (A.5a)

H = μ−1
0 B − M. (A.5b)

Here μ0 is the magnetic permeability of free space, which has the value μ0 = 1.26 ×
10−6 H/m. Here H is the abbreviation for the henry, which is defined as 1 weber/ampere
or as 1 volt second/ampere. Note that the units of μ0 are thus given by any of the relations
H/m = NA−2 = TmA−1 = WbA−1m−1 = VsA−1m−1.

The manner in which the response of a material medium can lead to a nonlinear dependence
of P upon E is of course the subject of this book. For the limiting case of a purely linear
response, the relation between P and E and the relation between M and H can be expressed
(assuming an isotropic medium for notational simplicity) as

P = ε0χ
(1)E, (A.6a)

M = χ(1)
m H. (A.6b)

Note that the linear electric susceptibility χ(1) and the linear magnetic susceptibility χ
(1)
m are

dimensionless quantities. We now introduce the linear dimensionless relative permittivity (also
known as the dielectric constant) ε(1) and the linear dimensionless relative magnetic permeabil-
ity μ(1), which are defined by

D = ε0ε
(1)E, (A.7a)

B = μ0μ
(1)
m H. (A.7b)

We then find by consistency of Eqs. (A.5a), (A.6a), and (A.7a) and of (A.5b), (A.6b), and
(A.7b) that

ε(1) = 1 + χ(1), (A.8a)

μ(1) = 1 + χ(1)
m . (A.8b)

The fields E and B (rather than D and H) are usually taken to constitute the fundamental
electromagnetic fields. For example, the force on a particle of charge q moving at velocity v
through an electromagnetic field is given by the Lorentz force law in the form

F = q
[
E + (v × B)

]
. (A.9)
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A.1 Energy Relations and Poynting’s Theorem

Poynting’s theorem can be derived from Maxwell’s equations in the following manner. We
begin with the vector identity (that is, this equation is true for any vector fields E and H)

∇ · (E × H) = H · (∇ × E) − E · (∇ × H) (A.10)

and introduce expressions for ∇ × E and ∇ × H from the Maxwell equations (A.2a) and (A.2b)
to obtain

∇ · (E × H) +
[

H · ∂B
∂t

+ E · ∂D
∂t

]
= −J · E. (A.11)

Assuming for simplicity the case of a purely linear response, the second term on the left-hand
side of this equation can be expressed as ∂u/∂t , where

u = 1
2(E · D + B · H) (A.12)

represents the energy density of the electromagnetic field. We also introduce the Poynting vec-
tor

S = E × H, (A.13)

which gives the rate at which electromagnetic energy passes through a unit area whose normal
is in the direction of S. Eq. (A.11) can then be written as

∇ · S + ∂u

∂t
= −J · E, (A.14)

where J · E gives the rate per unit volume at which energy is lost to the field through Joule
heating.

A.2 The Wave Equation

A wave equation for the electric field can be derived from Maxwell’s equations, as described
in greater detail in Section 2.1. We assume the case of a linear, isotropic, nonmagnetic (i.e.,
μ = 1) medium that is free of sources (i.e., ρ = 0 and J = 0). We first take the curl of the first
Maxwell equation (A.2a), reverse the order of differentiation on the right-hand side, replace B
by μ0H, and use the second Maxwell equation (A.2b) to replace ∇ × H by ∂D/∂t to obtain

∇ × ∇ × E = −μ0
∂2D
∂t2

. (A.15)

On the left-hand side of this equation, we make use of the vector identity

∇ × ∇ × E = ∇(∇ · E) − ∇2E, (A.16)
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and drop the first term on the right-hand side because ∇ · E must vanish whenever ρ vanishes
in an isotropic medium because of the Maxwell equation (A.2c). On the right-hand side, we
replace D by ε0ε

(1)E, and set μ0ε0 equal to 1/c2. We thus obtain the wave equation in the
form

−∇2E + ε(1)

c2

∂2E
∂t2

= 0. (A.17)

This equation possesses solutions in the form of infinite plane waves—that is,

E = E0e
i(k·r−ωt) + c.c., (A.18)

where k and ω must be related by

k = nω/c where n =
√

ε(1) and k = |k|.
The magnetic intensity associated with this wave has the form

H = H0e
i(k·r−ωt) + c.c. (A.19)

Note that, in accordance with the convention followed in this book, factors of 1
2 are not in-

cluded in these expressions. From Maxwell’s equations, one can deduce that E0,H0, and k are
mutually orthogonal and that the magnitudes of E0 and H0 are related by

n|E0| =
√

μ0/ε0 |H0|. (A.20)

The quantity
√

μ0/ε0 is known as the impedance of free space, is often represented as
Z0, and has the value 377 ohms. Since ε0μ0 = 1/c2, the impedance of free space can
alternatively be written as Z0 = √

μ0/ε0 = 1/ε0c. For completeness, we also note that
for a plane wave the field amplitudes D0 and B0 are related to E0 and H0 through

|E0| = (1/ε0)|D0| = (c/n)|B0| = (1/nε0c)|H0|, (A.21a)

(c/n)|B0| = (cμ0/n)|H0| =
√

(μ0/ε0)|H0|/n = (1/ε0c)|H0|. (A.21b)

In considerations of the energy relations associated with a time-varying field, it is useful
to introduce a time-averaged (cycle-averaged) Poynting vector 〈S〉 and a time-averaged energy
density 〈u〉. Through use of Eqs. (A.18)–(A.20) and the defining relations (A.12) and (A.13),
we find that these quantities are given by

〈S〉 = 2n
√

ε0/μ0 |E0|2k̂ = 2nε0c|E0|2k̂, (A.22a)

〈u〉 = 2n2ε0|E0|2, (A.22b)

where k̂ is a unit vector in the k direction. In this book the magnitude of the time-averaged
Poynting vector is called the intensity I = |〈S〉| and is given by

I = 2n
√

ε0/μ0 |E0|2 = 2nε0c|E0|2. (A.23)
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A.3 Boundary Conditions

There are many situations in electromagnetic theory in which one needs to calculate the fields
in the vicinity of a boundary between two regions of space with different optical properties.
The way in which the fields are related on the opposite sides of the boundary constitutes the
topic of boundary conditions.

To treat this topic, we first express the Maxwell equations in their integral rather than differ-
ential forms. We recall the divergence theorem, which states that, for any well-behaved vector
field A, the following identity holds:∫

V

∇ · AdV =
∫

S

A · nda. (A.24)

The integral on the left-hand side is to be performed over any closed three-dimensional volume
V and the integral on the right-hand side is to be performed over the surface S that encloses
this volume. The quantity n represents a unit vector pointing in the outward normal direction.
If the divergence theorem is applied to Maxwell’s equations (A.2c) and (A.2d), one obtains∫

S

D · nda =
∫

V

ρ dV, (A.25)∫
S

B · nda = 0. (A.26)

The first of these equations expresses Gauss’s law, and the second the absence of magnetic
monopoles.

We can similarly express the two “curl” Maxwell equations in integral form through use of
Stokes’s theorem, which states that for any well-behaved vector field A∫

S

(∇ × A) · nda =
∫

C

A · dl. (A.27)

Here S is any open surface, C is a curve that bounds it, and dl is a directed line element along
this curve. When this theorem is applied to Maxwell’s equations (A.2a) and (A.2b), one obtains∫

C

E · dl = −
∫

S

∂B
∂t

· nda, (A.28)∫
C

H · dl =
∫

S

(
∂D
∂t

+ J
)

· nda. (A.29)

The first of these equations expresses Faraday’s law, and the second expresses Ampere’s law
with the inclusion of Maxwell’s displacement current.
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FIGURE A.1: Constructions used to determine the boundary conditions of the electromagnetic fields at
the interface (surface S) between regions 1 and 2.

We are now in a position to determine the nature of the boundary conditions on the elec-
tromagnetic fields. We refer to Fig. A.1, which shows the interface between regions 1 and 2.
We first imagine placing a small cylindrical pill box near the interface so that one circular side
extends into region 1 and the other into region 2. We apply Eq. (A.24) to this situation. We
next imagine shrinking the height of the pill box while keeping the areas of the two surfaces
fixed. Through such a limiting procedure, we are assured that the value of the surface integral
is dominated by the fields on the two circular surfaces. We further assume that the circular
surfaces are sufficiently small that the fields are essentially constant over these surfaces. Even
though the surface integrals then remain appreciable, the volume integral will vanish so long
as ρ remains finite, because the volume over which the integration is performed will tend to
zero as the height of the pill box is shrunk. The only situation in which the volume integral can
be nonvanishing is that in which ρ diverges somewhere within the region of integration, for
example, if there is charge located on the surface separating regions 1 and 2. If we let 	 denote
the surface charge density—that is, the charge per unit area located on the surface, we find that
the boundary condition on D is given by

(D2 − D1) · n = 	. (A.30)

The boundary condition on B is found more simply. Since the right-hand side of Eq. (A.26)
vanishes, we find immediately that

(B2 − B1) · n = 0. (A.31)

Eq. (A.31) tells us that the normal component of the B field must be continuous at the boundary.
Eq. (A.30) tells us that the normal component of the D field can be discontinuous but only by
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an amount equal to the charge density accumulated on the surface. This free-charge density can
be appreciable for the case of metallic surfaces. However, the surface charge density vanishes
at the interface between two dielectric materials.

The boundary conditions for E and H can be determined by considering the path integral
shown at right-hand side of Fig. A.1. We assume that the long sides of the path lie parallel to
the surface, one on each side of the interface. We further assume the limiting situation in which
the short sides and very much shorter than the long sides. In this situation the line integrals
are dominated by the long sides of the paths, and the surface integrals tend to vanish because
the area of the region of integration tends to zero. The surface integrals of ∂B/∂t and ∂D/∂t

always vanish for this reason. However, the surface integral of J can be nonvanishing if J
diverges anywhere within the region of integration. This can occur if there is a surface current
density js , of units A/m, at the boundary between the two materials. As a consequence of these
considerations, Eqs. (A.27) and (A.28) become

(E2 − E1) × n = 0, (A.32)

(H2 − H1) × n = js . (A.33)

The first of these equations states that the tangential component of E is always continuous at an
interface, whereas the second states that the tangential components of H is discontinuous by an
amount equal to the surface current density js . Again, the surface current density must vanish
for the interface between two dielectric media.

Appendix B The Gaussian System of Units

In this appendix we review briefly the basic equations of electromagnetism when written in the
gaussian system of units. Our treatment is a bit more abbreviated than that of Appendix A on
the SI system.

In the gaussian system, mechanical properties are measured in cgs units, that is, distance is
measured in centimeters (cm), mass in grams (g), and time in seconds (s). The unit of force is
thus the g cm/sec2, known as a dyne, and the unit of energy is the g cm2/sec2, known as the erg.
The fundamental electrical unit is a unit of charge, known either as the statcoulomb or simply
as the electrostatic unit of charge. It is defined such that the force between two charged point
particles, each containing 1 statcoulomb of charge and separated by 1 centimeter, is 1 dyne.
More generally, the force between two charged particles of charges q1 and q2 separated by the
directed distance r = r r̂ where r̂ is a unit vector in the r direction is given by

F = q1q2

r2
r̂. (B.1)
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The unit of current is thus the statcoulomb/sec, which is known as the statampere, or simply
as the electrostatic unit of current. The unit of electrical potential (i.e., potential energy per unit
charge) is the erg/statcoulomb, also known as the statvolt.

In the gaussian system, Maxwell’s equations have the form

∇ × E = −1

c

∂B
∂t

, (B.2a)

∇ × H = 1

c

∂D
∂t

+ 4π

c
J, (B.2b)

∇ · B = 0, (B.2c)

∇ · D = 4πρ. (B.2d)

A remarkable feature of the gaussian system is that the four primary field vectors (i.e., the
electric field E, the electric displacement field D, the magnetic induction B, and the magnetic
intensity H, as well as the polarization vector P and the magnetization vector M, which will be
introduced shortly) all have the same dimensions—that is,

[E] = [D] = [B] = [H] = [D] = [M]
= statvolt

cm
= statcoulomb

cm2
= gauss = oersted =

(
erg

cm3

)1/2

. (B.3)

By convention the name gauss is used only in reference to the field B and oersted only with
the field H. The two additional quantities appearing in Maxwell’s equations are the free charge
density ρ, measured in units of statcoulomb/cm3, and the free current density J, measured in
units of statampere/cm2. Under many circumstances J is given by the expression

J = σE, (B.4)

which can be considered to be a microscopic form of Ohm’s law, where σ is the electrical
conductivity, whose units are inverse seconds.

The relationships among the four electromagnetic field vectors are known as the constitutive
relations. These relations, even in the presence of nonlinearities, have the form

D = E + 4πP, (B.5a)

H = B − 4πM. (B.5b)

The manner in which the response of a material medium can lead to a nonlinear dependence of
P upon E is of course the subject of this book. For the limiting case of a purely linear response,
the relationships can be expressed (assuming an isotropic medium for notational simplicity)
as

P = χ(1)E, (B.6a)

M = χ(1)
m H. (B.6b)
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Note that the linear electric susceptibility χ(1) and the linear magnetic susceptibility χ
(1)
m are

dimensionless quantities. If we now introduce the linear dielectric constant ε(1) (also known
as the dielectric permittivity) and the linear magnetic permeability μ(1), both of which are
dimensionless and which are defined by

D = ε(1)E, (B.7a)

B = μ(1)
m H, (B.7b)

we find by consistency of Eqs. (B.5a)–(B.7a) and (B.5b)–(B.7b) that

ε(1) = 1 + 4πχ(1), (B.8a)

μ(1) = 1 + 4πχ(1)
m . (B.8b)

The fields E and B (rather than D and H) are usually taken to constitute the fundamental
electromagnetic fields. For example, the force on a particle of charge q moving at velocity v
through an electromagnetic field is given by the Lorentz force law

F = q
(

E + v
c

× B
)
. (B.9)

Poynting’s theorem can be derived from Maxwell’s equations in the following manner. We
begin with the vector identity

∇ · (E × H) = H · (∇ × E) − E · (∇ × H) (B.10)

and introduce expressions for ∇ ×E and ∇ ×H from the Maxwell equations (B.2a) and (B.2b),
to obtain

c

4π
∇ · (E × H) + 1

4π

[
H · ∂B

∂t
+ E · ∂D

∂t

]
= −J · E. (B.11)

Assuming for simplicity the case of a purely linear response, the second term on the left-hand
side of this equation can be expressed as ∂u/∂t , where

u = 1

8π
(E · D + B · H) (B.12)

represents the energy density of the electromagnetic field. We also introduce the Poynting vec-
tor

S = c

4π
E × H, (B.13)
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which gives the rate at which electromagnetic energy passes through a unit area whose normal
is in the direction of S. Eq. (B.11) can then be written as

∇ · S + ∂u

∂t
= −J · E, (B.14)

where J · E gives the rate per unit volume at which energy is lost to the field through Joule
heating.

A wave equation for the electric field can be derived from Maxwell’s equations, as described
in Section 2.1, and for a linear, isotropic nonmagnetic (i.e., μ = 1) medium that is free of
sources has the form

−∇2E + ε(1)

c2

∂2E
∂t2

= 0. (B.15)

This equation possesses solutions in the form of infinite plane waves—that is,

E = E0e
i(k·r−ωt) + c.c., (B.16)

where k and ω must be related by

k = nω/c, where n =
√

ε(1) and k = |k|.
The magnetic field associated with this wave has the form

B = B0e
i(k·r−ωt) + c.c. (B.17)

Note that, in accordance with the convention followed in the book, factors of 1
2 are not included

in these expressions. From Maxwell’s equations, one can deduce that E0,B0, and k are mutually
orthogonal and that the magnitudes of E0 and B0 are related by

n|E0| = |B0|. (B.18)

In considering the energy relations associated with a time-varying field, it is useful to introduce
a time-averaged Poynting vector 〈S〉 and a time-averaged energy density 〈u〉. Through use of
Eqs. (B.16)–(B.18), we find that these quantities are given by

〈S〉 = nc

2π
|E0|2k̂, (B.19a)

〈u〉 = n2

2π
|E0|2, (B.19b)

where k̂ is a unit vector in the k direction. In this book the magnitude of the time-averaged
Poynting vector is called the intensity I = |〈S〉| and is given by I = (nc/2π)|E0|2.
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Appendix C Systems of Units in Nonlinear Optics

There are several different systems of units that are commonly used in nonlinear optics. In this
appendix we describe these different systems and show how to convert among them. For sim-
plicity we restrict the discussion to a medium with instantaneous response so that the nonlinear
susceptibilities can be taken to be dispersionless. Clearly the rules derived here for among the
systems of units are the same for a dispersive medium.

In the gaussian system of units, the polarization P̃ (t) is related to the field strength Ẽ(t) by
the equation

P̃ (t) = χ(1)Ẽ(t) + χ(2)Ẽ2(t) + χ(3)Ẽ3(t) + · · · . (C.1)

In the gaussian system, all of the fields Ẽ, P̃ , D̃, B̃, H̃ , and M̃ have the same units; in particular,
the units of P̃ and Ẽ are given by

[
P̃

] = [
Ẽ

] = statvolt

cm
= statcoulomb

cm2
=

(
erg

cm3

)1/2

. (C.2)

Consequently, we see from Eq. (C.1) that the dimensions of the susceptibilities are as follows:

χ(1) is dimensionless, (C.3a)

[
χ(2)

] =
[

1

Ẽ

]
= cm

statvolt
=

(
erg

cm3

)−1/2

, (C.3b)

[
χ(3)

] =
[

1

Ẽ2

]
= cm2

statvolt2
=

(
erg

cm3

)−1

. (C.3c)

The units of the nonlinear susceptibilities are often not stated explicitly in the gaussian system
of units; one rather simply states that the value is given in electrostatic units (esu).

While there are various conventions in use regarding the units of the susceptibilities in the
SI system, by far the most common convention is to replace Eq. (C.1) by

P̃ (t) = ε0
[
χ(1)Ẽ(t) + χ(2)Ẽ2(t) + χ(3)Ẽ3(t) + · · · ], (C.4)

where

ε0 = 8.85 × 10−12 F/m (C.5)
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denotes the permittivity of free space. Since the units of P̃ and Ẽ in the SI system are

[
P̃

] = C

m2
, (C.6a)

[
Ẽ

] = V

m
, (C.6b)

and since 1 farad is equal to 1 coulomb per volt, it follows that the units of the susceptibilities
are as follows:

χ(1) is dimensionless, (C.7a)

[
χ(2)

] =
[

1

Ẽ

]
= m

V
, (C.7b)

[
χ(3)

] =
[

1

Ẽ2

]
= m2

V2
. (C.7c)

C.1 Conversion between the Systems

In order to facilitate conversion between the two systems just introduced, we express the two
defining relations (C.1) and (C.4) in the following forms:

P̃ (t) = χ(1)Ẽ(t)

[
1 + χ(2)Ẽ(t)

χ(1)
+ χ(3)Ẽ2(t)

χ(1)
+ · · ·

]
(gaussian), (C.1′)

P̃ (t) = ε0χ
(1)Ẽ(t)

[
1 + χ(2)Ẽ(t)

χ(1)
+ χ(3)Ẽ2(t)

χ(1)
+ · · ·

]
(SI). (C.4′)

The power series shown in square brackets must be identical in each of these equations. How-
ever, the values of Ẽ, χ(1), χ(2), and χ(3) are different in different systems. In particular, from
Eqs. (C.2) and (C.6b) and the fact that 1 statvolt = 300 V, we find that

Ẽ (SI) = 3 × 104Ẽ (gaussian). (C.8)

To determine how the linear susceptibilities in the gaussian and SI systems are related, we make
use of the fact that for a linear medium the displacement is given in the gaussian system by

D̃ = Ẽ + 4πP̃ = Ẽ
(
1 + 4πχ(1)

)
, (C.9a)

and in the SI system by

D̃ = ε0Ẽ + P̃ = ε0Ẽ
(
1 + χ(1)

)
. (C.9b)
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We thus find that

χ(1) (SI) = 4πχ(1) (gaussian). (C.10)

Using Eqs. (C.8) and (C.9a)–(C.9b), and requiring that the power series of Eqs. (C.1′) and (C.4′)
be identical, we find that the nonlinear susceptibilities in the two systems of unit are related by

χ(2) (SI) = 4π

3 × 104
χ(2) (gaussian)

= 4.189 × 10−4χ(2) (gaussian), (C.11)

χ(3) (SI) = 4π

(3 × 104)2
χ(3) (gaussian)

= 1.40 × 10−8χ(3) (gaussian). (C.12)

Appendix D Relationship between Intensity and Field Strength

In the gaussian system of units, the intensity associated with the field

Ẽ(t) = Ee−iωt + c.c. (D.1)

is

I = nc

2π
|E|2, (D.2)

where n is the refractive index, c = 3 × 1010 cm/sec is the speed of light in vacuum, I is
measured in erg/cm2 sec, and E is measured in statvolts/cm.

In the SI system, the intensity of the field described by Eq. (D.1) is given by

I = 2n
( ε0

μ0

)1/2|E|2 = 2n

Z0
|E|2 = 2nε0c|E|2, (D.3)

where ε0 = 8.85 × 10−12 F/m, μ0 = 4π × 10−7 H/m, and Z0 = √
μ0/ε0 = 377 
. I is mea-

sured in W/m2, and E is measured in V/m. Using these relations we can obtain the results
shown in Table D.1. As a numerical example, a pulsed laser of modest energy might produce
a pulse energy of Q = 1 mJ with a pulse duration of T = 10 nsec. The peak laser power
would then be of the order of P = Q/T = 100 kW. If this beam is focused to a spot size
of w0 = 100 µm, the maximum pulse intensity will be I = P/πw2

0 � 0.3 GW/cm2 and the
maximum electric field strength will be 790 statvolt/cm or 2.39 × 107 V/m.
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TABLE D.1: Relation between field strength and intensity.a

Conventional gaussian (cgs) SI (mks)
I I

(erg/cm2 sec)
E

(statvolt/cm)
I

(W/m2)
E

(V/m)

1 kW/m2 106 0.0145 103 4.34 × 102

1 W/cm2 107 0.0458 104 1.37 × 103

1 MW/m2 109 0.458 106 1.37 × 104

1 kW/cm2 1010 1.45 107 4.34 × 104

1 GW/m2 1012 1.45 × 10 109 4.34 × 105

1 MW/cm2 1013 45.8 1010 1.37 × 106

1 TW/m2 1015 4.58 × 102 1012 1.37 × 107

1 GW/cm2 1016 1.45 × 103 1013 4.34 × 107

1 ZW/m2 1018 1.45 × 104 1015 4.34 × 108

1 TW/cm2 1019 4.85 × 104 1016 1.37 × 109

a Note that the peak field strength is twice the field strength reported in this table.

Appendix E Physical Constants

This appendix provides tables of physical constants in both the Gaussian (cgs) and SI (mks)
systems.

TABLE E.1: Physical constants in the cgs and SI systems.

Constant Symbol Value Gaussian (cgs)a SI (mks)a

Speed of light in vacuum c 2.998 1010 cm/sec 108 m/sec

Elementary charge e 4.803 10−10 esu

1.602 10−19 C

Avogadro number NA 6.023 1023 mol 1023 mol

Electron rest mass m = me 9.109 10−28 g 10−31 kg

Proton rest mass mp 1.673 10−24 g 10−27 kg

Planck constant h 6.626 10−27 erg sec 10−34 J sec

� = h/2π 1.054 10−27 erg sec 10−34 J sec

Fine structure constantb α = e2/4πε0�c 1/137 – –

Compton wavelength of
electron

λC = h/mc 2.426 10−10 cm 10−12 m

Rydberg constantb R∞ = me4/32π2ε2
0�

2 13.6 eV eV

Bohr radiusb a0 = 4πε0�
2/me2 5.292 10−9 cm 10−11 m

Electron radiusb re = e2/4πε0mc2 2.818 10−13 cm 10−15 m

Bohr magnetonb μS = eh/2me 9.273 10−21 erg/G 10−24 J/T
⇒ 1.4 MHz/G

continued on next page
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TABLE E.1: (continued.)

Constant Symbol Value Gaussian (cgs)a SI (mks)a

Nuclear magnetonb μN = e�/2mp 5.051 10−24 erg/G 10−27 J/T

Gas constant R 8.314 107 erg/K m 100 J/K mole

Volume, mole of ideal
gas

V0 2.241 104 cm3 10−2 m3

Boltzmann constant kB 1.381 10−16 erg/K 10−23 J/K

Stefan–Boltzmann
constant

σ 5.670 10−5 erg/cm2 sec K4 10−8 W/m2 K4

Gravitational constant G 6.670 10−8 dyne cm2/g2 10−11 N m2/kg2

Electron volt eV 1.602 10−12 erg 10−19 J

a Abbreviations: C, coulombs; mol, molecules; g, grams; J, joules; N, newtons; G, gauss; T, teslas.
b Defining equation is shown in the SI system of units.

TABLE E.2: Physical constants specific to the SI system.

Constant Symbola Valuea

Permittivity of free space ε0 8.85 × 10−12 F/m

Permeability of free space μ0 4π × 10−7 H/m

Velocity of light in free space (ε0μ0)−1/2 = c 2.997 × 108 m/sec

Impedance of free space (μ0/ε0)1/2 = Z0 = ε0c 377 


a Abbreviations: F, farad = coulomb/volt, H, henry = weber/ampere.

TABLE E.3: Conversion between the systems.

1 m = 100 cm
1 kg = 1000 g

1 newton = 105 dynes

1 joule = 107 erg

1 coulomb = 2.998 × 109 statcoulomb
1 volt = 1/299.8 statvolt

1 ohm = 1.139 × 10−12 sec/cm

1 tesla = 104 gaussa

1 farad = 0.899 × 1012 cm

1 henry = 1.113 × 10−12 sec2/cm

1 eV = 1.6 ×10−19 J = 1.6 × 10−12 erg
a Here, 1 tesla = 1 weber/m2; 1 gauss = 1 oersted.
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A
Aberration, 334, 336, 338, 345,

441
Aberration correction, 336, 338
Absorption, 76, 99, 104, 132,

273, 276, 283–286, 307,
314, 316–319, 350, 351,
354, 358, 359, 376, 377,
523, 528–530, 532, 533,
535, 536, 538
coefficient, 14, 104, 166,

167, 192, 198,
231–233, 236, 239,
240, 242, 243, 273,
283, 284, 286, 316,
317, 350–352, 354,
359, 428, 445, 447,
450, 452, 453, 470,
473, 480
of light, 184, 354, 359,

397, 416
of sound, 397, 428, 447

Absorption cross section, 15,
167, 168, 535, 538, 561
multiphoton, 528–530, 538
N-photon, 561
one-photon, 532, 533

two-photon, 15, 16, 528,
530, 535, 536, 538

Acceptors, 509
Acetone, 208, 431, 453, 456
Acoustooptics, 403, 404, 406,

411, 416
Adiabatic following, 293, 294
Air, 209, 232, 385, 396, 416,

425, 524
Airy’s equation, 351
Amplifier (stimulated Brillouin

scattering), 420, 421, 427,
432, 433

Analytic functions, 57, 60
Angle phase matching, 121
Angle-tuned phase matching, 78
Anharmonic oscillator model,

61, 62, 218
Anisotropic molecules, 223,

229, 266, 382, 486, 487
Anomalous dispersion, 76
Anti-Stokes scattering, 398,

400, 401
Apparent divergence, 220
Arabinose, 265
Argon, 278
Atomic polarizability (linear),

221

Atomic unit of electric field
strength, 251
vapors, 20, 137, 150, 151,

154, 198, 278
Avalanche breakdown

mechanism, 524

B
Backward light, 317
Band, energy, 235
Band-filling effects, 240
Band-gap energy, 235, 241, 359
Band-to-band transitions, 235
Barium titanate, 499, 500, 510,

515, 516, 521
Beam deflector, acoustooptic,

403
Beam walk-off, 122–124, 130
Benzene, 208, 431, 453, 465,

487
Bessel function, 414, 415
Biaxial crystals, 42, 76
Birefringence, 42, 47–49, 76,

78–80, 109, 117, 345, 502
Bloch equations, optical, 288,

290, 319
Boltzmann distribution, 226
Boltzmann factor, 224, 237, 460
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Bond-charge model of optical
properties, 259–262

Bonds, σ and π , 257, 258
single and double, 257, 258

Boundary conditions, 87–90, 97,
117–119, 268, 475, 477,
524, 588–590

Bragg scattering (of light by
sound waves), 403, 405

Brillouin frequency, 401, 424,
426, 427, 456

Brillouin linewidth, 427, 428,
430, 442, 448, 451, 455

Brillouin scattering, 419–421,
425, 426, 431, 433,
436–438, 441, 443, 444,
449, 452
spontaneous, 404, 425, 433
stimulated, 419–421, 425,

426, 431, 436–438,
441, 443, 444, 449,
452

Bulk modulus, 395, 408

C
Carbon disulfide, 208, 224, 229,

245, 257, 267, 327, 374
Cascaded optical nonlinearities,

133
Cauchy’s theorem, 57
Causality, 54–56
Centrosymmetric media, 27, 121
Chaos (in stimulated Brillouin

scattering), 437
Cherenkov cone, 129
Chiral materials, 264, 269
Chiral nematic liquid crystal,

266
Chiral nematic phase, 266
Circular polarization, 213, 214,

491, 567
Closure condition of quantum

mechanics, 253
Coherent buildup length, 73, 81
Coherent Stokes Raman

scattering (CSRS), 484

Collinear phase matching, 121,
122, 125

Collision-induced resonances,
184

Collisional dephasing, 278, 279
Commutator, quantum

mechanical, 156, 159, 160,
162, 169, 170, 180

Compressibility, 393–396, 398,
423, 425

Compton wavelength, 565, 597
Conduction band, 235–242, 509
Confocal parameter, 111–114,

116, 375
Constant-pump approximation,

101, 112, 430, 457, 472,
474

Constitutive relations, 496, 584,
591

Continuity equation, 444, 446,
447, 517

Contour integration, 57, 58, 60,
114

Contracted notation, 38, 45, 498
Conversion between systems of

units, 61, 583, 595, 598
Conversion efficiency, 97
Counterpropagating waves, 338,

344, 420, 427, 486
Counterrotating waves, 349
Coupled-amplitude equations,

72, 81, 82, 84–87, 92, 94,
95, 97, 100, 102, 103,
131–133, 315, 317, 429,
438, 439, 456, 457,
516–518, 520
for difference-frequency

generation, 131
for stimulated Brillouin

scattering, 438
for sum-frequency

generation, 92, 100
Critical phase matching, 123,

124
Cross-correlation, 440

Cross-coupling, 206
Crystal systems, 41, 42, 46, 76
Cubic crystal, 45, 76, 192

D
Damping, quantum mechanical,

phenomenological, 156
Debye relaxation equation, 361,

487
Debye–Hückel screening, 237,

238
Degeneracy factor, 20, 92, 205
Denominator function, 23, 24
Density

of final states, 534, 535
Density matrix, 274–276,

278–282, 288–291,
293–295, 305, 308, 309
diagonal elements of, 154,

157
equation of motion for,

274–276, 280, 291
formulation of quantum

mechanics, 139, 151
off-diagonal elements of,

154, 156–158, 282
Determinant (of matrix), 89, 331
Dextrorotatory, 264, 265
Dextrose, 264
Diamond, 48, 49, 208, 223, 232

structure, 48, 49
Dielectric constant, 119, 120,

166, 192, 194, 195, 236,
237, 383, 389, 392, 393,
395, 398, 403, 405, 406,
419, 422, 423, 510, 512,
513, 515, 561, 566

Dielectric permittivity, tensor,
490
relaxation time, 508, 517

Difference-frequency
generation, 6, 8, 9, 26,
100–103, 116, 131, 264

Diffraction, 113, 321–324, 326,
339, 408–411, 413, 414,
416, 547, 548
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diffraction length, 548
length, 436

Diffusion, 402, 507, 510, 513,
527, 528
constant, 510, 527
field strength, 513

Dipole, 65, 72, 73
Dipole dephasing rate, 157, 168,

314
Dipole moment, 1, 50, 61, 144,

146, 154, 158, 163, 167,
168, 171, 188, 191–193,
195, 196, 223, 224, 276,
278–280, 282, 289–291,
296, 300, 303, 304, 306,
308, 315
induced, 278, 279, 289,

291, 300, 303, 304,
306, 387

operator, matrix
representation of, 158

Dirac delta function, 533
Dirac notation, 153
Director (of liquid crystal),

266–268
Dispersion (of refractive index),

76–78, 80, 256
Dispersion relation, 573,

577–579
Dispersionless medium, 2, 4, 16,

192, 478, 550
Dispersive lineshape, 284
Dispersive medium, 69, 107,

594
Dissipative medium, 69
Donors, 509, 510, 512
Doppler broadening, 288
Dressed states (atomic),

302–304, 306, 317–319
Drude model, 525, 571,

573–575, 579
Drude–Lorentz model, 575

E
Effective susceptibility, 204,

212, 213

Effective value of d coefficient,
40, 108

Einstein A coefficient, 168, 461
Electric-dipole approximation,

159, 185
Electromagnetically induced

transparency (EIT), 184,
185, 200

Electron–ion recombination
rate, 561

Electron–positron pair creation,
565

Electronic nonlinearities,
nonresonant, 217, 319
low-frequency limit, 222
quantum mechanical

treatment of, 218
Electrooptic effect, 204, 495,

496, 498, 499, 502, 506,
507
linear, 495, 496, 498, 499,

507
quadratic, 495, 498

Electrooptic modulators, 500,
503, 506

Electrostriction, 207, 212, 217,
223, 348, 364, 420, 421,
424–426, 443, 444, 454
electrostrictive stimulated

Brillouin and Rayleigh
scattering, 420, 443,
444, 451, 452

Enantiomers, 264
Energy density (of optical field),

35–37, 423, 496, 497, 586,
587, 592, 593

Energy eigenstates, 5, 139, 141,
152–154, 259, 290, 303,
530, 531

Energy transfer (between optical
beams), 360, 364

Entangled photons, 126
Entanglement, 126, 127
Equation of state

(thermodynamics), 394,
396

Ethanol, 208, 232, 396, 431, 453
Excitons, 238, 239
Expansion coefficients, 152, 185
Expectation value, quantum

mechanical, 142, 153–155
Exponential growth, 101, 104,

379, 420, 430, 431, 470,
483

Extraordinary polarization, 76,
77, 515

F
Fabry–Perot interferometer, 350,

377
Fast light, 317
Feedback, 102, 103, 105, 420
Fermat’s principle, 322, 323
Fermi level, 576
Fermi–Dirac distribution, 576
Fermi’s golden rule, 530, 535
Ferroelectric domains, 83
Ferroelectric materials, 50, 80,

83
Feynman diagrams, 177, 178,

183
Filamentation, 322
Fluctuations, 106, 318,

381–384, 390–393, 395,
402, 419, 434, 444
adiabatic and isobaric

fluctuations, 395, 402,
444

entropy fluctuations, 381,
402

relation to light scattering,
382, 383

Fluence, 233, 234, 243, 526
Foreign-gas broadening, 278
Four-wave mixing, 274, 307,

308, 317, 318, 320, 322,
328, 331, 332, 338, 339,
343–349, 375, 376, 379,
438, 439, 457, 471–474,
518–520
Brillouin-enhanced, 457
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contribution to stimulated
Raman scattering, 316

degenerate, 338, 339,
343–349, 376, 438

forward, 307, 308, 317,
320, 322, 328, 331,
332, 339, 346, 349,
474

photorefractive, 518–520
Fourier transform, 54–56, 59,

368, 369, 371, 542, 547,
556, 557

Frequency domain, 54, 55, 369,
371, 542

Full permutation symmetry,
35–38, 45, 72, 85, 86, 91,
146, 179, 199

Fused silica, 370, 373, 374

G
Gain factor, 465, 489, 491, 492

for stimulated Brillouin
scattering, 430, 441,
451, 456

for stimulated Rayleigh
scattering, 452, 453

for stimulated
Rayleigh-wing
scattering, 489, 491

process, 430, 470
Gallium arsenide, 45, 47, 48, 80,

83
Gauss (unit of magnetic field),

591, 598
Gaussian laser beams, 111, 112,

131, 133
focused, 132

Gaussian system of units, 130,
133, 583, 590, 594, 596

Generator (stimulated Brillouin
scattering), 420, 421, 426,
433, 435
contrasted with amplifier,

420, 421

Gold, 574, 576
Grating wavevector, 361,

512–514
Group index and group velocity,

131, 317
Group theory, 41, 62
Group velocity dispersion

(GVD), 365, 370–374, 547,
548

H
Half-wave voltage, 503
Hamiltonian (quantum

mechanical operator), 139,
140, 152, 153, 156, 159,
162, 274, 275, 281, 296,
297, 530, 531

Harmonic generation, 1, 4–7,
10, 19, 24, 25, 38–40, 42,
45, 60, 75, 78, 83, 86, 91,
92, 97–99, 111–117, 121,
131–133, 137, 138,
148–151, 197, 199, 210,
555–558

Harmonic oscillator form of
density matrix equations,
291

Heat capacity, 231, 232, 527
Heat transport equation, 231,

234, 526
Hermitian operator, 153
Hexagonal (crystal), 42, 46, 51,

76
High-harmonic generation,

555–558
Homeotropic alignment, 268
Hot electron, 576
Hydrodynamic model, 574
Hydrogen, 250, 251, 269, 465
Hyperbolic secant pulse, 378
Hyperpolarizability, 196, 197,

255, 259, 260
bond, 259, 260

Hysteresis, 353

I
Ideal gas, 232, 391, 394, 396,

425, 442, 445, 455, 598
Idler wave, 102–104
Impurity-doped solid, 319
Index ellipsoid, 122, 497, 501,

502
Instantaneous frequency, 366,

367
Instantaneous response, 377,

594
Intense-field nonlinear optics,

552, 558
Intensity modulator, 504
Intensity-dependent refractive

index, 11, 203, 205, 206,
226, 236, 321, 359
basic properties of, 11, 203

Interaction picture, 160, 185,
187, 189

Interfaces, nonlinear optics of,
116

Interference, 339, 360–362, 367,
383, 403, 419, 420, 443,
488, 489, 508, 518, 520
destructive, 383

Intrinsic permutation symmetry,
31, 34, 45, 145, 172, 210

Inversion symmetry, 2, 20, 28,
42–44, 47, 48, 98, 116, 499

Isotropic materials, 42, 50, 51,
164, 209, 210, 212, 424
nonlinear, propagation

through, 213

J
Jacobi elliptic functions, 86, 95
Jitter energy, 553
Joule heating, 525, 527, 586,

593

K
KDP, 49, 499, 500, 502
Keldysh mechanism, 525
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Kerr effect, 204, 364
electrooptic, 204
optical, 204, 364

Kleinman symmetry, 37–39, 45,
47, 212, 223, 262, 265

Kramers–Kronig relations, 2,
56, 57, 59, 60, 62, 239, 317

k surface, 122
KTP, 83, 109
Kurtosis, 254, 255

L
Landau–Placzek relation, 403
Laplacian differential operator,

337
transverse Laplacian, 110,

337
Lasing without inversion, 184
Levorotatory, 264, 265
Lifetime, 157, 198, 276, 280,

397, 428, 436, 444, 448,
456, 534

Lightning rod effect, 580
Linewidth (of OPO), 108
Liquid, 2, 28, 42, 192, 208, 209,

223, 232, 419, 422, 436,
443

Liquid crystals, 249, 266–268
Lithium niobate, 78–80, 83,

109, 499, 500, 510
Lorentz local field, 192–194
Lorentz model, 569, 572
Lorentz model (of atom), 20, 23,

25, 166, 218, 388, 416
Lorentz–Lorenz law, 194, 198,

256
Lorentzian lineshape, 389, 534
Lossless medium, 4, 35, 37, 45,

72, 85, 146

M
Mach–Zehnder interferometer,

356
Magnetic permeability, 585, 592

Maker and Terhune (A and B)
notation, 218, 222, 223, 230

Manley–Rowe relations, 83, 85,
93, 132

Maxwell field, 192
Maxwell–Boltzmann

distribution, 237
Maxwell’s equations, 65, 119,

192, 584, 586–588,
591–593

Mean-field approximation, 350,
351

Methanol, 208, 431, 453
Microscopy, nonlinear optical,

99
Miller’s rule, 26, 255
Mobility, 510, 517
Mode structure (of OPO), 106
Modulation index, 414, 512, 521
Modulational instability, 378
Molecular orientation effect,

229, 231, 245, 334, 486
Molecular vibrations, 466–468,

483
Monoclinic (crystal), 42, 46, 53,

76
Moving focus model (of self

focusing), 333
Multiphoton absorption,

528–530, 538
Multiphoton ionization and

dissociation, 523, 527, 529,
559, 560

N
Nanoparticle, 576
Negative-frequency

components, 7, 18, 33
Nematic phase, 266
Nitrogen, 416, 442
Noncentrosymmetric media, 2,

21
Noncollinear phase matching,

121, 123, 124
Noncritical phase matching,

123, 124

Nonlinear Schrödinger equation,
372, 378, 541, 546

Nonlocal response, 437
Nonresonant excitation, 3, 32,

146, 148, 178, 183, 218
Normal dispersion, 75, 76
Normal surface, 122

O
Octopole moment, 255
Oersted (unit of magnetic field),

591, 598
Ohm’s law, 517, 584, 591
Optical activity, 216, 264
Optical bistability, 14, 349, 350,

352, 353, 355, 356, 376,
377
absorptive, 376
refractive, 14, 349, 350,

376, 377
Optical damage, 11, 359, 456,

523, 524, 526, 527, 529
threshold for, 527

Optical indicatrix, 497, 498
Optical parametric oscillation,

9, 104
Optical phase conjugation, 184,

334, 336, 343, 375, 376
Optical rectification, 5, 6, 26
Optical shock waves, 541, 550,

551
Optical switching, 349, 356, 377
Optimum focusing (in SHG),

133
Ordinary polarization, 77
Orthogonal transformation, 496
Orthonormality condition, 141,

531
Orthorhombic (crystal), 42, 46,

53, 76
Oscillator strength, 165, 166,

255, 256
sum rule for, 165
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P
Parametric amplification, 9,

100–103, 105
Parametric and nonparametric

processes, 14
Parametric fluorescence, 9
Paraxial wave equation, 109,

110, 131, 327
Parity, definite or fixed, 253, 275
“Particle-in-a-box”, 576
Pauli principle, 240
Permittivity, 2, 68, 422, 583,

585, 592, 595, 598
Perturbation theory, 138, 140,

146, 175, 179, 183, 249,
252, 253, 307, 312
of atomic wave function,

138, 179
time-independent, 249

Phase conjugation, 184,
334–336, 338, 343–349,
375, 376, 437–441, 491,
492
aberration correction by,

336
by stimulated Brillouin

scattering, 437–440
polarization properties of,

345–347, 376
vector, 346–349, 491, 492

Phase of focused Gaussian
beam, 246

Phase shift (as origin of
two-beam coupling), 359

Phase-matching, 7, 9, 47, 65, 72,
74–81, 83, 88, 94, 97, 99,
100, 103–105, 114, 120,
130–133, 403–405, 409,
470, 473, 479, 481, 483,
485
and Stokes–anti-Stokes

coupling in stimulated
Raman scattering, 473

as the Bragg condition, 405

curve, 80, 81
methods of achieving, 76
quasi-phase-matching, 133

Phonon lifetime, 397, 428, 436,
444, 448, 456

Photon energy-level, 9, 14
Photon occupation number, 461,

462
Photonic switching, 184
Photorefractive effect, 50, 207,

365, 507–509, 521, 552
Photovoltaic current, 510
Physical constants, 3, 409, 597,

598
Planar alignment (of liquid

crystal), 268
Plasma frequency, 236, 561,

563, 569–572, 574
Plasma nonlinearities, 561, 562
Plasma screening effects, 237,

239
Plasmonics, 569, 574, 580
Pockels effect, 495, 507
Point groups, 41, 42, 45, 48–50,

62
Poisson probability distribution,

391
Polar crystals, 50
Polarizability, 3, 167, 168, 192,

193, 197, 213, 221, 223,
224, 226–229, 253, 254,
259–262, 382, 387–390,
416, 466, 486, 487

Polarization, 1–8, 10–12, 16–20,
24, 26, 28, 29, 31–34,
36–40, 42, 43, 50, 54, 55,
61, 62, 65, 67, 69–73,
76–78, 92, 103, 109, 112,
115, 117–119, 250, 264,
265, 384, 388, 392,
398–400, 402, 465, 468,
469, 471, 472, 486,
490–492, 584, 591, 594
ellipse, 213, 215, 216, 245,

491, 504

nonlinear, 2, 5–8, 10–12,
16, 18, 19, 24, 32–34,
37–40, 43, 50, 54, 61,
62, 71, 72, 92, 112,
115, 117–119, 204,
205, 207, 210–212,
214, 327, 329, 330,
339–341, 347, 349

second-order, 2, 5, 55, 145,
196, 264

third-order, 2, 10, 28, 55,
62, 230, 259

Polarization unit vector, 216,
245, 335, 345, 347, 512,
515

Polydiacetylene, 208, 217
Ponderomotive effects, 562
Ponderomotive energy, 553,

555, 560
Population decay rate, 143, 157,

168, 314, 534
Population inversion, 278, 289,

305, 306, 308
Power broadening, 274, 284
Power series expansion, 4, 22,

36, 250, 273, 286, 370, 543,
552

Poynting theorem, 36, 132, 586,
592

Poynting vector, 73, 79, 387,
586, 587, 592, 593

Probability amplitude, 141, 142,
152, 153, 155, 157, 188,
291, 296, 299, 302, 303,
532, 535

Pulse compression (by
stimulated Brillouin
scattering), 437, 456, 457

Pulse duration, laser damage
dependence on, 526, 527

Pulse propagation, 365, 368,
372, 373, 377, 541, 547,
548
for ultrashort pulses, 547,

548
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Pump depletion (in stimulated
Brillouin scattering), 431,
437

Q
Quadrupole moment, 253, 255
Quantum electrodynamics

(QED), 565
nonlinear, 565

Quantum mechanics, 5, 13, 20,
22, 35, 85, 86, 137–139,
142, 145, 151–155, 165,
166, 249–251, 253

Quartz, 49, 74, 266
Quasiphase-matching, 79–83,

109, 131, 133
Quasistatic approximation, 580

R
Rabi frequency, 189, 282, 287,

294, 298–300, 304–308,
310, 312, 317

Rabi oscillations, 274, 295, 300,
305, 306, 319
damped, 305, 306

Rabi sidebands, 301, 306, 317,
318

Racemic mixtures, 264, 265
Raman anti-Stokes scattering,

459, 460
Raman scattering, 16, 443, 444,

459–463, 465–467, 473,
474, 478, 480, 483–485,
492
spontaneous, 16
stimulated, 16, 443, 444,

460–463, 465–467,
473, 474, 478, 480,
483–485, 492

Raman Stokes scattering, 459,
460

Raman susceptibility, 469–472
Raman–Nath scattering (in

acoustooptics), 412, 413

Rate equation, 509, 561
Rate-of-dilation tensor, 445
Rayleigh resonance, 318
Rayleigh scattering, 443, 444,

448, 449, 452, 453
spontaneous, 452
stimulated, 443, 444, 449,

452–454
Rayleigh-wing scattering, 381,

382, 384, 486, 488–492
polarization properties of,

490, 492
spontaneous, 382, 383, 459
stimulated, 382, 459, 486,

492
Reality of physical fields, 45
Recombination, electron–hole,

236, 561
Reflection, nonlinear optics in,

116
Refractive index, calculated

quantum mechanically, 218
Relativistic effects, 553, 554,

562, 565
relativistic change in mass,

554, 562
Relaxation processes, 138, 139,

276, 277, 279, 280, 290,
319

Relaxation time, 276, 278, 307,
382, 487, 508, 517

Residue theorem, 57
Resonance, one-, two-, and

three-photon, 21, 138, 150,
172, 200, 318, 347

Resonance enhancement, 137,
150

Resonant excitation, 4, 139, 168,
169, 218, 274, 288, 344

Response time, 207, 217,
232–234, 236, 266, 267,
319, 487, 507, 517

Retardation, 206, 503–506, 516
Retarded time, 372, 544

Rotating wave approximation,
532

Rotation of the polarization
ellipse, 215, 216, 245

Rydberg constant, 150, 223, 239
Rydberg levels of atom, 150

S
Sapphire, 223, 559
Saturable absorption, 14, 99,

273
Saturation, 1, 4, 14, 221, 240,

243, 273, 274, 284–286,
288, 307
effects, 1, 4, 240, 243, 274
intensity, 14, 273, 285, 286,

288, 351
spectroscopy, 307

Scattering of light, 381, 385,
400, 403, 405, 416, 420,
443, 444, 491
cross section, 385–390,

416, 460, 463, 464
from moving grating, 363
scalar, 384
scattering coefficient,

384–386, 391, 392,
394, 416, 419

spontaneous, 419
tensor, 384

Schrödinger picture, 160
Second-harmonic generation, 1,

4–7, 19, 24, 25, 38–40, 42,
45, 60, 75, 78, 83, 86, 91,
92, 97–99, 111, 113,
115–117, 131–133

Self-action effects, 206,
321–323, 327, 333, 567

Self-broadening (of atomic
resonance), 278

Self-focusing, 11, 321–327,
332–334, 374, 519, 551,
564, 567
critical power for, 321, 327,

332, 564, 567
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self-focusing angle, 323,
324

transient, 334
Self-induced transparency, 378
Self-phase modulation,

365–368, 372, 377
Self-steepening, 541, 546, 548,

550, 551
Self-trapping, 321, 322,

324–328
Semiconductor nonlinearities,

235
Sidebands, 301, 306, 307, 314,

316–318, 378, 379, 466,
467, 473, 479

Silica, 370, 373, 374, 377
fused, 207, 208, 223, 232,

233, 245, 370, 373,
374, 396, 456, 548

Silicon, 510
Simultaneous equations, 89
Singly resonant optical

parametric oscillator, 102,
105, 106

Slow light, 184, 317
Slowly-varying amplitude

approximation, 429, 450
Sodium vapor, 151
Solitons, 328, 365, 372–374,

377, 378, 521
spatial, 328, 374, 521

Sound, velocity of, 395, 396,
403, 405, 408, 425, 426,
428, 442, 446

Sound absorption coefficient,
397, 428, 447

Space–time coupling, 541, 546,
550

Spatial symmetry, 41, 44, 50,
209

Spatial walk-off, 129, 130
Specific heat, 396, 402
Speckle, 439, 441
Sphere, polarizability of, 580

Spontaneous and stimulated
light scattering contrasted,
419

Spontaneous emission, 168, 276
Spontaneous parametric down

conversion, 124
Square-well potential, 259, 269
Stark effect, 221, 222, 242, 250,

318
Statcoulomb, 590, 591, 594, 598
Stimulated emission, 532, 533
Stimulated emission depletion,

100
Stimulated Rayleigh scattering,

16, 317, 443, 444, 449,
452–454

Stochastic properties of
stimulated Brillouin
scattering, 437

Stokes relation, 356, 445, 455
for viscosity, 416, 442, 445,

455
Stokes scattering, 398, 400, 426,

430, 454, 460
Stokes–anti-Stokes coupling,

316, 473, 474, 480, 492
Strain-optic tensor, 405
Sum-frequency generation, 6–8,

18, 19, 25, 39, 40, 65, 66,
70, 74, 75, 86, 92, 100, 101,
130, 132, 150, 184, 189

Supercontinuum generation
(SCG), 551

Surface nonlinear optics, 98
Surface plasmon polariton

(SPP), 569, 576–579, 581
Susceptibility, 2, 3, 5, 13, 14,

16–21, 24–28, 30–35,
37–39, 41, 42, 44–47, 50,
51, 55, 56, 59–62, 85, 91,
112, 116, 121, 132,
137–139, 142–151, 161,
163–167, 169, 171–175,
179–184, 188, 191–196,
198–200, 495, 507, 521

in quasi-static limit, 251
linear, 2, 24, 30, 41, 42, 55,

56, 62, 142–144, 161,
163–166, 188, 193,
194, 198, 200, 282,
286, 315, 521
calculated using

density matrix, 161
nonlinear, 16–21, 24–26,

31–35, 37, 39, 41, 42,
44, 45, 47, 50, 59–61,
85, 91, 112, 116,
137–139, 146,
148–151, 171–174,
182, 192, 195, 196,
199, 200, 204, 207,
210–212, 218,
220–223, 244, 245,
495, 507

of two-level atom, 285, 319
Raman, 469–472
second-order, 3, 5, 18, 20,

25, 27, 33, 37, 41,
44–47, 50, 55, 56, 61,
62, 116, 121, 144–146,
148, 169, 172, 175,
183, 196, 495, 521

third-order, 20, 26, 31, 50,
51, 56, 61, 62, 138,
146–148, 150, 169,
179–183, 191, 198,
199, 209, 210, 218,
222, 223, 230, 274,
285, 286, 288, 315,
319, 424, 425

Systems of units, 2, 130, 583,
594, 596

T
Tensor properties, 28, 61, 229,

245, 265, 466, 490, 510,
566
of isotropic materials, 245
of the molecular orientation

effect, 245
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Tetragonal crystals, 42, 46, 53,
76

Thermal conductivity, 231, 232,
397, 402, 527

Thermal equilibrium, 156, 169,
199, 200, 226, 229, 236,
277, 395, 460

Thermal nonlinear optical
effects, 231–234

Thermal stimulated Brillouin
and Rayleigh scattering,
444

Thermodynamics, first law of,
423

Third-harmonic generation, 10,
60, 99, 114, 115, 132, 137,
138, 148–151, 197, 199,
210

Thomas–Fermi screening, 262
Thompson scattering, 389
Three-photon resonance, 138,

150, 318
Threshold condition, 104, 105
THz generation, 129, 130
THz radiation, 127, 129, 130
Tilted-pulse-front method, 127,

129
Time-domain description, 50
Titanium dioxide, 208
Tomography, 99
Total internal reflection, 325,

326
Trap density, 513, 514, 521
Trap level, 280

Triclinic crystal, 42, 46, 53, 76
Trigonal crystal, 42, 46, 52, 76
Two-beam coupling, 511, 514,

516, 517, 519–521
photorefractive, 511, 517
transient, 517, 521

Two-level approximation, 274
Two-level atom, 158, 240,

274–277, 279, 280, 285,
288, 293, 295, 296, 302,
305–308, 313, 316, 319
density matrix treatment of,

158
Two-photon absorption, 15, 16,

132, 200, 241–243, 359,
528, 530, 535, 536, 538

Type I and type II phase
matching, 76

U
Ultrashort laser pulses, 541, 546
Undepleted-pump

approximation, 88, 91, 92,
132

Underdense plasma, 561
Uniaxial crystals, 40, 42, 76–78,

501
Upconversion, 86, 130

V
Valence band, 235, 236,

238–240, 574, 576
Vector phase matching, 121
Vector potential, dimensionless,

555

Vibrations, molecular, 466–468,
483

Virtual transitions, 236, 241
Viscosity, 397, 416, 442, 445,

454, 455

W
Water, 208, 232, 385, 396, 402,

409, 416, 419, 529
Wave equation, 3, 5, 65, 67–71,

91, 109, 110, 117, 120, 131,
316, 320, 327, 330, 337,
340, 342, 362, 368, 369,
371, 397, 398, 402, 406,
407, 542–545, 548, 550,
586, 587, 593
acoustic, 428

Wavefront radius of curvature,
111, 375

Wavefunction, 138–141,
151–153, 158, 179, 183,
185, 189, 190, 200, 295,
296, 301–305

Wavelength tuning of optical
parametric oscillator, 105

Wavevector mismatch, 73, 74,
80–82, 97, 110, 114, 115,
120, 132, 316, 317, 341,
407, 409, 410, 473, 478,
481

Z
Z-scan, 324, 374, 375
Zincblende structure, 45, 47–49
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